A Parameter-Fitted PC-SAFT Framework for Solubility Extrapolation in Drug-Polymer Systems
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41002290
PubMed Central
PMC12587440
DOI
10.1021/acs.molpharmaceut.5c00939
Knihovny.cz E-zdroje
- Klíčová slova
- PC-SAFT, amorphous solid dispersion, drug solubility, phase diagram, poly(2-oxazoline),
- MeSH
- farmaceutická chemie metody MeSH
- léčivé přípravky chemie MeSH
- polymery * chemie MeSH
- příprava léků metody MeSH
- rozpustnost MeSH
- termodynamika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- léčivé přípravky MeSH
- polymery * MeSH
Accurate modeling of drug-polymer solubility is essential for the rational design of amorphous solid dispersions and other advanced pharmaceutical formulations. The perturbed-chain statistical associating fluid theory (PC-SAFT) equation of state has emerged as a robust framework for capturing complex thermodynamic interactions in such systems. However, its predictive accuracy is often constrained by the limited availability of validated pure-component parameters and the frequent need to optimize the binary interaction parameter (kij) to match experimental data. In this study, we present a novel application of PC-SAFT as a data-driven extrapolation tool in which model parameters are directly regressed to experimental solubility data for specific drug-polymer pairs. This approach repositions PC-SAFT from a purely predictive model to a pragmatic extrapolative framework, enabling solubility estimation without reliance on pretabulated parameters or speculative kij adjustments. In a separate analysis, we further demonstrate that using arbitrary pure-component parameter values─when coupled with kij optimization─can achieve predictive performance comparable to that of literature-derived parameters. This finding underscores the dominant role of the binary interaction parameter and suggests that detailed pure-component calibration may not be essential for capturing the solubility behavior. Case studies confirm that both strategies reliably reproduce experimental trends and offer practical paths for bridging data gaps in the thermodynamic modeling of drug-polymer systems.
Zobrazit více v PubMed
Gross J., Sadowski G.. Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules. Ind. Eng. Chem. Res. 2001;40(4):1244–1260. doi: 10.1021/ie0003887. DOI
Gross J., Sadowski G.. Application of the Perturbed-Chain SAFT Equation of State to Associating Systems. Ind. Eng. Chem. Res. 2002;41(22):5510–5515. doi: 10.1021/ie010954d. DOI
Gross J., Vrabec J.. An equation-of-state contribution for polar components: Dipolar molecules. AIChE J. 2006;52(3):1194–1204. doi: 10.1002/aic.10683. DOI
Kontogeorgis G. M., Folas G. K.. The Statistical Associating Fluid Theory (SAFT) Thermodynamic Models for Industrial Applications. 2010:221–259. doi: 10.1002/9780470747537.ch8. DOI
Prudic A., Ji Y., Sadowski G.. Thermodynamic Phase Behavior of API/Polymer Solid Dispersions. Mol. Pharmaceutics. 2014;11(7):2294–2304. doi: 10.1021/mp400729x. PubMed DOI
Lehmkemper K., Kyeremateng S. O., Heinzerling O., Degenhardt M., Sadowski G.. Long-Term Physical Stability of PVP- and PVPVA-Amorphous Solid Dispersions. Mol. Pharmaceutics. 2017;14(1):157–171. doi: 10.1021/acs.molpharmaceut.6b00763. PubMed DOI
Lehmkemper K., Kyeremateng S. O., Heinzerling O., Degenhardt M., Sadowski G.. Impact of Polymer Type and Relative Humidity on the Long-Term Physical Stability of Amorphous Solid Dispersions. Mol. Pharmaceutics. 2017;14(12):4374–4386. doi: 10.1021/acs.molpharmaceut.7b00492. PubMed DOI
Luebbert C., Huxoll F., Sadowski G.. Amorphous-Amorphous Phase Separation in API/Polymer Formulations. Molecules. 2017;22(2):296. doi: 10.3390/molecules22020296. PubMed DOI PMC
Luebbert C., Stoyanov E., Sadowski G.. Phase behavior of ASDs based on hydroxypropyl cellulose. Int. J. Pharm. X. 2021;3:100070. doi: 10.1016/j.ijpx.2020.100070. PubMed DOI PMC
Luebbert C., Stoyanov E.. Tailored ASD destabilization - Balancing shelf life stability and dissolution performance with hydroxypropyl cellulose. Int. J. Pharm. X. 2023;5:100187. doi: 10.1016/j.ijpx.2023.100187. PubMed DOI PMC
Paus R., Ji Y., Vahle L., Sadowski G.. Predicting the Solubility Advantage of Amorphous Pharmaceuticals: A Novel Thermodynamic Approach. Mol. Pharmaceutics. 2015;12(8):2823–2833. doi: 10.1021/mp500824d. PubMed DOI
Klajmon M.. Investigating Various Parametrization Strategies for Pharmaceuticals within the PC-SAFT Equation of State. J. Chem. Eng. Data. 2020;65(12):5753–5767. doi: 10.1021/acs.jced.0c00707. DOI
Luebbert C., Sadowski G.. In-situ determination of crystallization kinetics in ASDs via water sorption experiments. Eur. J. Pharm. Biopharm. 2018;127:183–193. doi: 10.1016/j.ejpb.2018.02.028. PubMed DOI
Brinkmann J., Exner L., Verevkin S. P., Luebbert C., Sadowski G.. PC-SAFT Modeling of Phase Equilibria Relevant for Lipid-Based Drug Delivery Systems. J. Chem. Eng. Data. 2021;66(3):1280–1289. doi: 10.1021/acs.jced.0c00912. DOI
Mathers A., Hassouna F., Klajmon M., Fulem M.. Comparative Study of DSC-Based Protocols for API-Polymer Solubility Determination. Mol. Pharmaceutics. 2021;18(4):1742–1757. doi: 10.1021/acs.molpharmaceut.0c01232. PubMed DOI
Mathers A., Terentev K., Hassouna F., Fulem M.. Compatibility assessment of drug-poly(2-oxazoline) systems: COSMO-RS modeling and experimental validation. Eur. Polym. J. 2025;235:114066. doi: 10.1016/j.eurpolymj.2025.114066. DOI
Mathers A., Pechar M., Hassouna F., Fulem M.. The step-wise dissolution method: An efficient DSC-based protocol for verification of predicted API-polymer compatibility. Int. J. Pharm. 2023;648:123604. doi: 10.1016/j.ijpharm.2023.123604. PubMed DOI
Mathers A., Fulem M.. Drug-polymer compatibility prediction via COSMO-RS. Int. J. Pharm. 2024;664:124613. doi: 10.1016/j.ijpharm.2024.124613. PubMed DOI