Proteomics analysis of soluble secreted proteins of Lutzomyia longipalpis LL5 cells transfected with a dsRNA viral mimic: insights into cellular defense and repair signals
Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
41017916
PubMed Central
PMC12460361
DOI
10.3389/fcimb.2025.1638505
Knihovny.cz E-resources
- Keywords
- RNA degradation, cell repair, non-specific antiviral response, poly I:C, sand fly cell line, secreted proteins,
- MeSH
- Cell Line MeSH
- RNA, Double-Stranded * genetics MeSH
- Insect Proteins * metabolism MeSH
- Poly I-C MeSH
- Proteome * analysis MeSH
- Proteomics MeSH
- Psychodidae * immunology metabolism genetics MeSH
- Secretome * MeSH
- Signal Transduction MeSH
- Transfection MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- RNA, Double-Stranded * MeSH
- Insect Proteins * MeSH
- Poly I-C MeSH
- Proteome * MeSH
Sand flies, which transmit diseases like leishmaniases, bartonellosis, and certain viruses, pose a significant public health threat. Our research focuses on the immune responses of Lutzomyia longipalpis, the primary vector for visceral leishmaniasis in the Americas. We use L. longipalpis LL5 cells as a model to study how sand flies respond to pathogens. These cells exhibit robust immune reactions, producing molecules mainly regulated by the Toll, IMD, Jak-STAT, and RNAi pathways. In previous studies, we detected a non-specific antiviral response in LL5 cells following double-stranded RNAs (dsRNAs) transfection. A previous complete secretome of these cells showed molecules resembling an interferon-like antiviral response when transfected with polyinosinic-polycytidylic acid (poly I:C), a synthetic dsRNA analog. In the current study, we analyzed soluble proteins secreted by LL5 cells after poly I:C transfection. Using comparative mass spectrometry, we examined protein composition of conditioned media depleted of exosomes at 24 h and 48 h. Most proteins uniquely expressed in the transfected groups had low abundance compared to the overall expressed proteins. Interactome prediction analysis revealed that at 24 h, the proteins uniquely found in the secretome of the transfected group were involved in RNA degradation and purine metabolism, while at 48 h they were linked to ribosomal proteins and signaling pathways such as Hedgehog, Transforming Growth Factor-beta (TGF-β), and Wingless/integrated (Wnt). We highlight increased abundance of the TGF-β-induced protein ig-h3 (24 h and 48 h), a Toll-like receptor 3 (48 h), and a hemocytin (48 h) in the secretion of transfected groups compared to the controls. We also performed an interaction analysis of proteins more secreted by the treated group at 24 h and 48 h. Unlike the interactome of uniquely identified proteins, few interactions were observed at 24 h, with a predominance of extracellular matrix and cell adhesion proteins. The set of proteins more secreted at 48 h presented more interactions than at 24 h, with emphasis on catabolic processes, including RNA degradation. These findings indicate that poly I:C transfection in LL5 cells induces the secretion of proteins involved in cellular defense and repair, revealing molecules involved in the LL5 non-specific antiviral response.
Department of Parasitology Faculty of Science Charles University Prague Czechia
Laboratório de Genômica Funcional Instituto Carlos Chagas Fiocruz Curitiba Brazil
Plataforma Espectrometria de Massas RPT02H Instituto Carlos Chagas Fiocruz Curitiba Brazil
See more in PubMed
Aitken T. H. G., Woodall J. P., de Andrade A. H. P., Bensabath G., Shope R. E. (1975). Pacui virus, phlebotomine flies, and small mammals in Brazil: an epidemiological study. Am. J. Trop. Med. Hygiene 24, 358–368. doi: 10.4269/ajtmh.1975.24.358, PMID: PubMed DOI
Alexander A. J. T., Salvemini M., Sreenu V. B., Hughes J., Telleria E. L., Ratinier M., et al. (2023). Characterisation of the antiviral RNA interference response to Toscana virus in sand fly cells. PloS Pathog. 19, e1011283. doi: 10.1371/journal.ppat.1011283, PMID: PubMed DOI PMC
Alexopoulou L., Holt A. C., Medzhitov R., Flavell R. A. (2001). Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738. doi: 10.1038/35099560, PMID: PubMed DOI
Alkan C., Bichaud L., De Lamballerie X., Alten B., Gould E. A., Charrel R. N. (2013). Sandfly-borne phleboviruses of Eurasia and Africa: Epidemiology, genetic diversity, geographic range, control measures. Antiviral Res. 100, 54–74. doi: 10.1016/J.ANTIVIRAL.2013.07.005, PMID: PubMed DOI
Alkan C., Zapata S., Bichaud L., Moureau G., Lemey P., Firth A. E., et al. (2015). Ecuador paraiso escondido virus, a new flavivirus isolated from new world sand flies in Ecuador, is the first representative of a novel clade in the genus flavivirus. J. Virol. 89, 11773–11785. doi: 10.1128/JVI.01543-15, PMID: PubMed DOI PMC
Amos B., Aurrecoechea C., Barba M., Barreto A., Basenko E. Y., Bażant W., et al. (2022). VEuPathDB: the eukaryotic pathogen, vector and host bioinformatics resource center. Nucleic Acids Res. 50, D898–D911. doi: 10.1093/nar/gkab929, PMID: PubMed DOI PMC
Arakane Y., Muthukrishnan S. (2010). Insect chitinase and chitinase-like proteins. Cell. Mol. Life Sci. 67, 201–216. doi: 10.1007/s00018-009-0161-9, PMID: PubMed DOI PMC
Ariav Y., Chng J. H., Christofk H. R., Ron-Harel N., Erez A. (2021). Targeting nucleotide metabolism as the nexus of viral infections, cancer, and the immune response. Sci. Adv. 7, eabg6165. doi: 10.1126/sciadv.abg6165, PMID: PubMed DOI PMC
Assil S., Webster B., Dreux M. (2015). Regulation of the host antiviral state by intercellular communications. Viruses 7, 4707–4733. doi: 10.3390/v7082840, PMID: PubMed DOI PMC
Balmer E. A., Faso C. (2021). The road less traveled? Unconventional protein secretion at parasite–host interfaces. Front. Cell Dev. Biol. 9. doi: 10.3389/fcell.2021.662711, PMID: PubMed DOI PMC
Basisty N., Kale A., Jeon O. H., Kuehnemann C., Payne T., Rao C., et al. (2020). A proteomic atlas of senescence-associated secretomes for aging biomarker development. PloS Biol. 18, e3000599. doi: 10.1371/journal.pbio.3000599, PMID: PubMed DOI PMC
Benson R. A., Lowrey J. A., Lamb J. R., Howie S. E. M. (2004). The Notch and Sonic hedgehog signalling pathways in immunity. Mol. Immunol. 41, 715–725. doi: 10.1016/j.molimm.2004.04.017, PMID: PubMed DOI
Bonifay T., Le Turnier P., Epelboin Y., Carvalho L., De Thoisy B., Djossou F., et al. (2023). Review on main arboviruses circulating on French Guiana, an ultra-peripheric european region in south america. Viruses 15, 1268. doi: 10.3390/v15061268, PMID: PubMed DOI PMC
Brutscher L. M., Daughenbaugh K. F., Flenniken M. L. (2017). Virus and dsRNA-triggered transcriptional responses reveal key components of honey bee antiviral defense. Sci. Rep. 7, 6448. doi: 10.1038/s41598-017-06623-z, PMID: PubMed DOI PMC
Chamberlin M. J., Patterson D. L. (1965). Physical and chemical characterization of the ordered complexes formed between polyinosinic acid, polycytidylic acid and their deoxyribo-analogues. J. Mol. Biol. 12, 410–428. doi: 10.1016/s0022-2836(65)80264-9, PMID: PubMed DOI
Comer J. A., Corn J. L., Stallknecht D. E., Landgraf J. G., Nettles V. F. (1992). Titers of vesicular stomatitis virus, new Jersey serotype, in naturally infected male and female lutzomyia shannoni (Diptera: psychodidae) in Georgia. J. Med. Entomology 29, 368–370. doi: 10.1093/jmedent/29.2.368, PMID: PubMed DOI
Cooper D. A., Jha B. K., Silverman R. H., Hesselberth J. R., Barton D. J. (2014). Ribonuclease L and metal-ion–independent endoribonuclease cleavage sites in host and viral RNAs. Nucleic Acids Res. 42, 5202–5216. doi: 10.1093/nar/gku118, PMID: PubMed DOI PMC
Corn J. L., Comer J. A., Erickson G. A., Nettles V. F. (1990). Isolation of vesicular stomatitis virus new Jersey serotype from phlebotomine sand flies in Georgia. Am. J. Trop. Med. Hygiene 42, 476–482. doi: 10.4269/ajtmh.1990.42.476, PMID: PubMed DOI
Cox J., Mann M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372. doi: 10.1038/nbt.1511, PMID: PubMed DOI
Cox J., Neuhauser N., Michalski A., Scheltema R. A., Olsen J. V., Mann M. (2011). Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805. doi: 10.1021/pr101065j, PMID: PubMed DOI
Cui L., Ma R., Cai J., Guo C., Chen Z., Yao L., et al. (2022). RNA modifications: importance in immune cell biology and related diseases. Signal Transduction Targeted Ther. 7, 334. doi: 10.1038/s41392-022-01175-9, PMID: PubMed DOI PMC
Dal Col J., Lamberti M. J., Nigro A., Casolaro V., Fratta E., Steffan A., et al. (2022). Phospholipid scramblase 1: a protein with multiple functions via multiple molecular interactors. Cell Communication Signaling 20, 78. doi: 10.1186/s12964-022-00895-3, PMID: PubMed DOI PMC
De Carvalho M. S., De Lara Pinto A. Z., Pinheiro A., Rodrigues J. S. V., Melo F. L., Da Silva L. A., et al. (2018). Viola phlebovirus is a novel Phlebotomus fever serogroup member identified in Lutzomyia (Lutzomyia) longipalpis from Brazilian Pantanal. Parasites Vectors 11, 405. doi: 10.1186/S13071-018-2985-3, PMID: PubMed DOI PMC
Dimou E., Nickel W. (2018). Unconventional mechanisms of eukaryotic protein secretion. Curr. Biol. 28, R406–R410. doi: 10.1016/j.cub.2017.11.074, PMID: PubMed DOI
Dolezal T., Krejcova G., Bajgar A., Nedbalova P., Strasser P. (2019). Molecular regulations of metabolism during immune response in insects. Insect Biochem. Mol. Biol. 109, 31–42. doi: 10.1016/j.ibmb.2019.04.005, PMID: PubMed DOI
Espinosa-Diez C., Miguel V., Mennerich D., Kietzmann T., Sánchez-Pérez P., Cadenas S., et al. (2015). Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol. 6, 183–197. doi: 10.1016/j.redox.2015.07.008, PMID: PubMed DOI PMC
Finn R. D., Coggill P., Eberhardt R. Y., Eddy S. R., Mistry J., Mitchell A. L., et al. (2016). The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285. doi: 10.1093/nar/gkv1344, PMID: PubMed DOI PMC
Flenniken M. L., Andino R. (2013). Non-specific dsRNA-mediated antiviral response in the honey bee. PloS One 8, e77263. doi: 10.1371/journal.pone.0077263, PMID: PubMed DOI PMC
Flick K., Kaiser P. (2012). Protein degradation and the stress response. Semin. Cell Dev. Biol. 23, 515–522. doi: 10.1016/j.semcdb.2012.01.019, PMID: PubMed DOI PMC
Fonseca P., Ferreira F., da Silva F., Oliveira L. S., Marques J. T., Goes-Neto A., et al. (2021). Characterization of a novel mitovirus of the sand fly lutzomyia longipalpis using genomic and virus–host interaction signatures. Viruses 13, 9. doi: 10.3390/v13010009, PMID: PubMed DOI PMC
Gaddelapati S. C., Albishi N. M., Dhandapani R. K., Palli S. R. (2022). Juvenile hormone-induced histone deacetylase 3 suppresses apoptosis to maintain larval midgut in the yellow fever mosquito. Proc. Natl. Acad. Sci. United States America 119, e2118871119. doi: 10.1073/pnas.2118871119, PMID: PubMed DOI PMC
Galindo P., Srihongse S., De Rodaniche E., Grayson M. A. (1966). An ecological survey for arboviruses in almirante, Panama 1959–1962. Am. J. Trop. Med. Hygiene 15, 385–400. doi: 10.4269/ajtmh.1966.15.385, PMID: PubMed DOI
Ghartey-Kwansah G., Li Z., Feng R., Wang L., Zhou X., Chen F. Z., et al. (2018). Comparative analysis of FKBP family protein: Evaluation, structure, and function in mammals and Drosophila melanogaster. BMC Dev. Biol. 18, 7. doi: 10.1186/s12861-018-0167-3, PMID: PubMed DOI PMC
Gurung S., Perocheau D., Touramanidou L., Baruteau J. (2021). The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Communication Signaling 19, 47. doi: 10.1186/s12964-021-00730-1, PMID: PubMed DOI PMC
Hiller K., Grote A., Scheer M., Munch R., Jahn D. (2004). PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Res. 32, W375–W379. doi: 10.1093/nar/gkh378, PMID: PubMed DOI PMC
Houseley J., Tollervey D. (2009). The many pathways of RNA degradation. Cell 136, 763–776. doi: 10.1016/j.cell.2009.01.019, PMID: PubMed DOI
Hughes H. R., Russell B. J., Lambert A. J. (2019). Genetic characterization of frijoles and chilibre species complex viruses (Genus phlebovirus; family phenuiviridae) and three unclassified new world phleboviruses. Am. J. Trop. Med. Hygiene 102, 359–365. doi: 10.4269/ajtmh.19-0717, PMID: PubMed DOI PMC
Ishimaru Y., Tomonari S., Matsuoka Y., Watanabe T., Miyawaki K., Bando T., et al. (2016). TGF-beta signaling in insects regulates metamorphosis via juvenile hormone biosynthesis. Proc. Natl. Acad. Sci. United States America 113, 5634–5639. doi: 10.1073/pnas.1600612113, PMID: PubMed DOI PMC
Jancarova M., Polanska N., Volf P., Dvorak V. (2023). The role of sand flies as vectors of viruses other than phleboviruses. J. Gen. Virol. 104, 1837. doi: 10.1099/jgv.0.001837, PMID: PubMed DOI
Kalluri R., LeBleu V. S. (2020). The biology, function, and biomedical applications of exosomes. Science 367, eaau6977. doi: 10.1126/science.aau6977, PMID: PubMed DOI PMC
Kanehisa M., Furumichi M., Sato Y., Ishiguro-Watanabe M., Tanabe M. (2021). KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 49, D545–D551. doi: 10.1093/nar/gkaa970, PMID: PubMed DOI PMC
Khorramnejad A., Perdomo H. D., Palatini U., Bonizzoni M., Gasmi L. (2021). Cross talk between viruses and insect cells cytoskeleton. Viruses 13, 1658. doi: 10.3390/v13081658, PMID: PubMed DOI PMC
King A. M., Macrae T. H. (2015). Insect heat shock proteins during stress and diapause. Annu. Rev. Entomology 60, 59–75. doi: 10.1146/annurev-ento-011613-162107, PMID: PubMed DOI
Kingsolver M. B., Huang Z., Hardy R. W. (2013). Insect antiviral innate immunity: pathways, effectors, and connections. J. Mol. Biol. 425, 4921–4936. doi: 10.1016/j.jmb.2013.10.006, PMID: PubMed DOI PMC
Laroche L., Bañuls A.-L., Charrel R., Fontaine A., Ayhan N., Prudhomme J. (2024). Sand flies and Toscana virus: Intra-vector infection dynamics and impact on Phlebotomus perniciosus life-history traits. PloS Negl. Trop. Dis. 18, e0012509. doi: 10.1371/journal.pntd.0012509, PMID: PubMed DOI PMC
Lee W. S., Webster J. A., Madzokere E. T., Stephenson E. B., Herrero L. J. (2019). Mosquito antiviral defense mechanisms: a delicate balance between innate immunity and persistent viral infection. Parasites Vectors 12, 165. doi: 10.1186/s13071-019-3433-8, PMID: PubMed DOI PMC
Leonova T., Qi X., Bencosme A., Ponce E., Sun Y., Grabowski G. A. (1996). Proteolytic processing patterns of prosaposin in insect and mammalian cells. J. Biol. Chem. 271, 17312–17320. doi: 10.1074/jbc.271.29.17312, PMID: PubMed DOI
Leulier F., Lemaitre B. (2008). Toll-like receptors — taking an evolutionary approach. Nat. Rev. Genet. 9, 165–178. doi: 10.1038/nrg2303, PMID: PubMed DOI
Ljungberg J. K., Kling J. C., Tran T. T., Blumenthal A. (2019). Functions of the WNT signaling network in shaping host responses to infection. Front. Immunol. 10. doi: 10.3389/fimmu.2019.02521, PMID: PubMed DOI PMC
Luber C. A., Cox J., Lauterbach H., Fancke B., Selbach M., Tschopp J., et al. (2010). Quantitative proteomics reveals subset-specific viral recognition in dendritic cells. Immunity 32, 279–289. doi: 10.1016/j.immuni.2010.01.013, PMID: PubMed DOI
Luo W., Zhang J., Liang L., Wang G., Li Q., Zhu P., et al. (2018). Phospholipid scramblase 1 interacts with influenza A virus NP, impairing its nuclear import and thereby suppressing virus replication. PloS Pathog. 14, e1006851. doi: 10.1371/journal.ppat.1006851, PMID: PubMed DOI PMC
Maroli M., Feliciangeli M. D., Bichaud L., Charrel R. N., Gradoni L. (2013). Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med. Veterinary Entomology 27, 123–147. doi: 10.1111/j.1365-2915.2012.01034.x, PMID: PubMed DOI
Marques J. T., Imler J. L. (2016). The diversity of insect antiviral immunity: insights from viruses. Curr. Opin. Microbiol. 32, 71–76. doi: 10.1016/j.mib.2016.05.002, PMID: PubMed DOI PMC
Marques J. T., Meignin C., Imler J.-L. (2024). An evolutionary perspective to innate antiviral immunity in animals. Cell Rep. 43, 114678. doi: 10.1016/j.celrep.2024.114678, PMID: PubMed DOI
Martins-da-Silva A., Telleria E. L., Batista M., Marchini F. K., Traub-Csekö Y. M., Tempone A. J. (2018). Identification of Secreted Proteins Involved in Nonspecific dsRNA-Mediated Lutzomyia longipalpis LL5 Cell Antiviral Response. Viruses 10, 43–43. doi: 10.3390/v10010043, PMID: PubMed DOI PMC
Massagué J., Sheppard D. (2023). TGF-β signaling in health and disease. Cell 186, 4007–4037. doi: 10.1016/j.cell.2023.07.036, PMID: PubMed DOI PMC
Matsumoto M., Seya T. (2008). TLR3: Interferon induction by double-stranded RNA including poly(I:C). Advanced Drug Delivery Rev. 60, 805–812. doi: 10.1016/j.addr.2007.11.005, PMID: PubMed DOI
Mavale M. S., Fulmali P. V., Geevarghese G., Arankalle V. A., Ghodke Y. S., Kanojia P. C., et al. (2006). Venereal transmission of chandipura virus by phlebotomus papatasi (Scopoli). Am. J. Trop. Med. Hygiene 75, 1151–1152. doi: 10.4269/ajtmh.2006.75.1151, PMID: PubMed DOI
Mijaljica D., Prescott M., Devenish R. J. (2006). Endoplasmic Reticulum and Golgi Complex: Contributions to, and Turnover by, Autophagy. Traffic 7, 1590–1595. doi: 10.1111/j.1600-0854.2006.00495.x, PMID: PubMed DOI
Mostowy S., Shenoy A. R. (2015). The cytoskeleton in cell-autonomous immunity: structural determinants of host defence. Nat. Rev. Immunol. 15, 559–573. doi: 10.1038/nri3877, PMID: PubMed DOI PMC
Munoz-Perez E., Gonzalez-Pujana A., Igartua M., Santos-Vizcaino E., Hernandez R. M. (2021). Mesenchymal stromal cell secretome for the treatment of immune-mediated inflammatory diseases: latest trends in isolation, content optimization and delivery avenues. Pharmaceutics 13, 18025. doi: 10.3390/pharmaceutics13111802, PMID: PubMed DOI PMC
Mylvaganam S., Freeman S. A., Grinstein S. (2021). The cytoskeleton in phagocytosis and macropinocytosis. Curr. Biol. 31, R619–R632. doi: 10.1016/j.cub.2021.01.036, PMID: PubMed DOI
Olsen J. V., de Godoy L. M., Li G., Macek B., Mortensen P., Pesch R., et al. (2005). Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol. Cell. Proteomics 4, 2010–2021. doi: 10.1074/mcp.T500030-MCP200, PMID: PubMed DOI
Palacios G., da Rosa A. T., Savji N., Sze W., Wick I., Guzman H., et al. (2011. a). Aguacate virus, a new antigenic complex of the genus Phlebovirus (family Bunyaviridae). J. Gen. Virol. 92, 1445–1453. doi: 10.1099/vir.0.029389-0, PMID: PubMed DOI PMC
Palacios G., Tesh R., Travassos da Rosa A., Savji N., Sze W., Jain K., et al. (2011. b). Characterization of the candiru antigenic complex (Bunyaviridae: phlebovirus), a highly diverse and reassorting group of viruses affecting humans in tropical america. J. Virol. 85, 3811–3820. doi: 10.1128/JVI.02275-10, PMID: PubMed DOI PMC
Palacios G., Wiley M. R., Travassos da Rosa A. P. A., Guzman H., Quiroz E., Savji N., et al. (2015). Characterization of the Punta Toro species complex (genus Phlebovirus, family Bunyaviridae). J. Gen. Virol. 96, 2079–2085. doi: 10.1099/vir.0.000170, PMID: PubMed DOI PMC
Perales-Linares R., Navas-Martin S. (2013). Toll-like receptor 3 in viral pathogenesis: friend or foe? Immunology 140, 153–167. doi: 10.1111/imm.12143, PMID: PubMed DOI PMC
Peterhans E. (1997). Oxidants and antioxidants in viral diseases: disease mechanisms and metabolic regulation. J. Nutr. 127, 962S–965S. doi: 10.1093/jn/127.5.962S, PMID: PubMed DOI
Pitaluga A. N., Mason P. W., Traub-Cseko Y. M. (2008). Non-specific antiviral response detected in RNA-treated cultured cells of the sandfly, Lutzomyia longipalpis. Dev. Comp. Immunol. 32, 191–197. doi: 10.1016/j.dci.2007.06.008, PMID: PubMed DOI
Potter S. C., Luciani A., Eddy S. R., Park Y., Lopez R., Finn R. D. (2018). HMMER web server: 2018 update. Nucleic Acids Res. 46, W200–W204. doi: 10.1093/nar/gky448, PMID: PubMed DOI PMC
Prince B. C., Chan K., Rückert C. (2023). Elucidating the role of dsRNA sensing and Toll6 in antiviral responses of Culex quinquefasciatus cells. Front. Cell. Infection Microbiol. 13. doi: 10.3389/fcimb.2023.1251204, PMID: PubMed DOI PMC
Rampersad S., Tennant P. (2018). “Chapter 3 - Replication and Expression Strategies of Viruses”, in Viruses eds. Tennant P., Fermin G., Foster J. E. (Cambridge, MA, USA: Academic Press; ), 55–82. doi: 10.1016/B978-0-12-811257-1.00003-6 DOI
Ranson H., Hemingway J. (2005). Mosquito glutathione transferases. Methods Enzymology 401, 226–241. doi: 10.1016/S0076-6879(05)01014-1, PMID: PubMed DOI
Ray J. W., Heslop J. P. (1963). Phosphorus metabolism of the housefly (Musca domestica L.) during recovery from anoxia. Biochem. J. 87, 39–42. doi: 10.1042/bj0870039, PMID: PubMed DOI PMC
Ready P. D. (2013). Biology of phlebotomine sand flies as vectors of disease agents. Annu. Rev. Entomology 58, 227–250. doi: 10.1146/annurev-ento-120811-153557, PMID: PubMed DOI
Rosche K. L., Sidak-Loftis L. C., Hurtado J., Fisk E. A., Shaw D. K. (2021). Arthropods under pressure: stress responses and immunity at the pathogen-vector interface. Front. Immunol. 11. doi: 10.3389/fimmu.2020.629777, PMID: PubMed DOI PMC
Russell T. A., Ayaz A., Davidson A. D., Fernandez-Sesma A., Maringer K. (2021). Imd pathway-specific immune assays reveal NF-κB stimulation by viral RNA PAMPs in Aedes aEgypti Aag2 cells. PloS Negl. Trop. Dis. 15, e0008524. doi: 10.1371/journal.pntd.0008524, PMID: PubMed DOI PMC
Sakashita K., Tatsuke T., Lee J. M., Kawaguchi Y., Kusakabe T. (2009). Sequence-nonspecific suppression of gene expression by double-stranded RNA in silkworm cultured cells. J. Insect Biotechnol. Sericology 78, 1_33–1_37. doi: 10.11416/jibs.78.1_33 DOI
Samuel C. E. (2012). ADARs, viruses and innate immunity. Curr. Topics Microbiol. Immunol. 353, 163–195. doi: 10.1007/82_2011_148, PMID: PubMed DOI PMC
Samuelson I., Vidal-Puig A. J. (2018). Fed-EXosome: extracellular vesicles and cell–cell communication in metabolic regulation. Essays Biochem. 62, 165–755. doi: 10.1042/EBC20170087, PMID: PubMed DOI
Seo D., Gammon D. B. (2022). Manipulation of host microtubule networks by viral microtubule-associated proteins. Viruses 14, 979. doi: 10.3390/v14050979, PMID: PubMed DOI PMC
Shannon P., Markiel A., Ozier O., Baliga N. S., Wang J. T., Ramage D., et al. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504. doi: 10.1101/gr.1239303, PMID: PubMed DOI PMC
Shelokov A., Peralta P. H. (1967). Vesicular stomatitis virus, Indiana type: An arbovirus infection of tropical sandflies and humans? Am. J. Epidemiol. 86, 149–157. doi: 10.1093/oxfordjournals.aje.a120720, PMID: PubMed DOI
Shen Q., Wang Y. E., Palazzo A. F. (2021). Crosstalk between nucleocytoplasmic trafficking and the innate immune response to viral infection. J. Biol. Chem. 297, 100856. doi: 10.1016/j.jbc.2021.100856, PMID: PubMed DOI PMC
Shina M. C., Ünal C., Eichinger L., Müller-Taubenberger A., Schleicher M., Steinert M., et al. (2010). A Coronin7 homolog with functions in actin-driven processes. J. Biol. Chem. 285, 9249–9261. doi: 10.1074/jbc.M109.083725, PMID: PubMed DOI PMC
Singh I. K., Singh S., Mogilicherla K., Shukla J. N., Palli S. R. (2017). Comparative analysis of double-stranded RNA degradation and processing in insects. Sci. Rep. 7, 17059–17059. doi: 10.1038/s41598-017-17134-2, PMID: PubMed DOI PMC
Somers D. J., Kushner D. B., McKinnis A. R., Mehmedovic D., Flame R. S., Arnold T. M. (2023). Epigenetic weapons in plant-herbivore interactions: Sulforaphane disrupts histone deacetylases, gene expression, and larval development in Spodoptera exigua while the specialist feeder Trichoplusia ni is largely resistant to these effects. PloS One 18, e0293075. doi: 10.1371/journal.pone.0293075, PMID: PubMed DOI PMC
Su J., Song Y., Zhu Z., Huang X., Fan J., Qiao J., et al. (2024). Cell–cell communication: new insights and clinical implications. Sig Transduct Target Ther. 9, 196. doi: 10.1038/s41392-024-01888-z, PMID: PubMed DOI PMC
Szklarczyk D., Kirsch R., Koutrouli M., Nastou K., Mehryary F., Hachilif R., et al. (2023). The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 51, D638–D646. doi: 10.1093/nar/gkac1000, PMID: PubMed DOI PMC
Tao Y. J., Ye Q. (2010). RNA virus replication complexes. PloS Pathog. 6, e1000943. doi: 10.1371/journal.ppat.1000943, PMID: PubMed DOI PMC
Telleria E. L., Azevedo-Brito D. A., Kykalová B., Tinoco-Nunes B., Pitaluga A. N., Volf P., et al. (2021). Leishmania infantum Infection Modulates the Jak-STAT Pathway in Lutzomyia longipalpis LL5 Embryonic Cells and Adult Females, and Affects Parasite Growth in the Sand Fly. Front. Trop. Dis. 2. doi: 10.3389/fitd.2021.747820 DOI
Tempone A. J., Zezza-Ramalho M., de S., Borely D., Pitaluga A. N., Brazil R. P., et al. (2024). Rhabdoviral endogenous sequences identified in the leishmaniasis vector lutzomyia longipalpis are widespread in sandflies from south america. Viruses 16, 395. doi: 10.3390/v16030395, PMID: PubMed DOI PMC
Teo J. L., Kahn M. (2010). The Wnt signaling pathway in cellular proliferation and differentiation: A tale of two coactivators. Advanced Drug Delivery Rev. 62, 1149–1155. doi: 10.1016/j.addr.2010.09.012, PMID: PubMed DOI
Tesh R. B., Boshell S. J., Modi G. B., Morales A. A., Young D. G., Corredor A. A., et al. (1987). Natural infection of humans, animals, and phlebotomine sand flies with the alagoas serotype of vesicular stomatitis virus in Colombia. Am. J. Trop. Med. Hygiene 36, 653–661. doi: 10.4269/AJTMH.1987.36.653, PMID: PubMed DOI
Tesh R. B., Chaniotis B. N., Peralta P. H., Johnson K. M. (1974). Ecology of viruses isolated from Panamanian phlebotomine sandflies. Am. J. Trop. Med. Hygiene 23, 258–269. doi: 10.4269/ajtmh.1974.23.258, PMID: PubMed DOI
Tesh R. B., Modi G. B. (1983). Development of a continuous cell line from the sand fly Lutzomyia longipalpis (Diptera: Psychodidae), and its susceptibility to infection with arboviruses. J. Med. Entomol 20, 199–202. doi: 10.1093/jmedent/20.2.199, PMID: PubMed DOI
Thapa N., Lee B. H., Kim I. S. (2007). TGFBIp/βig-h3 protein: A versatile matrix molecule induced by TGF-β. Int. J. Biochem. Cell Biol. 39, 2183–2194. doi: 10.1016/j.biocel.2007.06.004, PMID: PubMed DOI
Tinoco-Nunes B., Telleria E. L., Da Silva-Neves M., Marques C., Azevedo-Brito D. A., Pitaluga A. N., et al. (2016). The sandfly Lutzomyia longipalpis LL5 embryonic cell line has active Toll and Imd pathways and shows immune responses to bacteria, yeast and Leishmania. Parasites Vectors 9, 222. doi: 10.1186/s13071-016-1507-4, PMID: PubMed DOI PMC
Tomkinson B., Lindås A. C. (2005). Tripeptidyl-peptidase II: A multi-purpose peptidase. Int. J. Biochem. Cell Biol. 37, 1933–1937. doi: 10.1016/j.biocel.2005.02.009, PMID: PubMed DOI
Travassos Da Rosa A. P. A., Tesh R. B., Travassos Da Rosa J. F., Herve J. P., Main A. J. (1984). Carajas and maraba viruses, two new vesiculoviruses isolated from phlebotomine sand flies in Brazil. Am. J. Trop. Med. Hygiene 33, 999–1006. doi: 10.4269/ajtmh.1984.33.999, PMID: PubMed DOI
Vasilakis N., Forrester N. L., Palacios G., Nasar F., Savji N., Rossi S. L., et al. (2013). Negevirus: a proposed new taxon of insect-specific viruses with wide geographic distribution. J. Virol. 87, 2475–2488. doi: 10.1128/JVI.00776-12, PMID: PubMed DOI PMC
Villarreal C. M., Darakananda K., Wang V. R., Jayaprakash P. M., Suzuki Y. (2015). Hedgehog signaling regulates imaginal cell differentiation in a basally branching holometabolous insect. Dev. Biol. 404, 125–135. doi: 10.1016/j.ydbio.2015.05.020, PMID: PubMed DOI
Walsh D., Naghavi M. H. (2019). Exploitation of cytoskeletal networks during early viral infection. Trends Microbiol. 27, 39–50. doi: 10.1016/j.tim.2018.06.008, PMID: PubMed DOI PMC
Wang P.-H., He J.-G. (2019). “Chapter Six - Nucleic Acid Sensing in Invertebrate Antiviral Immunity,” in International Review of Cell and Molecular Biology. Eds. Vanpouille-Box C., Galluzzi L. (Cambridge, MA, USA: Academic Press; ), 287–360. doi: 10.1016/bs.ircmb.2018.11.002, PMID: PubMed DOI
Wang P. H., Weng S. P., He J. G. (2015). Nucleic acid-induced antiviral immunity in invertebrates: An evolutionary perspective. Dev. Comp. Immunol. 48, 291–296. doi: 10.1016/j.dci.2014.03.013, PMID: PubMed DOI
Wang X., Zhu J., Zhang D., Liu G. (2022). Ribosomal control in RNA virus-infected cells. Front. Microbiol. 13. doi: 10.3389/fmicb.2022.1026887, PMID: PubMed DOI PMC
Yarbrough M. L., Mata M. A., Sakthivel R., Fontoura B. M. A. (2014). Viral subversion of nucleocytoplasmic trafficking. Traffic 15, 127–140. doi: 10.1111/tra.12137, PMID: PubMed DOI PMC
Yumura S., Talukder M. S. U., Pervin M. S., Tanvir M. I. O., Matsumura T., Fujimoto K., et al. (2022). Dynamics of actin cytoskeleton and their signaling pathways during cellular wound repair. Cells 11, 3166. doi: 10.3390/cells11193166, PMID: PubMed DOI PMC
Zhang X., Yu W. (2022). Heat shock proteins and viral infection. Front. Immunol. 13. doi: 10.3389/fimmu.2022.947789, PMID: PubMed DOI PMC
Zhu Q., Arakane Y., Beeman R. W., Kramer K. J., Muthukrishnan S. (2008). Characterization of recombinant chitinase-like proteins of Drosophila melanogaster and Tribolium castaneum. Insect Biochem. Mol. Biol. 38, 467–477. doi: 10.1016/j.ibmb.2007.06.011, PMID: PubMed DOI
Zhu K. Y., Palli S. R. (2020). Mechanisms, applications, and challenges of insect RNA interference. Annu. Rev. Entomology 65, 293–311. doi: 10.1146/annurev-ento-011019-025224, PMID: PubMed DOI PMC
Zhu F., Zhang X. (2013). The Wnt signaling pathway is involved in the regulation of phagocytosis of virus in Drosophila. Sci. Rep. 3, 2069. doi: 10.1038/srep02069, PMID: PubMed DOI PMC