• This record comes from PubMed

Proteomics analysis of soluble secreted proteins of Lutzomyia longipalpis LL5 cells transfected with a dsRNA viral mimic: insights into cellular defense and repair signals

. 2025 ; 15 () : 1638505. [epub] 20250911

Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Sand flies, which transmit diseases like leishmaniases, bartonellosis, and certain viruses, pose a significant public health threat. Our research focuses on the immune responses of Lutzomyia longipalpis, the primary vector for visceral leishmaniasis in the Americas. We use L. longipalpis LL5 cells as a model to study how sand flies respond to pathogens. These cells exhibit robust immune reactions, producing molecules mainly regulated by the Toll, IMD, Jak-STAT, and RNAi pathways. In previous studies, we detected a non-specific antiviral response in LL5 cells following double-stranded RNAs (dsRNAs) transfection. A previous complete secretome of these cells showed molecules resembling an interferon-like antiviral response when transfected with polyinosinic-polycytidylic acid (poly I:C), a synthetic dsRNA analog. In the current study, we analyzed soluble proteins secreted by LL5 cells after poly I:C transfection. Using comparative mass spectrometry, we examined protein composition of conditioned media depleted of exosomes at 24 h and 48 h. Most proteins uniquely expressed in the transfected groups had low abundance compared to the overall expressed proteins. Interactome prediction analysis revealed that at 24 h, the proteins uniquely found in the secretome of the transfected group were involved in RNA degradation and purine metabolism, while at 48 h they were linked to ribosomal proteins and signaling pathways such as Hedgehog, Transforming Growth Factor-beta (TGF-β), and Wingless/integrated (Wnt). We highlight increased abundance of the TGF-β-induced protein ig-h3 (24 h and 48 h), a Toll-like receptor 3 (48 h), and a hemocytin (48 h) in the secretion of transfected groups compared to the controls. We also performed an interaction analysis of proteins more secreted by the treated group at 24 h and 48 h. Unlike the interactome of uniquely identified proteins, few interactions were observed at 24 h, with a predominance of extracellular matrix and cell adhesion proteins. The set of proteins more secreted at 48 h presented more interactions than at 24 h, with emphasis on catabolic processes, including RNA degradation. These findings indicate that poly I:C transfection in LL5 cells induces the secretion of proteins involved in cellular defense and repair, revealing molecules involved in the LL5 non-specific antiviral response.

See more in PubMed

Aitken T. H. G., Woodall J. P., de Andrade A. H. P., Bensabath G., Shope R. E. (1975). Pacui virus, phlebotomine flies, and small mammals in Brazil: an epidemiological study. Am. J. Trop. Med. Hygiene 24, 358–368. doi:  10.4269/ajtmh.1975.24.358, PMID: PubMed DOI

Alexander A. J. T., Salvemini M., Sreenu V. B., Hughes J., Telleria E. L., Ratinier M., et al. (2023). Characterisation of the antiviral RNA interference response to Toscana virus in sand fly cells. PloS Pathog. 19, e1011283. doi:  10.1371/journal.ppat.1011283, PMID: PubMed DOI PMC

Alexopoulou L., Holt A. C., Medzhitov R., Flavell R. A. (2001). Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738. doi:  10.1038/35099560, PMID: PubMed DOI

Alkan C., Bichaud L., De Lamballerie X., Alten B., Gould E. A., Charrel R. N. (2013). Sandfly-borne phleboviruses of Eurasia and Africa: Epidemiology, genetic diversity, geographic range, control measures. Antiviral Res. 100, 54–74. doi:  10.1016/J.ANTIVIRAL.2013.07.005, PMID: PubMed DOI

Alkan C., Zapata S., Bichaud L., Moureau G., Lemey P., Firth A. E., et al. (2015). Ecuador paraiso escondido virus, a new flavivirus isolated from new world sand flies in Ecuador, is the first representative of a novel clade in the genus flavivirus. J. Virol. 89, 11773–11785. doi:  10.1128/JVI.01543-15, PMID: PubMed DOI PMC

Amos B., Aurrecoechea C., Barba M., Barreto A., Basenko E. Y., Bażant W., et al. (2022). VEuPathDB: the eukaryotic pathogen, vector and host bioinformatics resource center. Nucleic Acids Res. 50, D898–D911. doi:  10.1093/nar/gkab929, PMID: PubMed DOI PMC

Arakane Y., Muthukrishnan S. (2010). Insect chitinase and chitinase-like proteins. Cell. Mol. Life Sci. 67, 201–216. doi:  10.1007/s00018-009-0161-9, PMID: PubMed DOI PMC

Ariav Y., Chng J. H., Christofk H. R., Ron-Harel N., Erez A. (2021). Targeting nucleotide metabolism as the nexus of viral infections, cancer, and the immune response. Sci. Adv. 7, eabg6165. doi:  10.1126/sciadv.abg6165, PMID: PubMed DOI PMC

Assil S., Webster B., Dreux M. (2015). Regulation of the host antiviral state by intercellular communications. Viruses 7, 4707–4733. doi:  10.3390/v7082840, PMID: PubMed DOI PMC

Balmer E. A., Faso C. (2021). The road less traveled? Unconventional protein secretion at parasite–host interfaces. Front. Cell Dev. Biol. 9. doi:  10.3389/fcell.2021.662711, PMID: PubMed DOI PMC

Basisty N., Kale A., Jeon O. H., Kuehnemann C., Payne T., Rao C., et al. (2020). A proteomic atlas of senescence-associated secretomes for aging biomarker development. PloS Biol. 18, e3000599. doi:  10.1371/journal.pbio.3000599, PMID: PubMed DOI PMC

Benson R. A., Lowrey J. A., Lamb J. R., Howie S. E. M. (2004). The Notch and Sonic hedgehog signalling pathways in immunity. Mol. Immunol. 41, 715–725. doi:  10.1016/j.molimm.2004.04.017, PMID: PubMed DOI

Bonifay T., Le Turnier P., Epelboin Y., Carvalho L., De Thoisy B., Djossou F., et al. (2023). Review on main arboviruses circulating on French Guiana, an ultra-peripheric european region in south america. Viruses 15, 1268. doi:  10.3390/v15061268, PMID: PubMed DOI PMC

Brutscher L. M., Daughenbaugh K. F., Flenniken M. L. (2017). Virus and dsRNA-triggered transcriptional responses reveal key components of honey bee antiviral defense. Sci. Rep. 7, 6448. doi:  10.1038/s41598-017-06623-z, PMID: PubMed DOI PMC

Chamberlin M. J., Patterson D. L. (1965). Physical and chemical characterization of the ordered complexes formed between polyinosinic acid, polycytidylic acid and their deoxyribo-analogues. J. Mol. Biol. 12, 410–428. doi:  10.1016/s0022-2836(65)80264-9, PMID: PubMed DOI

Comer J. A., Corn J. L., Stallknecht D. E., Landgraf J. G., Nettles V. F. (1992). Titers of vesicular stomatitis virus, new Jersey serotype, in naturally infected male and female lutzomyia shannoni (Diptera: psychodidae) in Georgia. J. Med. Entomology 29, 368–370. doi:  10.1093/jmedent/29.2.368, PMID: PubMed DOI

Cooper D. A., Jha B. K., Silverman R. H., Hesselberth J. R., Barton D. J. (2014). Ribonuclease L and metal-ion–independent endoribonuclease cleavage sites in host and viral RNAs. Nucleic Acids Res. 42, 5202–5216. doi:  10.1093/nar/gku118, PMID: PubMed DOI PMC

Corn J. L., Comer J. A., Erickson G. A., Nettles V. F. (1990). Isolation of vesicular stomatitis virus new Jersey serotype from phlebotomine sand flies in Georgia. Am. J. Trop. Med. Hygiene 42, 476–482. doi:  10.4269/ajtmh.1990.42.476, PMID: PubMed DOI

Cox J., Mann M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372. doi:  10.1038/nbt.1511, PMID: PubMed DOI

Cox J., Neuhauser N., Michalski A., Scheltema R. A., Olsen J. V., Mann M. (2011). Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805. doi:  10.1021/pr101065j, PMID: PubMed DOI

Cui L., Ma R., Cai J., Guo C., Chen Z., Yao L., et al. (2022). RNA modifications: importance in immune cell biology and related diseases. Signal Transduction Targeted Ther. 7, 334. doi:  10.1038/s41392-022-01175-9, PMID: PubMed DOI PMC

Dal Col J., Lamberti M. J., Nigro A., Casolaro V., Fratta E., Steffan A., et al. (2022). Phospholipid scramblase 1: a protein with multiple functions via multiple molecular interactors. Cell Communication Signaling 20, 78. doi:  10.1186/s12964-022-00895-3, PMID: PubMed DOI PMC

De Carvalho M. S., De Lara Pinto A. Z., Pinheiro A., Rodrigues J. S. V., Melo F. L., Da Silva L. A., et al. (2018). Viola phlebovirus is a novel Phlebotomus fever serogroup member identified in Lutzomyia (Lutzomyia) longipalpis from Brazilian Pantanal. Parasites Vectors 11, 405. doi:  10.1186/S13071-018-2985-3, PMID: PubMed DOI PMC

Dimou E., Nickel W. (2018). Unconventional mechanisms of eukaryotic protein secretion. Curr. Biol. 28, R406–R410. doi:  10.1016/j.cub.2017.11.074, PMID: PubMed DOI

Dolezal T., Krejcova G., Bajgar A., Nedbalova P., Strasser P. (2019). Molecular regulations of metabolism during immune response in insects. Insect Biochem. Mol. Biol. 109, 31–42. doi:  10.1016/j.ibmb.2019.04.005, PMID: PubMed DOI

Espinosa-Diez C., Miguel V., Mennerich D., Kietzmann T., Sánchez-Pérez P., Cadenas S., et al. (2015). Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol. 6, 183–197. doi:  10.1016/j.redox.2015.07.008, PMID: PubMed DOI PMC

Finn R. D., Coggill P., Eberhardt R. Y., Eddy S. R., Mistry J., Mitchell A. L., et al. (2016). The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44, D279–D285. doi:  10.1093/nar/gkv1344, PMID: PubMed DOI PMC

Flenniken M. L., Andino R. (2013). Non-specific dsRNA-mediated antiviral response in the honey bee. PloS One 8, e77263. doi:  10.1371/journal.pone.0077263, PMID: PubMed DOI PMC

Flick K., Kaiser P. (2012). Protein degradation and the stress response. Semin. Cell Dev. Biol. 23, 515–522. doi:  10.1016/j.semcdb.2012.01.019, PMID: PubMed DOI PMC

Fonseca P., Ferreira F., da Silva F., Oliveira L. S., Marques J. T., Goes-Neto A., et al. (2021). Characterization of a novel mitovirus of the sand fly lutzomyia longipalpis using genomic and virus–host interaction signatures. Viruses 13, 9. doi:  10.3390/v13010009, PMID: PubMed DOI PMC

Gaddelapati S. C., Albishi N. M., Dhandapani R. K., Palli S. R. (2022). Juvenile hormone-induced histone deacetylase 3 suppresses apoptosis to maintain larval midgut in the yellow fever mosquito. Proc. Natl. Acad. Sci. United States America 119, e2118871119. doi:  10.1073/pnas.2118871119, PMID: PubMed DOI PMC

Galindo P., Srihongse S., De Rodaniche E., Grayson M. A. (1966). An ecological survey for arboviruses in almirante, Panama 1959–1962. Am. J. Trop. Med. Hygiene 15, 385–400. doi:  10.4269/ajtmh.1966.15.385, PMID: PubMed DOI

Ghartey-Kwansah G., Li Z., Feng R., Wang L., Zhou X., Chen F. Z., et al. (2018). Comparative analysis of FKBP family protein: Evaluation, structure, and function in mammals and Drosophila melanogaster. BMC Dev. Biol. 18, 7. doi:  10.1186/s12861-018-0167-3, PMID: PubMed DOI PMC

Gurung S., Perocheau D., Touramanidou L., Baruteau J. (2021). The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Communication Signaling 19, 47. doi:  10.1186/s12964-021-00730-1, PMID: PubMed DOI PMC

Hiller K., Grote A., Scheer M., Munch R., Jahn D. (2004). PrediSi: prediction of signal peptides and their cleavage positions. Nucleic Acids Res. 32, W375–W379. doi:  10.1093/nar/gkh378, PMID: PubMed DOI PMC

Houseley J., Tollervey D. (2009). The many pathways of RNA degradation. Cell 136, 763–776. doi:  10.1016/j.cell.2009.01.019, PMID: PubMed DOI

Hughes H. R., Russell B. J., Lambert A. J. (2019). Genetic characterization of frijoles and chilibre species complex viruses (Genus phlebovirus; family phenuiviridae) and three unclassified new world phleboviruses. Am. J. Trop. Med. Hygiene 102, 359–365. doi:  10.4269/ajtmh.19-0717, PMID: PubMed DOI PMC

Ishimaru Y., Tomonari S., Matsuoka Y., Watanabe T., Miyawaki K., Bando T., et al. (2016). TGF-beta signaling in insects regulates metamorphosis via juvenile hormone biosynthesis. Proc. Natl. Acad. Sci. United States America 113, 5634–5639. doi:  10.1073/pnas.1600612113, PMID: PubMed DOI PMC

Jancarova M., Polanska N., Volf P., Dvorak V. (2023). The role of sand flies as vectors of viruses other than phleboviruses. J. Gen. Virol. 104, 1837. doi:  10.1099/jgv.0.001837, PMID: PubMed DOI

Kalluri R., LeBleu V. S. (2020). The biology, function, and biomedical applications of exosomes. Science 367, eaau6977. doi:  10.1126/science.aau6977, PMID: PubMed DOI PMC

Kanehisa M., Furumichi M., Sato Y., Ishiguro-Watanabe M., Tanabe M. (2021). KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 49, D545–D551. doi:  10.1093/nar/gkaa970, PMID: PubMed DOI PMC

Khorramnejad A., Perdomo H. D., Palatini U., Bonizzoni M., Gasmi L. (2021). Cross talk between viruses and insect cells cytoskeleton. Viruses 13, 1658. doi:  10.3390/v13081658, PMID: PubMed DOI PMC

King A. M., Macrae T. H. (2015). Insect heat shock proteins during stress and diapause. Annu. Rev. Entomology 60, 59–75. doi:  10.1146/annurev-ento-011613-162107, PMID: PubMed DOI

Kingsolver M. B., Huang Z., Hardy R. W. (2013). Insect antiviral innate immunity: pathways, effectors, and connections. J. Mol. Biol. 425, 4921–4936. doi:  10.1016/j.jmb.2013.10.006, PMID: PubMed DOI PMC

Laroche L., Bañuls A.-L., Charrel R., Fontaine A., Ayhan N., Prudhomme J. (2024). Sand flies and Toscana virus: Intra-vector infection dynamics and impact on Phlebotomus perniciosus life-history traits. PloS Negl. Trop. Dis. 18, e0012509. doi:  10.1371/journal.pntd.0012509, PMID: PubMed DOI PMC

Lee W. S., Webster J. A., Madzokere E. T., Stephenson E. B., Herrero L. J. (2019). Mosquito antiviral defense mechanisms: a delicate balance between innate immunity and persistent viral infection. Parasites Vectors 12, 165. doi:  10.1186/s13071-019-3433-8, PMID: PubMed DOI PMC

Leonova T., Qi X., Bencosme A., Ponce E., Sun Y., Grabowski G. A. (1996). Proteolytic processing patterns of prosaposin in insect and mammalian cells. J. Biol. Chem. 271, 17312–17320. doi:  10.1074/jbc.271.29.17312, PMID: PubMed DOI

Leulier F., Lemaitre B. (2008). Toll-like receptors — taking an evolutionary approach. Nat. Rev. Genet. 9, 165–178. doi:  10.1038/nrg2303, PMID: PubMed DOI

Ljungberg J. K., Kling J. C., Tran T. T., Blumenthal A. (2019). Functions of the WNT signaling network in shaping host responses to infection. Front. Immunol. 10. doi:  10.3389/fimmu.2019.02521, PMID: PubMed DOI PMC

Luber C. A., Cox J., Lauterbach H., Fancke B., Selbach M., Tschopp J., et al. (2010). Quantitative proteomics reveals subset-specific viral recognition in dendritic cells. Immunity 32, 279–289. doi:  10.1016/j.immuni.2010.01.013, PMID: PubMed DOI

Luo W., Zhang J., Liang L., Wang G., Li Q., Zhu P., et al. (2018). Phospholipid scramblase 1 interacts with influenza A virus NP, impairing its nuclear import and thereby suppressing virus replication. PloS Pathog. 14, e1006851. doi:  10.1371/journal.ppat.1006851, PMID: PubMed DOI PMC

Maroli M., Feliciangeli M. D., Bichaud L., Charrel R. N., Gradoni L. (2013). Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med. Veterinary Entomology 27, 123–147. doi:  10.1111/j.1365-2915.2012.01034.x, PMID: PubMed DOI

Marques J. T., Imler J. L. (2016). The diversity of insect antiviral immunity: insights from viruses. Curr. Opin. Microbiol. 32, 71–76. doi:  10.1016/j.mib.2016.05.002, PMID: PubMed DOI PMC

Marques J. T., Meignin C., Imler J.-L. (2024). An evolutionary perspective to innate antiviral immunity in animals. Cell Rep. 43, 114678. doi:  10.1016/j.celrep.2024.114678, PMID: PubMed DOI

Martins-da-Silva A., Telleria E. L., Batista M., Marchini F. K., Traub-Csekö Y. M., Tempone A. J. (2018). Identification of Secreted Proteins Involved in Nonspecific dsRNA-Mediated Lutzomyia longipalpis LL5 Cell Antiviral Response. Viruses 10, 43–43. doi:  10.3390/v10010043, PMID: PubMed DOI PMC

Massagué J., Sheppard D. (2023). TGF-β signaling in health and disease. Cell 186, 4007–4037. doi:  10.1016/j.cell.2023.07.036, PMID: PubMed DOI PMC

Matsumoto M., Seya T. (2008). TLR3: Interferon induction by double-stranded RNA including poly(I:C). Advanced Drug Delivery Rev. 60, 805–812. doi:  10.1016/j.addr.2007.11.005, PMID: PubMed DOI

Mavale M. S., Fulmali P. V., Geevarghese G., Arankalle V. A., Ghodke Y. S., Kanojia P. C., et al. (2006). Venereal transmission of chandipura virus by phlebotomus papatasi (Scopoli). Am. J. Trop. Med. Hygiene 75, 1151–1152. doi:  10.4269/ajtmh.2006.75.1151, PMID: PubMed DOI

Mijaljica D., Prescott M., Devenish R. J. (2006). Endoplasmic Reticulum and Golgi Complex: Contributions to, and Turnover by, Autophagy. Traffic 7, 1590–1595. doi:  10.1111/j.1600-0854.2006.00495.x, PMID: PubMed DOI

Mostowy S., Shenoy A. R. (2015). The cytoskeleton in cell-autonomous immunity: structural determinants of host defence. Nat. Rev. Immunol. 15, 559–573. doi:  10.1038/nri3877, PMID: PubMed DOI PMC

Munoz-Perez E., Gonzalez-Pujana A., Igartua M., Santos-Vizcaino E., Hernandez R. M. (2021). Mesenchymal stromal cell secretome for the treatment of immune-mediated inflammatory diseases: latest trends in isolation, content optimization and delivery avenues. Pharmaceutics 13, 18025. doi:  10.3390/pharmaceutics13111802, PMID: PubMed DOI PMC

Mylvaganam S., Freeman S. A., Grinstein S. (2021). The cytoskeleton in phagocytosis and macropinocytosis. Curr. Biol. 31, R619–R632. doi:  10.1016/j.cub.2021.01.036, PMID: PubMed DOI

Olsen J. V., de Godoy L. M., Li G., Macek B., Mortensen P., Pesch R., et al. (2005). Parts per million mass accuracy on an Orbitrap mass spectrometer via lock mass injection into a C-trap. Mol. Cell. Proteomics 4, 2010–2021. doi:  10.1074/mcp.T500030-MCP200, PMID: PubMed DOI

Palacios G., da Rosa A. T., Savji N., Sze W., Wick I., Guzman H., et al. (2011. a). Aguacate virus, a new antigenic complex of the genus Phlebovirus (family Bunyaviridae). J. Gen. Virol. 92, 1445–1453. doi:  10.1099/vir.0.029389-0, PMID: PubMed DOI PMC

Palacios G., Tesh R., Travassos da Rosa A., Savji N., Sze W., Jain K., et al. (2011. b). Characterization of the candiru antigenic complex (Bunyaviridae: phlebovirus), a highly diverse and reassorting group of viruses affecting humans in tropical america. J. Virol. 85, 3811–3820. doi:  10.1128/JVI.02275-10, PMID: PubMed DOI PMC

Palacios G., Wiley M. R., Travassos da Rosa A. P. A., Guzman H., Quiroz E., Savji N., et al. (2015). Characterization of the Punta Toro species complex (genus Phlebovirus, family Bunyaviridae). J. Gen. Virol. 96, 2079–2085. doi:  10.1099/vir.0.000170, PMID: PubMed DOI PMC

Perales-Linares R., Navas-Martin S. (2013). Toll-like receptor 3 in viral pathogenesis: friend or foe? Immunology 140, 153–167. doi:  10.1111/imm.12143, PMID: PubMed DOI PMC

Peterhans E. (1997). Oxidants and antioxidants in viral diseases: disease mechanisms and metabolic regulation. J. Nutr. 127, 962S–965S. doi:  10.1093/jn/127.5.962S, PMID: PubMed DOI

Pitaluga A. N., Mason P. W., Traub-Cseko Y. M. (2008). Non-specific antiviral response detected in RNA-treated cultured cells of the sandfly, Lutzomyia longipalpis. Dev. Comp. Immunol. 32, 191–197. doi:  10.1016/j.dci.2007.06.008, PMID: PubMed DOI

Potter S. C., Luciani A., Eddy S. R., Park Y., Lopez R., Finn R. D. (2018). HMMER web server: 2018 update. Nucleic Acids Res. 46, W200–W204. doi:  10.1093/nar/gky448, PMID: PubMed DOI PMC

Prince B. C., Chan K., Rückert C. (2023). Elucidating the role of dsRNA sensing and Toll6 in antiviral responses of Culex quinquefasciatus cells. Front. Cell. Infection Microbiol. 13. doi:  10.3389/fcimb.2023.1251204, PMID: PubMed DOI PMC

Rampersad S., Tennant P. (2018). “Chapter 3 - Replication and Expression Strategies of Viruses”, in Viruses eds. Tennant P., Fermin G., Foster J. E. (Cambridge, MA, USA: Academic Press; ), 55–82. doi:  10.1016/B978-0-12-811257-1.00003-6 DOI

Ranson H., Hemingway J. (2005). Mosquito glutathione transferases. Methods Enzymology 401, 226–241. doi:  10.1016/S0076-6879(05)01014-1, PMID: PubMed DOI

Ray J. W., Heslop J. P. (1963). Phosphorus metabolism of the housefly (Musca domestica L.) during recovery from anoxia. Biochem. J. 87, 39–42. doi:  10.1042/bj0870039, PMID: PubMed DOI PMC

Ready P. D. (2013). Biology of phlebotomine sand flies as vectors of disease agents. Annu. Rev. Entomology 58, 227–250. doi:  10.1146/annurev-ento-120811-153557, PMID: PubMed DOI

Rosche K. L., Sidak-Loftis L. C., Hurtado J., Fisk E. A., Shaw D. K. (2021). Arthropods under pressure: stress responses and immunity at the pathogen-vector interface. Front. Immunol. 11. doi:  10.3389/fimmu.2020.629777, PMID: PubMed DOI PMC

Russell T. A., Ayaz A., Davidson A. D., Fernandez-Sesma A., Maringer K. (2021). Imd pathway-specific immune assays reveal NF-κB stimulation by viral RNA PAMPs in Aedes aEgypti Aag2 cells. PloS Negl. Trop. Dis. 15, e0008524. doi:  10.1371/journal.pntd.0008524, PMID: PubMed DOI PMC

Sakashita K., Tatsuke T., Lee J. M., Kawaguchi Y., Kusakabe T. (2009). Sequence-nonspecific suppression of gene expression by double-stranded RNA in silkworm cultured cells. J. Insect Biotechnol. Sericology 78, 1_33–1_37. doi:  10.11416/jibs.78.1_33 DOI

Samuel C. E. (2012). ADARs, viruses and innate immunity. Curr. Topics Microbiol. Immunol. 353, 163–195. doi:  10.1007/82_2011_148, PMID: PubMed DOI PMC

Samuelson I., Vidal-Puig A. J. (2018). Fed-EXosome: extracellular vesicles and cell–cell communication in metabolic regulation. Essays Biochem. 62, 165–755. doi:  10.1042/EBC20170087, PMID: PubMed DOI

Seo D., Gammon D. B. (2022). Manipulation of host microtubule networks by viral microtubule-associated proteins. Viruses 14, 979. doi:  10.3390/v14050979, PMID: PubMed DOI PMC

Shannon P., Markiel A., Ozier O., Baliga N. S., Wang J. T., Ramage D., et al. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504. doi:  10.1101/gr.1239303, PMID: PubMed DOI PMC

Shelokov A., Peralta P. H. (1967). Vesicular stomatitis virus, Indiana type: An arbovirus infection of tropical sandflies and humans? Am. J. Epidemiol. 86, 149–157. doi:  10.1093/oxfordjournals.aje.a120720, PMID: PubMed DOI

Shen Q., Wang Y. E., Palazzo A. F. (2021). Crosstalk between nucleocytoplasmic trafficking and the innate immune response to viral infection. J. Biol. Chem. 297, 100856. doi:  10.1016/j.jbc.2021.100856, PMID: PubMed DOI PMC

Shina M. C., Ünal C., Eichinger L., Müller-Taubenberger A., Schleicher M., Steinert M., et al. (2010). A Coronin7 homolog with functions in actin-driven processes. J. Biol. Chem. 285, 9249–9261. doi:  10.1074/jbc.M109.083725, PMID: PubMed DOI PMC

Singh I. K., Singh S., Mogilicherla K., Shukla J. N., Palli S. R. (2017). Comparative analysis of double-stranded RNA degradation and processing in insects. Sci. Rep. 7, 17059–17059. doi:  10.1038/s41598-017-17134-2, PMID: PubMed DOI PMC

Somers D. J., Kushner D. B., McKinnis A. R., Mehmedovic D., Flame R. S., Arnold T. M. (2023). Epigenetic weapons in plant-herbivore interactions: Sulforaphane disrupts histone deacetylases, gene expression, and larval development in Spodoptera exigua while the specialist feeder Trichoplusia ni is largely resistant to these effects. PloS One 18, e0293075. doi:  10.1371/journal.pone.0293075, PMID: PubMed DOI PMC

Su J., Song Y., Zhu Z., Huang X., Fan J., Qiao J., et al. (2024). Cell–cell communication: new insights and clinical implications. Sig Transduct Target Ther. 9, 196. doi:  10.1038/s41392-024-01888-z, PMID: PubMed DOI PMC

Szklarczyk D., Kirsch R., Koutrouli M., Nastou K., Mehryary F., Hachilif R., et al. (2023). The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 51, D638–D646. doi:  10.1093/nar/gkac1000, PMID: PubMed DOI PMC

Tao Y. J., Ye Q. (2010). RNA virus replication complexes. PloS Pathog. 6, e1000943. doi:  10.1371/journal.ppat.1000943, PMID: PubMed DOI PMC

Telleria E. L., Azevedo-Brito D. A., Kykalová B., Tinoco-Nunes B., Pitaluga A. N., Volf P., et al. (2021). Leishmania infantum Infection Modulates the Jak-STAT Pathway in Lutzomyia longipalpis LL5 Embryonic Cells and Adult Females, and Affects Parasite Growth in the Sand Fly. Front. Trop. Dis. 2. doi:  10.3389/fitd.2021.747820 DOI

Tempone A. J., Zezza-Ramalho M., de S., Borely D., Pitaluga A. N., Brazil R. P., et al. (2024). Rhabdoviral endogenous sequences identified in the leishmaniasis vector lutzomyia longipalpis are widespread in sandflies from south america. Viruses 16, 395. doi:  10.3390/v16030395, PMID: PubMed DOI PMC

Teo J. L., Kahn M. (2010). The Wnt signaling pathway in cellular proliferation and differentiation: A tale of two coactivators. Advanced Drug Delivery Rev. 62, 1149–1155. doi:  10.1016/j.addr.2010.09.012, PMID: PubMed DOI

Tesh R. B., Boshell S. J., Modi G. B., Morales A. A., Young D. G., Corredor A. A., et al. (1987). Natural infection of humans, animals, and phlebotomine sand flies with the alagoas serotype of vesicular stomatitis virus in Colombia. Am. J. Trop. Med. Hygiene 36, 653–661. doi:  10.4269/AJTMH.1987.36.653, PMID: PubMed DOI

Tesh R. B., Chaniotis B. N., Peralta P. H., Johnson K. M. (1974). Ecology of viruses isolated from Panamanian phlebotomine sandflies. Am. J. Trop. Med. Hygiene 23, 258–269. doi:  10.4269/ajtmh.1974.23.258, PMID: PubMed DOI

Tesh R. B., Modi G. B. (1983). Development of a continuous cell line from the sand fly Lutzomyia longipalpis (Diptera: Psychodidae), and its susceptibility to infection with arboviruses. J. Med. Entomol 20, 199–202. doi:  10.1093/jmedent/20.2.199, PMID: PubMed DOI

Thapa N., Lee B. H., Kim I. S. (2007). TGFBIp/βig-h3 protein: A versatile matrix molecule induced by TGF-β. Int. J. Biochem. Cell Biol. 39, 2183–2194. doi:  10.1016/j.biocel.2007.06.004, PMID: PubMed DOI

Tinoco-Nunes B., Telleria E. L., Da Silva-Neves M., Marques C., Azevedo-Brito D. A., Pitaluga A. N., et al. (2016). The sandfly Lutzomyia longipalpis LL5 embryonic cell line has active Toll and Imd pathways and shows immune responses to bacteria, yeast and Leishmania. Parasites Vectors 9, 222. doi:  10.1186/s13071-016-1507-4, PMID: PubMed DOI PMC

Tomkinson B., Lindås A. C. (2005). Tripeptidyl-peptidase II: A multi-purpose peptidase. Int. J. Biochem. Cell Biol. 37, 1933–1937. doi:  10.1016/j.biocel.2005.02.009, PMID: PubMed DOI

Travassos Da Rosa A. P. A., Tesh R. B., Travassos Da Rosa J. F., Herve J. P., Main A. J. (1984). Carajas and maraba viruses, two new vesiculoviruses isolated from phlebotomine sand flies in Brazil. Am. J. Trop. Med. Hygiene 33, 999–1006. doi:  10.4269/ajtmh.1984.33.999, PMID: PubMed DOI

Vasilakis N., Forrester N. L., Palacios G., Nasar F., Savji N., Rossi S. L., et al. (2013). Negevirus: a proposed new taxon of insect-specific viruses with wide geographic distribution. J. Virol. 87, 2475–2488. doi:  10.1128/JVI.00776-12, PMID: PubMed DOI PMC

Villarreal C. M., Darakananda K., Wang V. R., Jayaprakash P. M., Suzuki Y. (2015). Hedgehog signaling regulates imaginal cell differentiation in a basally branching holometabolous insect. Dev. Biol. 404, 125–135. doi:  10.1016/j.ydbio.2015.05.020, PMID: PubMed DOI

Walsh D., Naghavi M. H. (2019). Exploitation of cytoskeletal networks during early viral infection. Trends Microbiol. 27, 39–50. doi:  10.1016/j.tim.2018.06.008, PMID: PubMed DOI PMC

Wang P.-H., He J.-G. (2019). “Chapter Six - Nucleic Acid Sensing in Invertebrate Antiviral Immunity,” in International Review of Cell and Molecular Biology. Eds. Vanpouille-Box C., Galluzzi L. (Cambridge, MA, USA: Academic Press; ), 287–360. doi:  10.1016/bs.ircmb.2018.11.002, PMID: PubMed DOI

Wang P. H., Weng S. P., He J. G. (2015). Nucleic acid-induced antiviral immunity in invertebrates: An evolutionary perspective. Dev. Comp. Immunol. 48, 291–296. doi:  10.1016/j.dci.2014.03.013, PMID: PubMed DOI

Wang X., Zhu J., Zhang D., Liu G. (2022). Ribosomal control in RNA virus-infected cells. Front. Microbiol. 13. doi:  10.3389/fmicb.2022.1026887, PMID: PubMed DOI PMC

Yarbrough M. L., Mata M. A., Sakthivel R., Fontoura B. M. A. (2014). Viral subversion of nucleocytoplasmic trafficking. Traffic 15, 127–140. doi:  10.1111/tra.12137, PMID: PubMed DOI PMC

Yumura S., Talukder M. S. U., Pervin M. S., Tanvir M. I. O., Matsumura T., Fujimoto K., et al. (2022). Dynamics of actin cytoskeleton and their signaling pathways during cellular wound repair. Cells 11, 3166. doi:  10.3390/cells11193166, PMID: PubMed DOI PMC

Zhang X., Yu W. (2022). Heat shock proteins and viral infection. Front. Immunol. 13. doi:  10.3389/fimmu.2022.947789, PMID: PubMed DOI PMC

Zhu Q., Arakane Y., Beeman R. W., Kramer K. J., Muthukrishnan S. (2008). Characterization of recombinant chitinase-like proteins of Drosophila melanogaster and Tribolium castaneum. Insect Biochem. Mol. Biol. 38, 467–477. doi:  10.1016/j.ibmb.2007.06.011, PMID: PubMed DOI

Zhu K. Y., Palli S. R. (2020). Mechanisms, applications, and challenges of insect RNA interference. Annu. Rev. Entomology 65, 293–311. doi:  10.1146/annurev-ento-011019-025224, PMID: PubMed DOI PMC

Zhu F., Zhang X. (2013). The Wnt signaling pathway is involved in the regulation of phagocytosis of virus in Drosophila. Sci. Rep. 3, 2069. doi:  10.1038/srep02069, PMID: PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...