Rhabdoviral Endogenous Sequences Identified in the Leishmaniasis Vector Lutzomyia longipalpis Are Widespread in Sandflies from South America
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
38543761
PubMed Central
PMC10974309
DOI
10.3390/v16030395
PII: v16030395
Knihovny.cz E-resources
- Keywords
- Lutzomyia longipalpis, PIWI-RNA, endogenous viral element,
- MeSH
- DNA MeSH
- Leishmaniasis * MeSH
- Humans MeSH
- Psychodidae * MeSH
- Rhabdoviridae * MeSH
- RNA MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Brazil MeSH
- South America MeSH
- Names of Substances
- DNA MeSH
- RNA MeSH
Sandflies are known vectors of leishmaniasis. In the Old World, sandflies are also vectors of viruses while little is known about the capacity of New World insects to transmit viruses to humans. Here, we relate the identification of RNA sequences with homology to rhabdovirus nucleocapsids (NcPs) genes, initially in the Lutzomyia longipalpis LL5 cell lineage, named NcP1.1 and NcP2. The Rhabdoviridae family never retrotranscribes its RNA genome to DNA. The sequences here described were identified in cDNA and DNA from LL-5 cells and in adult insects indicating that they are transcribed endogenous viral elements (EVEs). The presence of NcP1.1 and NcP2 in the L. longipalpis genome was confirmed in silico. In addition to showing the genomic location of NcP1.1 and NcP2, we identified another rhabdoviral insertion named NcP1.2. Analysis of small RNA molecules derived from these sequences showed that NcP1.1 and NcP1.2 present a profile consistent with elements targeted by primary piRNAs, while NcP2 was restricted to the degradation profile. The presence of NcP1.1 and NcP2 was investigated in sandfly populations from South America and the Old World. These EVEs are shared by different sandfly populations in South America while none of the Old World species studied presented the insertions.
Departamento de Imunologia Instituto Aggeu Magalhães Fiocruz Recife 50740 465 PE Brazil
Department of Parasitology Charles University 12800 Prague Czech Republic
See more in PubMed
Wang H., Naghavi M., Allen C., Barber R.M., Carter A., Casey D.C., Charlson F.J., Chen A.Z., Coates M.M., Coggeshall M., et al. Global, Regional, and National Life Expectancy, All-Cause Mortality, and Cause-Specific Mortality for 249 Causes of Death, 1980–2015: A Systematic Analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1459–1544. doi: 10.1016/S0140-6736(16)31012-1. PubMed DOI PMC
Lainson R., Braga R.R., De Souza A.A., Pôvoa M.M., Ishikawa E.A., Silveira F.T. Leishmania (Viannia) shawi sp. n., a parasite of monkeys, sloths and procyonids in Amazonian Brazil. Ann. Parasitol. Hum. Comp. 1989;64:200–207. doi: 10.1051/parasite/1989643200. PubMed DOI
Killick-Kendrick R. Guide to the Identification and Geographic Distribution of Lutzomyia Sand Flies in Mexico, the West Indies, Central and South America (Diptera: Psychodidae). D. G. Young & M. A. Duncan. Memoirs of the American Entomological Institute no. 54. Gainesville, Florida, USA: Associated Publishers, 1994. 881 pp. US$ 85. ISBN 1-5666-054-2. Trans. R. Soc. Trop. Med. Hyg. 1995;89:125. doi: 10.1016/0035-9203(95)90687-8. DOI
Bruschi F., Gradoni L., editors. The leishmaniases: Old Neglected Tropical Diseases. Springer; Cham, Switzerland: 2018.
Labbé F., Abdeladhim M., Abrudan J., Araki A.S., Araujo R.N., Arensburger P., Benoit J.B., Brazil R.P., Bruno R.V., Bueno da Silva Rivas G., et al. Genomic analysis of two phlebotomine sandfly vectors of Leishmania from the New and Old World. PLoS Negl. Trop. Dis. 2023;17:e0010862. doi: 10.1371/journal.pntd.0010862. PubMed DOI PMC
Jancarova M., Polanska N., Volf P., Dvorak V. The role of sandflies as vectors of viruses other than phleboviruses. J. Gen. Virol. 2023;104:001837. doi: 10.1099/jgv.0.001837. PubMed DOI
Depaquit J., Grandadam M., Fouque F., Andry P.E., Peyrefitte C. Arthropod-borne viruses transmitted by Phlebotomine sandflies in Europe: A review. Euro Surveill. 2010;15:19507. doi: 10.2807/ese.15.10.19507-en. PubMed DOI
Letchworth G.J., Rodriguez L.L., Del Cabarrera J. Vesicular stomatitis. Vet. J. 1999;157:239–260. doi: 10.1053/tvjl.1998.0303. PubMed DOI
Travassos da Rosa A.P.A., Shope R.E., Pinheiro F.P. Arbovirus research in the Brazilian Amazon. In: Uren M.F., Blok J., Manderson L.H., editors. Proceedings of the Fifth Symposium on Arbovirus Research in Australia; Brisbane, Australia. 28 August–1 September 1989; Brisbane, Australia: University of Queensland Medical School; 1989. pp. 4–8.
Carvalho M.S., de Lara Pinto A.Z., Pinheiro A., Rodrigues J.S.V., Melo F.L., da Silva L.A., Ribeiro B.M., Dezengrini-Slhessarenko R. Viola phlebovirus is a novel Phlebotomus fever serogroup member identified in Lutzomyia (Lutzomyia) longipalpis from Brazilian Pantanal. Parasit. Vectors. 2018;11:405. doi: 10.1186/s13071-018-2985-3. PubMed DOI PMC
Tesh R.B., Boshell J., Young D.G., Morales A., Ferra de Carrasquilla C., Corredor A., Modi G.B., Travassos da Rosa A.P., McLean R.G., de Rodriguez C., et al. Characterization of five new phleboviruses recently isolated from sandflies in tropical America. Am. J. Trop. Med. Hyg. 1989;40:529–533. doi: 10.4269/ajtmh.40-5529. PubMed DOI
Fonseca P., Ferreira F., da Silva F., Oliveira L.S., Marques J.T., Goes-Neto A., Aguiar E., Gruber A. Characterization of a Novel Mitovirus of the Sandfly Lutzomyia longipalpis Using Genomic and Virus-Host Interaction Signatures. Viruses. 2020;13:9. doi: 10.3390/v13010009. PubMed DOI PMC
Jern P., Coffin J.M. Effects of retroviruses on host genome function. Annu. Rev. Genet. 2008;42:709–732. doi: 10.1146/annurev.genet.42.110807.091501. PubMed DOI
Horie M., Honda T., Suzuki Y., Kobayashi Y., Daito T., Oshida T., Ikuta K., Jern P., Gojobori T., Coffin J.M., et al. Endogenous non-retroviral RNA virus elements in mammalian genomes. Nature. 2010;463:84–87. doi: 10.1038/nature08695. PubMed DOI PMC
Belyi V.A., Levine A.J., Skalka A.M. Unexpected inheritance: Multiple integrations of ancient bornavirus and ebolavirus/marburgvirus sequences in vertebrate genomes. PLoS Pathog. 2010;6:e1001030. doi: 10.1371/journal.ppat.1001030. PubMed DOI PMC
Gilbert C., Feschotte C. Genomic fossils calibrate the long-term evolution of hepadnaviruses. PLoS Biol. 2010;8:e1000495. doi: 10.1371/journal.pbio.1000495. PubMed DOI PMC
Liu H., Fu Y., Xie J., Cheng J., Ghabrial S.A., Li G., Peng Y., Yi X., Jiang D. Widespread endogenization of densoviruses and parvoviruses in animal and human genomes. J. Virol. 2011;85:9863–9876. doi: 10.1128/JVI.00828-11. PubMed DOI PMC
Veglia A.J., Bistolas K.S.I., Voolstra C.R., Hume B.C.C., Ruscheweyh H.J., Planes S., Allemand D., Boissin E., Wincker P., Poulain J., et al. Endogenous viral elements reveal associations between a non-retroviral RNA virus and symbiotic dinoflagellate genomes. Commun. Biol. 2023;6:566. doi: 10.1038/s42003-023-04917-9. PubMed DOI PMC
Fort P., Albertini A., Van-Hua A., Berthomieu A., Roche S., Delsuc F., Pasteur N., Capy P., Gaudin Y., Weill M. Fossil rhabdoviral sequences integrated into arthropod genomes: Ontogeny, evolution, and potential functionality. Mol. Biol. Evol. 2012;29:381–390. doi: 10.1093/molbev/msr226. PubMed DOI
Vasilakis N., Widen S., Mayer S.V., Seymour R., Wood T.G., Popov V., Guzman H., da Rosa A.P., Ghedin E., Holmes E.C. Niakha virus: A novel member of the family Rhabdoviridae isolated from phlebotomine sandflies in Senegal. Virology. 2013;444:80–89. doi: 10.1016/j.virol.2013.05.035. PubMed DOI PMC
Ter Horst A.M., Nigg J.C., Dekker F.M., Falk B.W. Endogenous Viral Elements Are Widespread in Arthropod Genomes and Commonly Give Rise to PIWI-Interacting RNAs. J. Virol. 2019;93:e02124-18. doi: 10.1128/JVI.02124-18. PubMed DOI PMC
Wallau G.L. RNA virus EVEs in insect genomes. [(accessed on 1 February 2022)];Curr. Opin. Insect Sci. 2022 49:42–47. doi: 10.1016/j.cois.2021.11.005. Available online: https://www.sciencedirect.com/science/article/pii/S2214574521001267. PubMed DOI
Fujino K., Horie M., Honda T., Merriman D.K., Tomonaga K. Inhibition of Borna disease virus replication by an endogenous bornavirus-like element in the ground squirrel genome. Proc. Natl. Acad. Sci. USA. 2014;111:13175–13180. doi: 10.1073/pnas.1407046111. PubMed DOI PMC
Goic B., Stapleford K.A., Frangeul L., Doucet A.J., Gausson V., Blanc H., Schemmel-Jofre N., Cristofari G., Lambrechts L., Vignuzzi M., et al. Virus-derived DNA drives mosquito vector tolerance to arboviral infection. Nat. Commun. 2016;7:12410. doi: 10.1038/ncomms12410. PubMed DOI PMC
Volf P., Volfova V. Establishment and maintenance of sand fly colonies. J. Vector Ecol. 2011;36:S1–S9. doi: 10.1111/j.1948-7134.2011.00106.x. PubMed DOI
Thompson J.D., Higgins D.G., Gibson T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–4680. doi: 10.1093/nar/22.22.4673. PubMed DOI PMC
Jones D.T., Taylor W.R., Thornton J.M. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 1992;8:275–282. doi: 10.1093/bioinformatics/8.3.275. PubMed DOI
Tamura K., Stecher G., Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021;38:3022–3027. doi: 10.1093/molbev/msab120. PubMed DOI PMC
Aguiar E.R., Olmo R.P., Marques J.T. Virus-derived small RNAs: Molecular footprints od host-pahogen interaction. Wiley Interdiscip. Rev. RNA. 2016;7:824–837. doi: 10.1002/wrna.1361. PubMed DOI PMC
Lourenço-de-Oliveira R., Marques J.T., Sreenu V.B., Atyame Nten C., Aguiar E.R.G.R., Varjak M., Kohl A., Failloux A.B. Culex quinquefasciatus mosquitoes do not support replication of Zika virus. J. Gen. Virol. 2018;99:258–264. doi: 10.1099/jgv.0.000949. PubMed DOI PMC
Marconcini M., Pischedda E., Houé V., Palatini U., Lozada-Chávez N., Sogliani D., Failloux A.B., Bonizzoni M. Profile of Small RNAs, vDNA Forms and Viral Integrations in Late Chikungunya Virus Infection of Aedes albopictus Mosquitoes. Viruses. 2021;13:553. doi: 10.3390/v13040553. PubMed DOI PMC
Olmo R.P., Todjro Y.M., Aguiar E.R., de Almeida J.P.P., Ferreira F.V., Armache J.N., de Faria I.J., Ferreira A.G., Amadou S.C., Silva A.T.S., et al. Mosquito vector competence for dengue is modulated by insect-specific viruses. Nat. Microbiol. 2023;8:135–149. doi: 10.1038/s41564-022-01289-4. PubMed DOI
Chiba S., Kondo H., Tani A., Saisho D., Sakamoto W., Kanematsu S., Suzuki N. Widespread endogenization of genome sequences of non-retroviral RNA viruses into plant genomes. PLoS Pathog. 2011;7:e1002146. doi: 10.1371/journal.ppat.1002146. PubMed DOI PMC
Aguiar E.R.G.R., de Almeida J.P.P., Queiroz L.R., Oliveira L.S., Olmo R.P., de Faria I.J.D.S., Imler J.L., Gruber A., Matthews B.J., Marques J.T. A single unidirectional piRNA cluster similar to the flamenco locus is the major source of EVE-derived transcription and small RNAs in Aedes aegypti mosquitoes. RNA. 2020;26:581–594. doi: 10.1261/rna.073965.119. PubMed DOI PMC
Kryukov K., Ueda M.T., Imanishi T., Nakagawa S. Systematic survey of non-retroviral virus-like elements in eukaryotic genomes. Virus Res. 2019;262:30–36. doi: 10.1016/j.virusres.2018.02.002. PubMed DOI
Katzourakis A., Gifford R.J. Endogenous viral elements in animal genomes. PLoS Genet. 2010;6:e1001191. doi: 10.1371/journal.pgen.1001191. PubMed DOI PMC
Suzuki Y., Frangeul L., Dickson L.B., Blanc H., Verdier Y., Vinh J., Lambrechts L., Saleh M.C. Uncovering the Repertoire of Endogenous Flaviviral Elements in Aedes mosquito Genomes. J. Virol. 2017;91:e00571-17. doi: 10.1128/JVI.00571-17. PubMed DOI PMC
Cox D.N., Chao A., Baker J., Chang L., Qiao D., Lin H. A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev. 1998;12:3715–3727. doi: 10.1101/gad.12.23.3715. PubMed DOI PMC
Léger P., Lara E., Jagla B., Sismeiro O., Mansuroglu Z., Coppée J.Y., Bonnefoy E., Bouloy M. Dicer-2- and Piwi-mediated RNA interference in Rift Valley fever virus-infected mosquito cells. J. Virol. 2013;87:1631–1648. doi: 10.1128/JVI.02795-12. PubMed DOI PMC
Varjak M., Maringer K., Watson M., Sreenu V.B., Fredericks A.C., Pondeville E., Donald C.L., Sterk J., Kean J., Vazeille M., et al. Aedes aegypti Piwi4 Is a Noncanonical PIWI Protein Involved in Antiviral Responses. mSphere. 2017;2:e00144-17. doi: 10.1128/mSphere.00144-17. PubMed DOI PMC
Ferreira F.V., Aguiar E.R.G.R., Olmo R.P., de Oliveira K.P.V., Silva E.G., Sant’Anna M.R.V., Gontijo N.F., Kroon E.G., Imler J.L., Marques J.T. The small non-coding RNA response to virus infection in the Leishmania vector Lutzomyia longipalpis. PLoS Negl. Trop. Dis. 2018;12:e0006569. doi: 10.1371/journal.pntd.0006569. PubMed DOI PMC
Martins-da-Silva A., Telleria E.L., Batista M., Marchini F.K., Traub-Csekö Y.M., Tempone A.J. Identification of Secreted Proteins Involved in Nonspecific dsRNA-Mediated Lutzomyia longipalpis LL5 Cell Antiviral Response. Viruses. 2018;10:43. doi: 10.3390/v10010043. PubMed DOI PMC
Souza Freitas M.T., Ríos-Velasquez C.M., Costa C.R., Jr., Figueirêdo C.A., Jr., Aragão N.C., da Silva L.G., de Aragão Batista M.V., Balbino T.C., Pessoa F.A., de Queiroz Balbino V. Phenotypic and genotypic variations among three allopatric populations of Lutzomyia umbratilis, main vector of Leishmania guyanensis. Parasit. Vectors. 2015;8:448. doi: 10.1186/s13071-015-1051-7. PubMed DOI PMC
Sousa-Paula L.C., da Silva L.G., da Silva Junior W.J., Figueiredo Júnior C.A.S., Costa C.H.N., Pessoa F.A.C., Dantas-Torres F. Genetic structure of allopatric populations of Lutzomyia longipalpis sensu lato in Brazil. Acta Trop. 2021;222:106031. doi: 10.1016/j.actatropica.2021.106031. PubMed DOI