Defining the relationship between bulk density and organic carbon content in forest soils using generalised linear mixed-effect models
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SQ01010088
Technology Agency of the Czech Republic
SQ01010088
Technology Agency of the Czech Republic
QK21010198
Ministerstvo Zemědělství
QK21010198
Ministerstvo Zemědělství
952314
European Union's H2020 Research and Innovation Programme
PubMed
41026380
PubMed Central
PMC12486959
DOI
10.1186/s13021-025-00298-0
PII: 10.1186/s13021-025-00298-0
Knihovny.cz E-zdroje
- Klíčová slova
- Climate change, Pedotransfer function, Soil carbon stock, Soil stoniness, Undisturbed soil sample,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: In this study, we used a generalised linear mixed-effects model (GLMER) to establish a predictive pedotransfer function defining the relationship between forest soil bulk density and total organic carbon. More than 950 soil samples were obtained from four forested areas with a wide range of bedrock (limestone, loess, crystalline volcanic, sandstone, alluvial loam, polygenic loam and transported materials rich in organic carbon) and soil types (Leptosols, Cambisols, Fluvisols, Podzols and Technosols). Model validation was performed by testing against 10% of the data randomly selected from the original dataset (10% dataset) and an independent dataset from the Czech national forest inventory (NFI2 dataset). RESULT: The GLMER including sample origin locality as random effect displayed a highly accurate predictive capacity. Subsequent analysis avoided model simplification by excluding sample origin and retaining the global GLMER only. For all samples, the final model covered a range from 0.16 to 27.70% for total organic carbon and from 0.27 to 1.94 g cm- 3 for bulk density. Model residuals based on laboratory values were symmetrical with a median value just 0.09 g cm- 3 higher. While validation with the 10% dataset confirmed model parameter validity with high accuracy, validation using the NFI2 dataset indicated slight discrepancies, possibly due to differences in sampling method used. Individual GLMs fitted both validation datasets better than the global GLMER; however, Wilcoxon tests showed better consistency in the original model on the 10% validation data. Consequently, we suggest the global GLMER may prove more suitable for direct use in expressing bulk density from total organic carbon. CONCLUSION: The pedotransfer functions produced, particularly that based on global GLMER, can be used to express bulk density via total organic carbon content, or vice versa, with high accuracy. While based on a wide range of bedrock/soil types, further studies may be needed in other regions to validate the model for general application.
Zobrazit více v PubMed
Post WM, Emanuel WE, Zinke PJ, Stangenberger AG. Soil carbon pools and world life zones. Nature. 1982;298:156–9.
Lal R. Soil carbon sequestration impacts on global climate change and food security. Sci 1979. 2004;304:1623–7. PubMed
Harbo LS, Olesen JE, Liang Z, Christensen BT, Elsgaard L. Estimating organic carbon stocks of mineral soils in Denmark: impact of bulk density and content of rock fragments. Geoderma Reg. 2022;30.
Morisada K, Ono K, Kanomata H. Organic carbon stock in forest soils in Japan. Geoderma. 2004;119:21–32.
Cienciala E, Exnerová Z, Macků J, Henžlík V. Forest topsoil organic carbon content in Southwest Bohemia region. J Sci (Prague). 2006;52:387–98.
Xiang H, Luo X, Zhang L, Hou E, Li J, Zhu Q, et al. Forest succession accelerates soil carbon accumulation by increasing recalcitrant carbon stock in subtropical forest topsoils. Catena (Amst). 2022;212:106030.
Ontl TA, Janowiak MK, Swanston CW, Daley J, Handler S, Cornett M, et al. Forest management for carbon sequestration and climate adaptation. J for. 2020;118:86–101.
Vesterdal L, Schmidt I, Callesen I, Nilsson L, Gundersen P. Carbon and nitrogen in forest floor and mineral soil under six common European tree species. Ecol Manage. 2008;255:35–48.
Brèteau-Amores S, Yousefpour R, Hanewinkel M, Fortin M. Forest adaptation strategies to reconcile timber production and carbon sequestration objectives under multiple risks of extreme drought and windstorm events. Ecol Econ. 2023;212.
Masciandaro G, Macci C, Peruzzi E, Doni S. Soil carbon in the world: ecosystem services linked to soil carbon in forest and agricultural soils. The future of soil carbon: its conservation and formation. Elsevier Inc.; 2018.
Beaulne J, Garneau M, Magnan G, Boucher É. Peat deposits store more carbon than trees in forested peatlands of the boreal biome. Sci Rep. 2021;11:1–11. PubMed PMC
Oppong Sarkodie VY, Vašát R, Pouladi N, Šrámek V, Sáňka M, Fadrhonsová V et al. Predicting soil organic carbon stocks in different layers of forest soils in the Czech Republic. Geoderma Reg. 2023;34.
Lal R. Forest soils and carbon sequestration. Ecol Manage. 2005;220:242–58.
Cullotta S, Bagarello V, Baiamonte G, Gugliuzza G, Iovino M, La Mela Veca DS, et al. Comparing different methods to determine soil physical quality in a mediterranean forest and pasture land. Soil Sci Soc Am J. 2016;80:1038–56.
Taalab KP, Corstanje R, Creamer R, Whelan MJ. Modelling soil bulk density at the landscape scale and its contributions to C stock uncertainty. Biogeosciences. 2013;10:4691–704.
Palladino M, Romano N, Pasolli E, Nasta P. Developing Pedotransfer functions for predicting soil bulk density in campania. Geoderma. 2022;412:115726.
De Vos B, Van Meirvenne M, Quataert P, Deckers J, Muys B. Predictive quality of Pedotransfer functions for estimating bulk density of forest soils. Soil Sci Soc Am J. 2005;69:500–10.
Cardoso EJBN, Vasconcellos RLF, Bini D, Miyauchi MYH, dos Santos CA, Alves PRL, et al. Soil health: looking for suitable indicators. What should be considered to assess the effects of use and management on soil health? Sci Agric. 2013;70:274–89.
Oulehle F, Hleb R, Houska J, Samonil P, Hofmeister J, Hruska J. Anthropogenic acidification effects in primeval forests in the transcarpathian Mts., Western Ukraine. Sci Total Environ. 2010;408:856–64. PubMed
Périé C, Ouimet R. Organic carbon, organic matter and bulk density relationships in boreal forest soils. Can J Soil Sci. 2008;88:315–25.
Kučera M, Adolt R, editors. National Forest Inventory in Czech Republic: results of the 2nd cycle 2011–2015 [in Czech: Národní inventarizace lesů v České republice– výsledky druhého cyklu 2011–2015]. Brandýs nad Labem: Ústav pro hospodářskou úpravu lesů Brandýs nad Labem, ISBN: 978-80-905995-1-2; 2019.
Zouhar V et al. Database of Czech Forest Classification System. In: Dengler J, Oldeland J, Jansen F, Chytrý M, Ewald J, Finckh M, editors. Vegetation databases for the 21st century. Biodiversity & Ecology 4; 2012. pp. 346–346.
Huntington TG, Johnson CE, Johnson AH, Siccama TG, Ryan DF. Carbon, organic matter, and bulk density relationships in a forested spodosols. Soil Sci. 1989;148:380–6.
Athira M. Influence of soil organic matter on bulk density in Coimbatore soils taxonomy of Lymantriinae in Tamil Nadu view project farm level fertility mapping view project. Int J Chem Stud. 2019;7:3520–3.
Sakin E. Organic carbon organic matter and bulk density relationships in arid-semi arid soils in Southeast Anatolia region. Afr J Biotechnol. 2012;11:1373–7.
Šamonil P. Uniqueness of limestone soil-forming substrate in the forest ecosystem classification. J Sci (Prague). 2007;53:149–61.
Pecháček J, Vavříček D, Kučera A, Dundek P. The effect of slow-release fertilizers on the soil environment of spread windrows in the Krušné hory Mts. J Sci (Prague). 2017;63:331–8.
Vavříček D, Pecháček J, Jonák P, Samec P. The effect of point application of fertilizers on the soil environment of spread line windrows in the Krušné hory Mts. J Sci (Prague). 2010;56:195–208.
IUSS Working Group WRB 2022. World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps. 4th edition. Vienna, Austria: IUSS; 2022.
Walkley A, Black IA. An examination of the Detjareff method for determining soil organic matter and a proposed modification of the chromic acid Titration method. Soil Sci. 1934;37:29–38.
R Core Team. A language and environment for statistical computing. 2000. Available from: https://www.r-project.org/
Bates D, Maechler M, Bolker B, Walker S, Bojesen RH, Singmann H et al. Linear Mixed-Effects models using ‘eigen’ and S4, version 1.1–34. CRAN. 2023.
Lüdecke D, Makowski D, Ben-Shachar MS, Patil I, Waggoner P, Wiernik B et al. Assessment of Regression Models Performance, version 0.10.9. CRAN.
Meloun M, Militký J, Hill M. Examples of computer multivariate Data analysis [in Czech: Počítačová Analýza Vícerozměrných Dat V Příkladech]. Prague: Academia; 2005.
Wickham H, Lionel H, Pedersen TL, Takahashi K, Wilke C, Woo K et al. Create elegant data visualisations using the Grammar of Graphics, package ggplot2 version 3.5.0 for R software for statistical computing. Available online: https://ggplot2.tidyverse.org/. CRAN. 2020.
Bajer A, Ložek V, Lisá L, Cílek V. [In Czech: landscape and geodiversity, inanimate nature as the basis of landscape and cultural values] krajina a geodiverzita, Neživá Příroda Jako Základ Krajinných a kulturních hodnot (in Czech). Brno: Mendel University; 2015.
Kubalikova L. Geomorphological heritage and geoconservation in the Czech Republic. World Geomorphological landscapes. Springer Sci Bus Media B V 2016;387–98.
Tamminen P, Starr M. Bulk density of forested mineral soils. Silva Fennica. 1994;28:53–60.
Curtis RO, Post BW. Estimating bulk density from organic matter content in some Vermont forest soils. Soils Sci Soc Am J. 1964;28:285–6.
Federer CA, Turcotte DE, Smith CT. The organic fraction–bulk density relationship and the expression of nutrient content in forest soils. Can J for Res. 1993;23:1026–32.
Li J. Sampling soils in a heterogeneous research plot. J Visualized Experiments. 2019. PubMed
Van Looy K, Bouma J, Herbst M, Koestel J, Minasny B, Mishra U, et al. Pedotransfer functions in Earth system science: challenges and perspectives. Rev Geophys. 2017;55:1199–256.
Bachmair S, Tanguy M, Hannaford J, Stahl K. How well do meteorological indicators represent agricultural and forest drought across Europe? Environ Res Lett. 2018;13.
Georganos S, Grippa T, Niang Gadiaga A, Linard C, Lennert M, Vanhuysse S, et al. Geographical random forests: a Spatial extension of the random forest algorithm to address Spatial heterogeneity in remote sensing and population modelling. Geocarto Int. 2021;36:121–36.
Darenova E, Čater M. Effect of Spatial scale and harvest on heterogeneity of forest floor CO
Crnobrna B, Llanqui IB, Cardenas AD, Panduro Pisco G. Relationships between organic matter and bulk density in Amazonian peatland soils. Sustain (Switzerland). 2022;14.
Wu MM, Liang Y, He HS, Liu B, Ma T, Zong S, et al. Combining contemporary and pre-remote-sensing disturbance events to construct wind disturbance regime in a large forest landscape. Ecol Manage. 2024;556:121726.
Bogachev MI, Gafurov AM, Iskandirov PY, Kaplun DI, Kayumov AR, Lyanova AI, et al. Reversal in the drought stress response of the Scots pine forest ecosystem: local soil water regime as a key to improving climate change resilience. Heliyon. 2023;9:e21574. PubMed PMC