Engineering Pichia pastoris Strains Using CRISPR/Cas9 Technologies: The Basic Protocol
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
- Klíčová slova
- CRISPR/Cas9, Gene knockout, Genome editing, Genome engineering, Guide RNA, Homologous recombination, Komagataella phaffii, Pichia pastoris, Synthetic biology,
- MeSH
- CRISPR-Cas systémy * genetika MeSH
- editace genu * metody MeSH
- genom fungální MeSH
- metabolické inženýrství * metody MeSH
- Pichia * genetika MeSH
- Saccharomycetales * genetika MeSH
- vodící RNA, systémy CRISPR-Cas genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- vodící RNA, systémy CRISPR-Cas MeSH
The CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats, CRISPR-associated protein 9) system has become a commonly used tool for genome editing and metabolic engineering. For Komagataella phaffii, commercialized as Pichia pastoris, the CRISPR/Cas9 protocol for genome editing was established in 2016 and since then has been employed to facilitate genetic modifications such as markerless gene disruptions and deletions as well as to enhance the efficiency of homologous recombination.In this chapter, we describe a robust basic protocol for CRISPR-based genome editing, demonstrating near 100% targeting efficiency for gene inactivation via a frameshift mutation. As described in other chapters of this volume, CRISPR/Cas9 technologies for use in P. pastoris have been further optimized for various specific purposes.
Graz University of Technology Institute of Molecular Biotechnology Graz Austria
University of Chemistry and Technology Prague Department of Biotechnology Prague Czech Republic
Zobrazit více v PubMed
Mojica FJM, Díez-Villaseñor C, García-Martínez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182. https://doi.org/10.1007/s00239-004-0046-3 PubMed DOI
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. https://doi.org/10.1126/science.1231143 PubMed DOI PMC
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. https://doi.org/10.1126/science.1225829 PubMed DOI PMC
Raschmanová H, Weninger A, Glieder A, Kovar K, Vogl T (2018) Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: current state and future prospects. Biotechnol Adv 36:641–665. https://doi.org/10.1016/j.biotechadv.2018.01.006 PubMed DOI
Weninger A, Hatzl AM, Schmid C, Vogl T, Glieder A (2015) Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris. J Biotechnol 235:139–149. https://doi.org/10.1016/j.jbiotec.2016.03.027 DOI
Weninger A, Fischer JE, Raschmanová H, Kniely C, Vogl T, Glieder A (2018) Expanding the CRISPR/Cas9 toolkit for Pichia pastoris with efficient donor integration and alternative resistance markers. J Cell Biochem 119:3183–3198. https://doi.org/10.1002/jcb.26474 PubMed DOI
Fischer JE, Glieder A (2022) CRISPR/Cas9 tool kit for efficient and targeted insertion/deletion mutagenesis of the Komagataella phaffii (Pichia pastoris). Genome Methods Mol Biol 2513:121–133. https://doi.org/10.1007/978-1-0716-2399-2_8 PubMed DOI