Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: Current state and future prospects
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
29331410
DOI
10.1016/j.biotechadv.2018.01.006
PII: S0734-9750(18)30006-5
Knihovny.cz E-zdroje
- Klíčová slova
- CRISPR-Cas, Candida albicans/glabrata, Expression optimization, Metabolic engineering, Pichia pastoris, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Synthetic biology, Yarrowia lipolytica, Yeasts,
- MeSH
- bodová mutace MeSH
- chromozomy hub MeSH
- CRISPR-Cas systémy * MeSH
- editace genu metody MeSH
- geneticky modifikované mikroorganismy MeSH
- klonování DNA MeSH
- kvasinky genetika MeSH
- metabolické inženýrství MeSH
- Pichia genetika MeSH
- regulace genové exprese u hub MeSH
- Saccharomyces cerevisiae genetika MeSH
- technologie gene drive MeSH
- vodící RNA, systémy CRISPR-Cas MeSH
- Yarrowia genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- vodící RNA, systémy CRISPR-Cas MeSH
Within five years, the CRISPR-Cas system has emerged as the dominating tool for genome engineering, while also changing the speed and efficiency of metabolic engineering in conventional (Saccharomyces cerevisiae and Schizosaccharomyces pombe) and non-conventional (Yarrowia lipolytica, Pichia pastoris syn. Komagataella phaffii, Kluyveromyces lactis, Candida albicans and C. glabrata) yeasts. Especially in S. cerevisiae, an extensive toolbox of advanced CRISPR-related applications has been established, including crisprTFs and gene drives. The comparison of innovative CRISPR-Cas expression strategies in yeasts presented here may also serve as guideline to implement and refine CRISPR-Cas systems for highly efficient genome editing in other eukaryotic organisms.
Citace poskytuje Crossref.org
Production and secretion dynamics of prokaryotic Penicillin G acylase in Pichia pastoris