Production and secretion dynamics of prokaryotic Penicillin G acylase in Pichia pastoris
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
14.176
SCIEX
RV061388971
Akademie Věd České Republiky
PubMed
32424437
PubMed Central
PMC7306039
DOI
10.1007/s00253-020-10669-x
PII: 10.1007/s00253-020-10669-x
Knihovny.cz E-zdroje
- Klíčová slova
- Fedbatch bioreactor cultivation, Penicillin G acylase, Pichia pastoris, Process optimisation, Secretion of a heterologous protein, Specific rate of product formation,
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- biomasa MeSH
- bioreaktory MeSH
- extracelulární prostor metabolismus MeSH
- intracelulární prostor metabolismus MeSH
- kinetika MeSH
- penicilinamidasa genetika metabolismus MeSH
- promotorové oblasti (genetika) MeSH
- rekombinantní proteiny genetika metabolismus MeSH
- Saccharomycetales genetika růst a vývoj metabolismus MeSH
- techniky vsádkové kultivace MeSH
- teoretické modely MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bakteriální proteiny MeSH
- penicilinamidasa MeSH
- rekombinantní proteiny MeSH
To take full advantage of recombinant Pichia pastoris (Komagataella phaffii) as a production system for heterologous proteins, the complex protein secretory process should be understood and optimised by circumventing bottlenecks. Typically, little or no attention has been paid to the fate of newly synthesised protein inside the cell, or its passage through the secretory pathway, and only the secreted product is measured. However, the system's productivity (i.e. specific production rate qp), includes productivity of secreted (qp,extra) plus intracellularly accumulated (qp,intra) protein. In bioreactor cultivations with P. pastoris producing penicillin G acylase, we studied the dynamics of product formation, i.e. both the specific product secretion (qp,extra) and product retention (qp,intra) as functions of time, as well as the kinetics, i.e. productivity in relation to specific growth rate (μ). Within the time course, we distinguished (I) an initial phase with constant productivities, where the majority of product accumulated inside the cells, and qp,extra, which depended on μ in a bell-shaped manner; (II) a transition phase, in which intracellular product accumulation reached a maximum and productivities (intracellular, extracellular, overall) were changing; (III) a new phase with constant productivities, where secretion prevailed over intracellular accumulation, qp,extra was linearly related to μ and was up to three times higher than in initial phase (I), while qp,intra decreased 4-6-fold. We show that stress caused by heterologous protein production induces cellular imbalance leading to a secretory bottleneck that ultimately reaches equilibrium. This understanding may help to develop cultivation strategies for improving protein secretion from P. pastoris.Key Points• A novel concept for industrial bioprocess development.• A Relationship between biomass growth and product formation in P. pastoris.• A Three (3) phases of protein production/secretion controlled by the AOX1-promoter.• A Proof of concept in production of industrially relevant penicillin G acylase.
Daspool Gerberacherweg 24 CH 8820 Wädenswil Switzerland
Infors AG Rittergasse 27 CH 4103 Bottmingen Switzerland
Institute of Microbiology Czech Academy of Sciences Videňská 1083 14220 Prague Czech Republic
Zobrazit více v PubMed
Ahmad M, Hirz M, Pichler H, Schwab H. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Appl Microbiol Biotechnol. 2014;98(12):5301–5317. doi: 10.1007/s00253-014-5732-5. PubMed DOI PMC
Arnau C, Ramon R, Casas C, Valero F. Optimization of the heterologous production of a Rhizopus oryzae lipase in Pichia pastoris system using mixed substrates on controlled fed-batch bioprocess. Enzym Microb Technol. 2010;46(6):494–500. doi: 10.1016/j.enzmictec.2010.01.005. PubMed DOI
Aw R, Polizzi KM. Can too many copies spoil the broth? Microb Cell Factories. 2013;12:128. doi: 10.1186/1475-2859-12-128. PubMed DOI PMC
Baghban R, Farajnia S, Rajabibazl M, Ghasemi Y, Mafi A, Hoseinpoor R, Rahbarnia L, Aria M. Yeast expression systems: overview and recent advances. Mol Biotechnol. 2019;61(5):365–384. doi: 10.1007/s12033-019-00164-8. PubMed DOI
Balasingham K, Warburton D, Dunnill P, Lilly MD. The isolation and kinetics of penicillin amidase from Escherichia coli. Biochim Biophys Acta. 1972;276(1):250–256. doi: 10.1016/0005-2744(72)90027-7. PubMed DOI
Barrigón JM, Montesinos JL, Valero F. Searching the best operational strategies for Rhizopus oryzae lipase production in Pichia pastoris Mut + phenotype: methanol limited or methanol non-limited fed-batch cultures? Biochem Eng J. 2013;75(Supplement C):47–54. doi: 10.1016/j.bej.2013.03.018. DOI
Barrigon JM, Valero F, Montesinos JL. A macrokinetic model-based comparative meta-analysis of recombinant protein production by Pichia pastoris under AOX1 promoter. Biotechnol Bioeng. 2015;112(6):1132–1145. doi: 10.1002/bit.25518. PubMed DOI
Camara E, Landes N, Albiol J, Gasser B, Mattanovich D, Ferrer P. Increased dosage of AOX1 promoter-regulated expression cassettes leads to transcription attenuation of the methanol metabolism in Pichia pastoris. Sci Rep. 2017;7:44302. doi: 10.1038/srep44302. PubMed DOI PMC
Delic M, Valli M, Graf AB, Pfeffer M, Mattanovich D, Gasser B. The secretory pathway: exploring yeast diversity. FEMS Microbiol Rev. 2013;37(6):872–914. doi: 10.1111/1574-6976.12020. PubMed DOI
Doran PM (1995) 13 - Reactor engineering bioprocess engineering principles. Academic Press, London, pp 333–391
Edwards-Jones B, Aw R, Barton GR, Tredwell GD, Bundy JG, Leak DJ. Translational arrest due to cytoplasmic redox stress delays adaptation to growth on methanol and heterologous protein expression in a typical fed-batch culture of Pichia pastoris. PLoS One. 2015;10(3):e0119637. doi: 10.1371/journal.pone.0119637. PubMed DOI PMC
Grulich M, Stepanek V, Kyslik P. Perspectives and industrial potential of PGA selectivity and promiscuity. Biotechnol Adv. 2013;31(8):1458–1472. doi: 10.1016/j.biotechadv.2013.07.005. PubMed DOI
Hang HF, Chen W, Guo M, Chu J, Zhuang Y, Zhang S. A simple unstructured model-based control for efficient expression of recombinant porcine insulin precursor by Pichia pastoris. Korean J Chem Eng. 2008;25:1065–1069. doi: 10.1007/s11814-008-0174-3. DOI
Hellwig S, Emde F, Raven NP, Henke M, van Der Logt P, Fischer R. Analysis of single-chain antibody production in Pichia pastoris using on-line methanol control in fed-batch and mixed-feed fermentations. Biotechnol Bioeng. 2001;74(4):344–352. doi: 10.1002/bit.1125. PubMed DOI
Hesketh AR, Castrillo JI, Sawyer T, Archer DB, Oliver SG. Investigating the physiological response of Pichia (Komagataella) pastoris GS115 to the heterologous expression of misfolded proteins using chemostat cultures. Appl Microbiol Biotechnol. 2013;97(22):9747–9762. doi: 10.1007/s00253-013-5186-1. PubMed DOI PMC
Hyka P, Zullig T, Ruth C, Looser V, Meier C, Klein J, Melzoch K, Meyer HP, Glieder A, Kovar K. Combined use of fluorescent dyes and flow cytometry to quantify the physiological state of Pichia pastoris during the production of heterologous proteins in high-cell-density fed-batch cultures. Appl Environ Microbiol. 2010;76(13):4486–4496. doi: 10.1128/AEM.02475-09. PubMed DOI PMC
Juturu V, Wu JC. Heterologous protein expression in Pichia pastoris: latest research progress and applications. Chembiochem. 2018;19(1):7–21. doi: 10.1002/cbic.201700460. PubMed DOI
Ljubijankic G, Gvozdenovic J, Sevo M, Degrassi G. High-level secretory expression of penicillin amidase from Providencia rettgeri in Saccharomyces cerevisiae: purification and characterization. Biotechnol Prog. 2002;18(2):330–336. doi: 10.1021/bp010182g. PubMed DOI
Looser V, Bruhlmann B, Bumbak F, Stenger C, Costa M, Camattari A, Fotiadis D, Kovar K. Cultivation strategies to enhance productivity of Pichia pastoris: a review. Biotechnol Adv. 2015;33(6 Pt 2):1177–1193. doi: 10.1016/j.biotechadv.2015.05.008. PubMed DOI
Looser V, Luthy D, Straumann M, Hecht K, Melzoch K, Kovar K. Effects of glycerol supply and specific growth rate on methanol-free production of CALB by P. pastoris: functional characterisation of a novel promoter. Appl Microbiol Biotechnol. 2017;101(8):3163–3176. doi: 10.1007/s00253-017-8123-x. PubMed DOI PMC
Love KR, Politano TJ, Panagiotou V, Jiang B, Stadheim TA, Love JC. Systematic single-cell analysis of Pichia pastoris reveals secretory capacity limits productivity. PLoS One. 2012;7(6):e37915. doi: 10.1371/journal.pone.0037915. PubMed DOI PMC
Maresova H, Markova Z, Valesova R, Sklenar J, Kyslik P. Heterologous expression of leader-less pga gene in Pichia pastoris: intracellular production of prokaryotic enzyme. BMC Biotechnol. 2010;10:7. doi: 10.1186/1472-6750-10-7. PubMed DOI PMC
Maresova H, Plackova M, Grulich M, Kyslik P. Current state and perspectives of penicillin G acylase-based biocatalyses. Appl Microbiol Biotechnol. 2014;98(7):2867–2879. doi: 10.1007/s00253-013-5492-7. PubMed DOI
Maresova H, Palyzova A, Plackova M, Grulich M, Rajasekar VW, Stepanek V, Kyslikova E, Kyslik P. Potential of Pichia pastoris for the production of industrial penicillin G acylase. Folia Microbiol. 2017;62(5):417–424. doi: 10.1007/s12223-017-0512-0. PubMed DOI
Marsalek L, Puxbaum V, Buchetics M, Mattanovich D, Gasser B. Disruption of vacuolar protein sorting components of the HOPS complex leads to enhanced secretion of recombinant proteins in Pichia pastoris. Microb Cell Factories. 2019;18(1):119. doi: 10.1186/s12934-019-1155-4. PubMed DOI PMC
Puxbaum V, Mattanovich D, Gasser B. Quo vadis? The challenges of recombinant protein folding and secretion in Pichia pastoris. Appl Microbiol Biotechnol. 2015;99(7):2925–2938. doi: 10.1007/s00253-015-6470-z. PubMed DOI
Raschmanova H, Weninger A, Glieder A, Kovar K, Vogl T. Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: current state and future prospects. Biotechnol Adv. 2018;36(3):641–665. doi: 10.1016/j.biotechadv.2018.01.006. PubMed DOI
Rebnegger C, Graf AB, Valli M, Steiger MG, Gasser B, Maurer M, Mattanovich D. In Pichia pastoris, growth rate regulates protein synthesis and secretion, mating and stress response. Biotechnol J. 2014;9(4):511–525. doi: 10.1002/biot.201300334. PubMed DOI PMC
Reichelt WN, Haas F, Sagmeister P, Herwig C. Bioprocess development workflow: transferable physiological knowledge instead of technological correlations. Biotechnol Prog. 2017;33(1):261–270. doi: 10.1002/btpr.2377. PubMed DOI
Resina D, Cos O, Ferrer P, Valero F. Developing high cell density fed-batch cultivation strategies for heterologous protein production in Pichia pastoris using the nitrogen source-regulated FLD1 Promoter. Biotechnol Bioeng. 2005;91(6):760–767. doi: 10.1002/bit.20545. PubMed DOI
Senerovic L, Stankovic N, Spizzo P, Basso A, Gardossi L, Vasiljevic B, Ljubijankic G, Tisminetzky S, Degrassi G. High-level production and covalent immobilization of Providencia rettgeri penicillin G acylase (PAC) from recombinant Pichia pastoris for the development of a novel and stable biocatalyst of industrial applicability. Biotechnol Bioeng. 2006;93(2):344–354. doi: 10.1002/bit.20728. PubMed DOI
Sevo M, Degrassi G, Skoko N, Venturi V, Ljubijankic G. Production of glycosylated thermostable Providencia rettgeri penicillin G amidase in Pichia pastoris. FEMS Yeast Res. 2002;1(4):271–277. doi: 10.1111/j.1567-1364.2002.tb00045.x. PubMed DOI
Sha C, Yu XW, Zhang M, Xu Y. Efficient secretion of lipase r27RCL in Pichia pastoris by enhancing the disulfide bond formation pathway in the endoplasmic reticulum. J Ind Microbiol Biotechnol. 2013;40(11):1241–1249. doi: 10.1007/s10295-013-1328-9. PubMed DOI
Sjöblom M, Lindberg L, Holgersson J, Rova U. Secretion and expression dynamics of a GFP-tagged mucin-type fusion protein in high cell density Pichia pastoris bioreactor cultivations. Adv Biosci Biotechnol. 2012;3(3):238–248. doi: 10.4236/abb.2012.33033. DOI
Srirangan K, Orr V, Akawi L, Westbrook A, Moo-Young M, Chou CP. Biotechnological advances on penicillin G acylase: pharmaceutical implications, unique expression mechanism and production strategies. Biotechnol Adv. 2013;31(8):1319–1332. doi: 10.1016/j.biotechadv.2013.05.006. PubMed DOI
van der Klei IJ, Yurimoto H, Sakai Y, Veenhuis M. The significance of peroxisomes in methanol metabolism in methylotrophic yeast. Acta Biochim Biophys. 2006;1763(12):1453–1462. doi: 10.1016/j.bbamcr.2006.07.016. PubMed DOI
Vogl T, Glieder A. Regulation of Pichia pastoris promoters and its consequences for protein production. New Biotechnol. 2013;30(4):385–404. doi: 10.1016/j.nbt.2012.11.010. PubMed DOI
Vogl T, Thallinger GG, Zellnig G, Drew D, Cregg JM, Glieder A, Freigassner M. Towards improved membrane protein production in Pichia pastoris: general and specific transcriptional response to membrane protein overexpression. New Biotechnol. 2014;31(6):538–552. doi: 10.1016/j.nbt.2014.02.009. PubMed DOI
Zhang W, Sinha J, Smith LA, Inan M, Meagher MM. Maximization of production of secreted recombinant proteins in Pichia pastoris fed-batch fermentation. Biotechnol Prog. 2005;21(2):386–393. doi: 10.1021/bp049811n. PubMed DOI