Hidden Plasmodium diversity revealed in southeastern Asian passerines using next-generation amplicon sequencing
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41049327
PubMed Central
PMC12494562
DOI
10.1016/j.crpvbd.2025.100319
PII: S2667-114X(25)00079-2
Knihovny.cz E-zdroje
- Klíčová slova
- Alpha and beta diversity, Malaria, Passerines, Plasmodium, Species delimitation,
- Publikační typ
- časopisecké články MeSH
Monitoring haemosporidian (Genus Plasmodium) infections in passerine birds is essential for understanding the intricate dynamics of avian malaria and its implications for ecology and evolution of avian populations. In this study, we investigated the prevalence and diversity of malaria infections caused by Plasmodium species in three passerine species in Cat-Tien National Park, Vietnam. Using next-generation amplicon sequencing (NGS) of haemosporidian cytochrome b gene, we identified two known and ten novel Plasmodium lineages. Our genetic analysis revealed a high rate of Plasmodium infections in the little spiderhunter (Arachnothera longirostra; Nectariniidae), the white-rumped shama (Copsychus malabaricus; Muscicapidae) and the blue-winged pitta (Pitta moluccensis; Pittidae). Species delimitation methods identified five distinct operational taxonomic units (OTUs), consistently across the majority of the used methods. Each of the passerine species was infected with a specific subset of the total Plasmodium diversity. Phylogenetic analysis showed that sympatric Plasmodium OTUs are not closely related and possess overlapping host preferences. Our findings may reflect differences in habitat use, such as the vertical strata occupied by different bird species, which contribute to varying exposure levels to suitable vectors, thereby influencing infection rates and parasite diversity. Our findings corroborate the view that avian malaria parasites are not uniformly opportunistic; rather, their distribution is filtered by host identity and ecology. Understanding these dynamics is crucial for avian conservation and broader ecological studies, as avian malaria serves as a model for studying parasite-vector-host co-evolution and the impact of environmental changes on disease dynamics.
Department of Vertebrate Zoology Faculty of Biology Lomonosov Moscow State University Moscow Russia
Faculty of Science University of South Bohemia in České Budějovice Czechia
Institute of Parasitology Biology Centre CAS České Budějovice Czechia
Michael Sars Centre University of Bergen Thormøhlensgt 55 N 5006 Bergen Norway
Zobrazit více v PubMed
Bailly E., Valot S., Vincent A., Duffourd Y., Grangier N., Chevarin M., et al. Evaluation of next-generation sequencing applied to Cryptosporidium parvum and Cryptosporidium hominis epidemiological study. Pathogens. 2022;11:938. PubMed PMC
Bensch S., Grahn M., Müller N., Gay L., Åkesson S. Genetic, morphological, and feather isotope variation of migratory willow warblers show gradual divergence in a ring. Mol. Ecol. 2009;18:3087–3096. PubMed
Bensch S., Hellgren O., Pérez‐Tris J. MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol. Ecol. Resour. 2009;9:1353–1358. PubMed
Bensch S., Stjernman M., Hasselquist D., Ostman O., Hansson B., Westerdahl H., Pinheiro R.T. Host specificity in avian blood parasites: A study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc. R. Soc. B Biol. Sci. 2000;267:1583–1589. PubMed PMC
Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. PubMed PMC
Bushuev A., Zubkova E., Tolstenkov O., Kerimov A. Basal metabolic rate in free-ranging tropical birds lacks long-term repeatability and is influenced by ambient temperature. J. Exp. Zool. A Ecol. Integr. Physiol. 2021;335:668–677. PubMed
Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 2016;13:581–583. PubMed PMC
Carreno R.A., Kissinger J.C., McCutchan T.F., Barta J.R. Phylogenetic analysis of haemosporinid parasites (Apicomplexa: Haemosporina) and their coevolution with vectors and intermediate hosts. Arch. Protistenkd. 1997;148:245–252.
Ciloglu A., Ergen A.G., Inci A., Dik B., Duzlu O., Onder Z., et al. Prevalence and genetic diversity of avian haemosporidian parasites at an intersection point of bird migration routes: Sultan Marshes National Park, Turkey. Acta Trop. 2020;210 PubMed
Constantinescu I.C., Chişamera G., Mukhim D.K.B., Adam C. A new species of Pterodectine feather mites (Acarina, Analgoidea, Proctophyllodidae) from the little spiderhunter Arachnothera longirostra (Passeriformes, Nectariniidae) in Meghalaya, India. ZooKeys. 2014;425:1–13. PubMed PMC
Córdoba O.H., Ferreira F.C., Pacheco M.A., Escalante A.A., Braga É.M. Plasmodium ouropretensis, n. sp., a new case of non-erythrocytic species within lizard malaria parasites. Parasitology. 2021;148:1467–1474. PubMed PMC
Davison G.W.H. Changing perceptions and attitudes towards birds in Borneo. Malayan Nat. J. 2022;74:241–253.
De la Torre G.M., Fecchio A., Bell J.A., Campião K.M. Host evolutionary history rather than avian functional traits drives the Plasmodium regional assembly in the Atlantic Forest. Funct. Ecol. 2022;36:1873–1886.
de Souza Penha V.A., Domingos F.M.C.B., Fecchio A., Bell J.A., Weckstein J.D., Ricklefs R.E., et al. Host life-history traits predict haemosporidian parasite prevalence in tanagers (Aves: Thraupidae) Parasitology. 2023;150:32–41. PubMed PMC
del Hoyo J. Lynx Edicions; Barcelona: 2007. Picathartes to Tits and Chickadees, Vol. 12.
Dickinson E.C., editor. The Howard and Moore Complete Checklist of the Birds of the World. 3rd ed. Christopher Helm; London: 2003.
Dimitrov D., Ilieva M., Ivanova K., Brlik V., Zehtindjiev P. Detecting local transmission of avian malaria and related haemosporidian parasites (Apicomlexa, Haemosporida) at a special protection area of Natura 2000 Network. Parasitol. Res. 2018;117:2187–2199. PubMed
Drews A., Westerdahl H. Not all birds have a single dominantly expressed MHC-I gene: Transcription suggests that siskins have many highly expressed MHC-I genes. Sci. Rep. 2019;9 PubMed PMC
Drummond A.J., Suchard M.A., Xie D., Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012;29:1969–1973. PubMed PMC
Durrant K.L., Beadell J.S., Ishtiaq F., Graves G.R., Olson S.L., Gering E., et al. Avian hematozoa in South America: A comparison of temperate and tropical zones. Ornithol. Monogr. 2006;60:98–111.
Egizi A., Healy S.P., Fonseca D.M. Rapid blood meal scoring in anthropophilic Aedes albopictus and application of PCR blocking to avoid pseudogenes. Infect. Genet. Evol. 2013;16:122–128. PubMed
Ejiri H., Sato Y., Kim K.S., Hara T., Tsuda Y., Imura T., et al. Entomological study on transmission of avian malaria parasites in a zoological garden in Japan: Bloodmeal identification and detection of avian malaria parasite DNA from blood-fed mosquitoes. J. Med. Entomol. 2011;48:600–607. PubMed
Ellis V.A., Bensch S. Host specificity of avian haemosporidian parasites is unrelated among sister lineages but shows phylogenetic signal across larger clades. Int. J. Parasitol. 2018;48:897–902. PubMed
Ellis V.A., Huang X., Westerdahl H., Jönsson J., Hasselquist D., Neto J.M., et al. Explaining prevalence, diversity and host specificity in a community of avian haemosporidian parasites. Oikos. 2020;129:1314–1329.
Ellis V.A., Kunkel M.R., Ricklefs R.E. The ecology of host immune responses to chronic avian haemosporidian infection. Oecologia. 2014;176:729–737. PubMed
Ericson P.G.P.P., Qu Y., Rasmussen P.C., Blom M.P.K.K., Rheindt F.E., Irestedt M. Genomic differentiation tracks earth-historic isolation in an Indo-Australasian archipelagic pitta (Pittidae; Aves) complex. BMC Evol. Biol. 2019;19:151. PubMed PMC
Erritzoe J. In: Birds of the World. Cornell Laboratory of Ornithology, Ithaca, NY, USA. del Hoyo J., Elliott A., Sargatal J., Christie D., de Juana E., editors. 2020. Blue-winged pitta (Pitta moluccensis) DOI
Fallon S.M., Bermingham E., Ricklefs R.E. Host specialization and geographic localization of avian malaria parasites: A regional analysis in the Lesser Antilles. Am. Nat. 2005;165:466–480. PubMed
Fan M.W., Lin R.S., Fang W., Lin Y.H. The distribution and abundance of the alien invasive white-rumped shama (Copsychus malabaricus) in Taiwan. Taiwania. 2009;54:248–254.
Fecchio A., Bell J.A., Collins M.D., Farias I.P., Trisos C.H., Tobias J.A., et al. Diversification by host switching and dispersal shaped the diversity and distribution of avian malaria parasites in Amazonia. Oikos. 2018;127:1233–1242.
Fecchio A., Bell J.A., Pinheiro R.B.P., Cueto V.R., Gorosito C.A., Lutz H.L., et al. Avian host composition, local speciation and dispersal drive the regional assembly of avian malaria parasites in South American birds. Mol. Ecol. 2019;28:2681–2693. PubMed
Fecchio A., Pinheiro R., Felix G., Faria I.P., Pinho J.B., Lacorte G.A., et al. Host community similarity and geography shape the diversity and distribution of haemosporidian parasites in Amazonian birds. Ecography. 2018;41:505–515.
Fecchio A., Wells K., Bell J.A., Tkach V.V., Lutz H.L., Weckstein J.D., et al. Climate variation influences host specificity in avian malaria parasites. Ecol. Lett. 2019;22:547–557. PubMed
Gager A.B., Del Rosario Loaiza J., Dearborn D.C., Bermingham E. Do mosquitoes filter the access of Plasmodium cytochrome b lineages to an avian host? Mol. Ecol. 2008;17:2552–2561. PubMed
Galen S.C., Borner J., Martinsen E.S., Schaer J., Austin C.C., West C.J., Perkins S.L. The polyphyly of Plasmodium: comprehensive phylogenetic analyses of the malaria parasites (Order Haemosporida) reveal widespread taxonomic conflict. R. Soc. Open Sci. 2018;5 PubMed PMC
Galen S.C., Nunes R., Sweet P.R., Perkins S.L. Integrating coalescent species delimitation with analysis of host specificity reveals extensive cryptic diversity despite minimal mitochondrial divergence in the malaria parasite genus Leucocytozoon. BMC Evol. Biol. 2018;18:1–15. PubMed PMC
Galvin A.N., Bradshaw A.C., Myers B.M., Tell L.A., Ernest H.B., Sehgal R.N.M. Low prevalence of haemosporidians in blood and tissue samples from hummingbirds. J. Parasitol. 2021;107:794–798. PubMed
Gangoso L., Santamaría-Cervantes C., Martínez-de la Puente J., López M.J.R., Figuerola J. Does malaria infection increase the risk of predation-related mortality during bird migration? iScience. 2024;27 PubMed PMC
Garcia-Longoria L., Muriel J., Magallanes S., Villa-Galarce Z.H., Ricopa L., Inga-Díaz W.G., et al. Diversity and host assemblage of avian haemosporidians in different terrestrial ecoregions of Peru. Curr. Zool. 2022;68:27–40. PubMed PMC
Garnham P.C.C. Blackwell Scientific Publications Ltd.; Oxford, UK: 1966. Malaria Parasites and Other Haemosporidia.
Gotelli N.J., Ellison A.M. Food-web models predict species abundances in response to habitat change. PLoS Biol. 2006;4:1869–1873. PubMed PMC
Guo B., Kong L. Comparing the efficiency of single-locus species delimitation methods within Trochoidea (Gastropoda: Vetigastropoda) Genes. 2022;13:2273. PubMed PMC
Hellgren O. The occurrence of haemosporidian parasites in the Fennoscandian bluethroat (Luscinia svecica) population. J. Ornithol. 2005;146:55–60.
Hellgren O., Atkinson C.T., Bensch S., Albayrak T., Dimitrov D., Ewen J.G., et al. Global phylogeography of the avian malaria pathogen Plasmodium relictum based on MSP1 allelic diversity. Ecography. 2015;38:842–850.
Hellgren O., Kelbskopf V., Ellis V.A., Ciloglu A., Duc M., Huang X., et al. Low MSP-1 haplotype diversity in the West Palearctic population of the avian malaria parasite Plasmodium relictum. Malar. J. 2021;20:265. PubMed PMC
Hellgren O., Pérez-Tris J., Bensch S. A jack‐of‐all‐trades and still a master of some: Prevalence and host range in avian malaria and related blood parasites. Ecology. 2009;90:2840–2849. PubMed
Hellgren O., Waldenström J., Bensch S. A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J. Parasitol. 2004;90:797–802. PubMed
Hellgren O., Waldenström J., Peréz-Tris J., Szöll Ösi E., Hasselquist D., Krizanauskiene A., et al. Detecting shifts of transmission areas in avian blood parasites - a phylogenetic approach. Mol. Ecol. 2007;16:1281–1290. PubMed
Huang X., Dong L., Zhang C., Zhang Y. Genetic diversity, temporal dynamics, and host specificity in blood parasites of passerines in North China. Parasitol. Res. 2015;114:4513–4520. PubMed PMC
Ishtiaq F., Beadell J.S., Baker A.J., Rahmani A.R., Jhala Y.V., Fleischer R.C. Prevalence and evolutionary relationships of haematozoan parasites in native versus introduced populations of common myna Acridotheres tristis. Proc. R. Soc. B Biol. Sci. 2006;273:587–594. PubMed PMC
Ishtiaq F., Gering E., Rappole J.H., Rahmani A.R., Jhala Y.V., Dove C.J., et al. Prevalence and diversity of avian hematozoan parasites in Asia: A regional survey. J. Wildl. Dis. 2007;43:382–398. PubMed
Isra’a M.E. Haemosporidian parasites in domestic and wild birds. J. La Lifesci. 2025;6:1–16. doi: 10.37899/journallalifesci.v6i1.1838. DOI
Ivanova K., Zehtindjiev P., Mariaux J., Georgiev B.B. Genetic diversity of avian haemosporidians in Malaysia: Cytochrome b lineages of the genera Plasmodium and Haemoproteus (Haemosporida) from Selangor. Infect. Genet. Evol. 2015;31:33–39. PubMed
Kamali K., Nazarizadeh M., Fatemizadeh F., Salmabadi S., Hung C., Kaboli M. Integrating phylogenetic, phylogeographic, and morphometric analyses to reveal cryptic lineages within the genus Asaccus (Reptilia: Squamata: Phyllodactylidae) in Iran. BMC Zool. 2024;9:12. PubMed PMC
Kazlauskiene R., Bernotiene R., Palinauskas V., Iezhova T.A., Valkiunas G. Plasmodium relictum (lineages pSGS1 and pGRW11): Complete synchronous sporogony in mosquitoes Culex pipiens pipiens. Exp. Parasitol. 2013;133:454–461. PubMed
Križanauskiene A., Hellgren O., Kosarev V., Sokolov L., Bensch S., Valkiũnas G. Variation in host specificity between species of avian hemosporidian parasites: Evidence from parasite morphology and cytochrome b gene sequences. J. Parasitol. 2006;92:1319–1324. PubMed
Kumar S., Suleski M., Craig J.M., Kasprowicz A.E., Sanderford M., Li M., et al. TimeTree 5: An expanded resource for species divergence times. Mol. Biol. Evol. 2022;39 PubMed PMC
Lanfear R., Frandsen P.B., Wright A.M., Senfeld T., Calcott B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 2017;34:772–773. PubMed
Lauron E.J., Loiseau C., Bowie R.C.K., Spicer G.S., Smith T.B., Melo M., Sehgal R.N.M. Coevolutionary patterns and diversification of avian malaria parasites in African sunbirds (Family Nectariniidae) Parasitology. 2015;142:635–647. PubMed
Leigh J.W., Bryant D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 2015;6:1110–1116.
Lohman D.J., Ingram K.K., Prawiradilaga D.M., Winker K., Sheldon F.H., Moyle R.G., et al. Cryptic genetic diversity in ‘widespread’ Southeast Asian bird species suggests that Philippine avian endemism is gravely underestimated. Biol. Conserv. 2010;143:1885–1890.
Madrid R.S., Sychra O., Benedick S., Edwards D.P., Efeykin B.D., Fandrem M., et al. Diversity and host associations of Myrsidea chewing lice (Phthiraptera: Menoponidae) in the tropical rainforest of Malaysian Borneo. Int. J. Parasitol. Parasites Wildl. 2020;13:231–247. PubMed PMC
Medeiros M.C.I., Ricklefs R.E., Brawn J.D., Hamer G.L. Plasmodium prevalence across avian host species is positively associated with exposure to mosquito vectors. Parasitology. 2015;142:1612–1620. PubMed
Muriel J., Marzal A., Magallanes S., García-Longoria L., Suarez-Rubio M., Bates P.J.J., et al. Prevalence and diversity of avian haemosporidians may vary with anthropogenic disturbance in tropical habitats in Myanmar. Diversity. 2021;13:1–19.
Nazarizadeh M., Nováková M., Loot G., Gabagambi N.P., Fatemizadeh F., Osano O., et al. Historical dispersal and host-switching formed the evolutionary history of a globally distributed multi-host parasite – the Ligula intestinalis species complex. Mol. Phylogenet. Evol. 2023;180 PubMed
Ng E.Y.X.X., Garg K.M., Low G.W., Chattopadhyay B., Oh R.R.Y.Y., Lee J.G.H.H., Rheindt F.E. Conservation genomics identifies impact of trade in a threatened songbird. Biol. Conserv. 2017;214:101–108.
Noni V., Tan C.S. Prevalence of haemosporidia in Asian glossy starling with discovery of misbinding of Haemoproteus-specific primer to Plasmodium genera in Sarawak, Malaysian Borneo. BMC Vet. Res. 2023;19:66. PubMed PMC
Nor Hashim E., Ramli R. Comparative study of understorey birds diversity inhabiting lowland rainforest virgin jungle reserve and regenerated forest. Sci. World J. 2013;2013 PubMed PMC
Ogbuigwe P., Biggs P.J., Garcia-Ramirez J.C., Knox M.A., Pita A., Velathanthiri N., et al. Metabarcoding captures genetic diversity and links cases in outbreaks of cryptosporidiosis in New Zealand. J. Infect. 2025;90 PubMed
Oliveira L., Dias R.J.P., Rossi M.F., D'Agosto M., Santos H.A. Molecular diversity and coalescent species delimitation of avian haemosporidian parasites in an endemic bird species of South America. Parasitol. Res. 2020;119:4033–4047. PubMed
Olsson‐Pons S., Clark N.J., Ishtiaq F., Clegg S.M. Differences in host species relationships and biogeographic influences produce contrasting patterns of prevalence, community composition and genetic structure in two genera of avian malaria parasites in southern Melanesia. J. Anim. Ecol. 2015;84:985–998. PubMed
Outlaw D.C., Ricklefs R.E. Species limits in avian malaria parasites (Haemosporida): How to move forward in the molecular era. Parasitology. 2014;141:1223–1232. PubMed
Pacheco M.A., Matta N.E., Valkiünas G., Parker P.G., Mello B., Stanley C.E., et al. Mode and rate of evolution of haemosporidian mitochondrial genomes: Timing the radiation of avian parasites. Mol. Biol. Evol. 2018;35:383–403. PubMed PMC
Pattaradilokrat S., Tiyamanee W., Simpalipan P., Kaewthamasorn M., Saiwichai T., Li J., Harnyuttanakorn P. Molecular detection of the avian malaria parasite Plasmodium gallinaceum in Thailand. Vet. Parasitol. 2015;210:1–9. PubMed
Platonova E., Aželytė J., Iezhova T., Ilgūnas M., Mukhin A., Palinauskas V. Experimental study of newly described avian malaria parasite Plasmodium (Novyella) collidatum n. sp., genetic lineage pFANTAIL01 obtained from South Asian migrant bird. Malar. J. 2021;20:82. PubMed PMC
Pons J., Barraclough T.G., Gomez-Zurita J., Cardoso A., Duran D.P., Hazell S., et al. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 2006;55:595–609. PubMed
Puillandre N., Brouillet S., Achaz G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 2021;21:609–620. PubMed
Puillandre N., Lambert A., Brouillet S., Achaz G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 2012;21:1864–1877. PubMed
Rahman M.A., Gawin D.F.A., Moritz C. Patterns of genetic variation in the little spiderhunter (Arachnothera longirostra) in Southeast Asia. Raffles Bull. Zool. 2010;58:381–390.
Rambaut A., Drummond A.J., Xie D., Baele G., Suchard M.A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018;67:901–904. PubMed PMC
Ricklefs R.E., Fallon S.M. Diversification and host switching in avian malaria parasites. Proc. R. Soc. B Biol. Sci. 2002;269:885–892. PubMed PMC
Ricklefs R.E., Medeiros M., Ellis V.A., Svensson-Coelho M., Blake J.G., Loiselle B.A., et al. Avian migration and the distribution of malaria parasites in New World passerine birds. J. Biogeogr. 2017;44:1113–1123.
Rivero de Aguilar J., Barroso O., Bonaccorso E., Cadena H., Hussing L., Jorquera J., et al. Associations among MHC genes, latitude, and avian malaria infections in the rufous‐collared sparrow (Zonotrichia capensis) Ecol. Evol. 2024;14 PubMed PMC
Robson C., Allen R. New Holland Publishers; London: 2005. New Holland Field Guide to the Birds of South-East Asia.
Ronquist F., Huelsenbeck J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. PubMed
Round P.D. White Lotus Press & University of Michigan; Ann Arbor, USA: 2008. The Birds of the Bangkok Area.
Roved J., Hansson B., Stervander M., Hasselquist D., Westerdahl H. MHCtools - an R package for MHC high-throughput sequencing data: genotyping, haplotype and supertype inference, and downstream genetic analyses in non-model organisms. Mol. Ecol. Resour. 2022;22:2775–2792. PubMed PMC
Rozas J., Ferrer-Mata A., Sánchez-DelBarrio J.C., Guirao-Rico S., Librado P., Ramos-Onsins S.E., Sánchez-Gracia A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017;34:3299–3302. PubMed
Rutledge G.G., Böhme U., Sanders M., Reid A.J., Cotton J.A., Maiga-Ascofare O., et al. Plasmodium malariae and P. ovale genomes provide insights into malaria parasite evolution. Nature. 2017;542:101–104. PubMed PMC
Schares G., Conraths F.J., Cooke B.M. ApiCOWplexa 2019 - 5th International Meeting on Apicomplexan Parasites in Farm Animals. Int. J. Parasitol. 2020;50:345–347. doi: 10.1016/j.ijpara.2020.05.002. PubMed DOI
Schoenle L.A., Kernbach M., Haussmann M., Bonier F. An experimental test of the physiological consequences of avian malaria infection. J. Anim. Ecol. 2017;86:1483–1496. doi: 10.1111/1365-2656.12753. PubMed DOI
Schultz A., Underhill L.G., Earlé R., Underhill G. Seasonality, distribution and taxonomic status of avian haemosporidian parasites within the Greater Cape Town area, South Africa. Ostrich. 2011;82:141–153.
Scordato E.S.C., Kardish M.R. Prevalence and beta diversity in avian malaria communities: Host species is a better predictor than geography. J. Anim. Ecol. 2014;83:1387–1397. PubMed
Spaans L.A., Ottema H.O., Ribot M.J.H.J. Brill (Koninklijke Brill); Leiden, The Netherlands: 2018. Field Guide of the Birds of Suriname.
Strehmann F., Becker M., Lindner K., Masello J.F., Quillfeldt P., Schumm Y.R., et al. Half of a forest bird community infected with haemosporidian parasites. Front. Ecol. Evol. 2023;11
Šujanová A., Špitalská E., Václav R. Seasonal dynamics and diversity of haemosporidians in a natural woodland bird community in Slovakia. Diversity. 2021;13:439.
Svoboda A., Marthinsen G., Pavel V., Chutný B., Turčoková L., Lifjeld J.T., Johnsen A. Blood parasite prevalence in the bluethroat is associated with subspecies and breeding habitat. J. Ornithol. 2015;156:371–380.
Talavera G., Dincă V., Vila R. Factors affecting species delimitations with the GMYC model: Insights from a butterfly survey. Methods Ecol. Evol. 2013;4:1101–1110.
Valkiūnas A.G., Bensch S., Iezhova T.A., Križanauskienė A., Hellgren O., Seo M., et al. Nested cytochrome b polymerase chain reaction diagnostics underestimate mixed infections of avian blood haemosporidian parasites: Microscopy is still essential. J. Parasitol. 2006;92:418–422. PubMed
Valkiunas G. CRC Press; Boca Raton, Florida: 2005. Avian Malaria Parasites and Other Haemosporidia.
Valkiunas G., Iezhova T.A. Keys to the avian malaria parasites. Malar. J. 2018;17:212. PubMed PMC
van Hoesel W., Santiago-Alarcon D., Marzal A., Renner S.C. Effects of forest structure on the interaction between avian hosts, dipteran vectors and haemosporidian parasites. BMC Ecol. 2020;20:47. PubMed PMC
Vences M., Miralles A., Brouillet S., Ducasse J., Fedosov A., Kharchev V., et al. iTaxoTools 0.1: Kickstarting a specimen-based software toolkit for taxonomists. Megataxa. 2021;6:77–92. doi: 10.11646/megataxa.6.2.1. DOI
Von Rönn J.A.C., Harrod C., Bensch S., Wolf J.B.W. Transcontinental migratory connectivity predicts parasite prevalence in breeding populations of the European barn swallow. J. Evol. Biol. 2015;28:535–546. PubMed
Wells D.R. Vol. 2. Bloomsbury Publishing; London, UK: 2010. (The Birds of the Thai-Malay Peninsula).
Yanmanee S., Seethamchai S., Kuamsab N., Karaphan S., Suwonkerd W., Jongwutiwes S., Putaporntip C. Natural vectors of Plasmodium knowlesi and other primate, avian and ungulate malaria parasites in Narathiwat Province, Southern Thailand. Sci. Rep. 2023;13:8875. PubMed PMC
Zhang J., Kapli P., Pavlidis P., Stamatakis A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics. 2013;29:2869–2876. PubMed PMC
Zheng J.J., Wang P.W., Huang T.W., Yang Y.J., Chiu H.S., Sumazin P., Chen T.W. MOCHI: A comprehensive cross-platform tool for amplicon-based microbiota analysis. Bioinformatics. 2022;38:4286–4292. PubMed PMC