Crystal Growth Kinetics of GeSe2 Polymorphs in Bulk Glasses and Thin Films: Role of Self-Diffusion and Viscosity

. 2025 Oct 01 ; 25 (19) : 8232-8240. [epub] 20250913

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41050498

The knowledge of transport properties (viscosity and self-diffusion) and the knowledge of crystal growth of different polymorphs in amorphous materials prepared in different forms provide important information for the preparation, processing, and utilization of these materials. This article is the first study of the direct observation of crystal growth rates in amorphous GeSe2 bulk samples and thin films. The study contains a detailed analysis of viscosity and crystal growth in amorphous GeSe2 samples (bulks and thin films), revealing also information about the self-diffusion process. Two polymorphs of GeSe2 crystals (low temperatureLT, and high temperatureHT) grew in GeSe2 bulk glasses. In the thermal evaporated film, only LT-GeSe2 was found. Nevertheless, the crystals in thin films grew far below the glass transition temperature. To properly analyze and describe the crystal growth kinetics, viscosity data were obtained using a thermomechanical analyzer and a nanoindentation system. A combination of crystal growth data and viscosities provides information about the size and transport speed (self-diffusion) of structural units incorporated into the GeSe2 crystals.

Zobrazit více v PubMed

Mehta N.. Applications of Chalcogenide Glasses in Electronics and Optoelectronics: A Review. J. Sci. Ind. Res. 2006;65:777–786.

Yang Y., Liu S.-C., Yang W., Li Z., Wang Y., Wang X., Zhang S., Zhang Y., Long M., Zhang G., Xue D.-J., Hu J.-S., Wan L.-J.. Air-Stable In-Plane Anisotropic GeSe2 for Highly Polarization-Sensitive Photodetection in Short Wave Region. J. Am. Chem. Soc. 2018;140(11):4150–4156. doi: 10.1021/jacs.8b01234. PubMed DOI

Yan Y., Xiong W., Li S., Zhao K., Wang X., Su J., Song X., Li X., Zhang S., Yang H., Liu X., Jiang L., Zhai T., Xia C., Li J., Wei Z.. Direct Wide Bandgap 2D GeSe2Monolayer toward Anisotropic UV Photodetection. Adv. Opt. Mater. 2019;7(19):1900622. doi: 10.1002/adom.201900622. DOI

Chen Q., Feng D., Xie D., Zeng T.. Graphite Nanosheets as a Platform for the Nanosize GeSe2 Anode with Improved Electrode Performance. Ind. Eng. Chem. Res. 2023;62(23):9268–9277. doi: 10.1021/acs.iecr.3c00898. DOI

Chen Q., Tang S., Feng D., Xie Y., Wu F., Xie D., Mei Y., Zeng T.. Nano GeSe2/C Anchored in Carbon Sponge Skeleton for Free-Standing Flexible Lithium-Ion Battery Electrodes. J. Alloys Compd. 2023;968:172106. doi: 10.1016/j.jallcom.2023.172106. DOI

Fuentes-Cabrera M., Wang H., Sankey O. F.. Phase Stability and Pressure-Induced Semiconductor to Metal Transition in crystalline GeSe2. J. Phys.: Condens. Matter. 2002;14(41):9589. doi: 10.1088/0953-8984/14/41/314. DOI

Aleksandrovich E. V., Minaev V. S., Timoshenkov S. P.. Structural Relaxation of Glassy GeSe2 during Isothermal Annealing below and above Tg. Techn. Phys. 2015;60(4):510–514. doi: 10.1134/S1063784215040039. DOI

Stølen S., Johnsen H. B., Bøe C. S., Karlsen O. B., Grande T.. Stable and Metastable Phase Equilibria in the GeSe2-Se System. J. Phase Equilib. 1999;20(1):17–28. doi: 10.1361/105497199770335901. DOI

Sakai K. S. K., Yoshino K. Y. K., Fukuyama A. F. A., Yokoyama H. Y. H., Ikari T. I. T., Maeda K. M. K.. Crystallization of Amorphous GeSe2 Semiconductor by Isothermal Annealing without Light Radiation. Jpn. J. Appl. Phys. 2000;39(3R):1058. doi: 10.1143/JJAP.39.1058. DOI

Inoue K., Matsuda O., Murase K.. Raman Spectra of Tetrahedral Vibrations in Crystalline Germanium Dichalcogenides, GeS2 and GeSe2, in High and Low Temperature Forms. Solid State Commun. 1991;79(11):905–910. doi: 10.1016/0038-1098(91)90441-W. DOI

Inoue K., Kawamoto K., Murase K.. Laser-Induced and Thermally Annealed Crystallization in Chalcogenide Glass GeSe2. J. Non-Cryst. Solids. 1987;95–96:517–524. doi: 10.1016/S0022-3093(87)80152-7. DOI

Yang G., Gueguen Y., Sangleboeuf J.-C., Rouxel T., Boussard-Plédel C., Troles J., Lucas P., Bureau B.. Physical Properties of the GexSe1–x Glasses in the 0 < x < 0.42 Range in Correlation with Their Structure. J. Non-Cryst. Solids. 2013;377:54–59. doi: 10.1016/j.jnoncrysol.2013.01.049. DOI

Bureau B., Troles J., Le Floch M., Guénot P., Smektala F., Lucas J.. Germanium Selenide Glass Structures Studied by 77Se Solid State NMR and Mass Spectroscopy. J. Non-Cryst. Solids. 2003;319(1):145–153. doi: 10.1016/S0022-3093(02)01911-7. DOI

Sakai K., Uemoto T., Yokoyama H., Fukuyama A., Yoshino K., Ikari T., Maeda K.. Annealing Time and Temperature Dependence for Photo-Induced Crystallization in Amorphous GeSe2 . J. Non-Cryst. Solids. 2000;266-269:933–937. doi: 10.1016/S0022-3093(00)00014-4. DOI

Dittmar G., Schäfer H.. Die Kristallstruktur von Germaniumdiselenid. Acta Crystallogr. Sect. B. 1976;32(9):2726–2728. doi: 10.1107/S0567740876008704. DOI

Maeda K., Kai Y., Suginohara T., Yokoyama H., Sakai K., Ikari T., Kasap S. O.. Effect of Three-Stage Isothermal Annealing on the Nucleation Process in GeSe2 Glasses. J. Mater. Sci.: Mater. Electron. 2003;14(10):839–840. doi: 10.1023/A:1026198430688. DOI

Dittmar G., Schafer H.. Die Kristallstruktur von L.T.-GeS2. Acta Crystallogr. Sect. B. 1976;32(4):1188–1192. doi: 10.1107/S0567740876004913. DOI

Dittmar G., Schafer H.. Die Kristallstruktur von H.T.-GeS2. Acta Crystallogr. Sect. B. 1975;31(8):2060–2064. doi: 10.1107/S0567740875006851. DOI

Li Z., Wang X., Shi W., Xing X., Xue D.-J., Hu J.-S.. Strain-Engineering the Electronic Properties and Anisotropy of GeSe2Monolayers. RSC Adv. 2018;8(58):33445–33450. doi: 10.1039/C8RA06606J.. PubMed DOI PMC

Petkov V., Qadir D., Shastri S. D.. Rapid Structure Determination of Disordered Materials:: Study of GeSe2 Glass. Solid State Commun. 2004;129(4):239–243. doi: 10.1016/j.ssc.2003.10.007. DOI

Susman S., Volin K. J., Montague D. G., Price D. L.. The Structure of Vitreous and Liquid GeSe2: A Neutron Diffraction Study. J. Non Cryst. Solids. 1990;125(1):168–180. doi: 10.1016/0022-3093(90)90336-K. DOI

Vashishta P., Kalia R. K., Ebbsjö I.. Structural Correlations and Phonon Density of States in GeSe2: A Molecular-Dynamics Study of Molten and Amorphous States. Phys. Rev. B. 1989;39(9):6034. doi: 10.1103/PhysRevB.39.6034. PubMed DOI

Wagner T., Kasap S. O., Maeda K.. Glass Transformation, Heat Capacity, and Structure of GexSe100-x Glasses Studied by Temperature-Modulated Differential Scanning Calorimetry Experiments. J. Mater. Res. 1997;12(7):1892–1899. doi: 10.1557/JMR.1997.0259. DOI

Stølen S., Grande T., Johnsen H.-B.. Fragility Transition in GeSe2–Se Liquids. Phys. Chem. Chem. Phys. 2002;4(14):3396–3399. doi: 10.1039/b201396g. DOI

Mauro J. C., Yue Y., Ellison A. J., Gupta P. K., Allan D. C.. Viscosity of Glass-Forming Liquids. Proc. Natl. Acad. Sci. U.S.A. 2009;106(47):19780–19784. doi: 10.1073/pnas.0911705106. PubMed DOI PMC

Barták J., Vaculík D., Vceláková M., Martinková S., Wieduwilt T., Schmidt M. A., Kurka M., Slang S., Palka K., Koštál P., Belina P., Honcová P., Málek J.. Beyond the Surface: Interconnection of Viscosity, Crystal Growth, and Diffusion in Ge25Se75 Glass-Former. J. Phys. Chem. B. 2024;128:10286–10296. doi: 10.1021/acs.jpcb.4c04268. PubMed DOI PMC

Koštál P., Shanelova J., Malek J.. Viscosity of Chalcogenide Glass-Formers. Int. Mater. Rev. 2020;65(2):63–101. doi: 10.1080/09506608.2018.1564545. DOI

Angell C. A.. Perspective on the Glass Transition. J. Phys. Chem. Solids. 1988;49(8):863–871. doi: 10.1016/0022-3697(88)90002-9. DOI

Koštál P., Bartak J., Wieduwilt T., Schmidt M. A., Malek J.. Viscosity and Fragility of Selected Glass-Forming Chalcogenides. J. Non Cryst. Solids. 2022;575:121205. doi: 10.1016/j.jnoncrysol.2021.121205. DOI

Li Y., Annamareddy A., Morgan D., Yu Z., Wang B., Cao C., Perepezko J. H., Ediger M. D., Voyles P. M., Yu L.. Surface Diffusion Is Controlled by Bulk Fragility across All Glass Types. Phys. Rev. Lett. 2022;128(7):75501. doi: 10.1103/PhysRevLett.128.075501. PubMed DOI

Málek J.. A Computer Program for Kinetic Analysis of Non-Isothermal Thermoanalytical Data. Thermochim. Acta. 1989;138(2):337–346. doi: 10.1016/0040-6031(89)87270-3. DOI

Barták J., Martinková S., Málek J.. Crystal Growth Kinetics in Se–Te Bulk Glasses. Cryst. Growth Des. 2015;15(9):4287–4295. doi: 10.1021/acs.cgd.5b00598. DOI

Málek J., Barták J., Shánělová J.. Spherulitic Crystal Growth Velocity in Selenium Supercooled Liquid. Cryst. Growth Des. 2016;16(10):5811–5821. doi: 10.1021/acs.cgd.6b00897. DOI

Barták J., Valdés D., Martinková S., Shánělová J., Koštál P.. Competitive Growth of Sb2Se3 and GeSe2 Crystals in Pseudobinary (GeSe2)­x­(Sb2Se3)­1-x Glass-Forming Materials. J. Non Cryst. Solids. 2023;607:122229. doi: 10.1016/j.jnoncrysol.2023.122229. DOI

Ediger M. D., Harrowell P., Yu L.. Crystal Growth Kinetics Exhibit a Fragility-Dependent Decoupling from Viscosity. J. Chem. Phys. 2008;128(3):034709. doi: 10.1063/1.2815325. PubMed DOI

Turnbull D.. Formation of Crystal Nuclei in Liquid Metals. J. Appl. Phys. 1950;21(10):1022–1028. doi: 10.1063/1.1699435. DOI

Hoffman J. D.. Thermodynamic Driving Force in Nucleation and Growth Processes. J. Chem. Phys. 1958;29(5):1192–1193. doi: 10.1063/1.1744688. DOI

Thompson C. V., Spaepen F.. On the Approximation of the Free Energy Change on Crystallization. Acta Metall. 1979;27(12):1855–1859. doi: 10.1016/0001-6160(79)90076-2. DOI

Málek J., Podzemná V., Shánělová J.. Crystal Growth Kinetics in GeS2 Glass and Viscosity of Supercooled Liquid. J. Phys. Chem. B. 2021;125(27):7515–7526. doi: 10.1021/acs.jpcb.1c03243. PubMed DOI

Uhlmann D. R.. Crystal Growth in Glass Forming SystemA Review. Adv. Nucl. Cryst. Glasses. 1972:91–115.

Jackson, K. A. Kinetic Processes: Crystal Growth, Diffusion, and Phase Transitions in Materials, 1st ed.; Wiley-VCH, 2004.

Jackson K. A., Uhlmann D. R., Hunt J. D.. On the Nature of Crystal Growth from the Melt. J. Cryst. Growth. 1967;1(1):1–36. doi: 10.1016/0022-0248(67)90003-6. DOI

Wu T., Yu L.. Surface Crystallization of Indomethacin below Tg. Pharm. Res. 2006;23(10):2350–2355. doi: 10.1007/s11095-006-9023-4. PubMed DOI

Ishida H., Wu T. A., Yu L. A.. Sudden Rise of Crystal Growth Rate of Nifedipine near Tg without and with Polyvinylpyrrolidone. J. Pharm. Sci. 2007;96(5):1131–1138. doi: 10.1002/jps.20925. PubMed DOI

Sun Y., Xi H., Chen S., Ediger M. D., Yu L.. Crystallization near Glass Transition: Transition from Diffusion-Controlled to Diffusionless Crystal Growth Studied with Seven Polymorphs. J. Phys. Chem. B. 2008;112(18):5594–5601. doi: 10.1021/jp7120577. PubMed DOI

Martinková S., Valdés D., Slang S., Pálka K., Barták J.. Relationship between Crystal Growth and Surface/Volume Mobilities in Se95Te5 Bulk Glasses and Thin Films. Acta Mater. 2021;213:116953. doi: 10.1016/j.actamat.2021.116953. DOI

Micoulaut M., Le Roux S., Massobrio C.. Investigation of Size Effects on the Structure of Liquid GeSe2 Calculated via First-Principles Molecular Dynamics. J. Chem. Phys. 2012;136(22):224504. doi: 10.1063/1.4722101. PubMed DOI

Iyetomi H., Vashishta P., Kalia R. K.. The Intermediate-Range Order in Molten and Glassy GeSe2. Solid State Ionics. 1989;32–33:954–958. doi: 10.1016/0167-2738(89)90382-2. DOI

Gutzow, I. ; Schmelzer, J. . The Vitreous State: Thermodynamics, Structure, Rheology, and Crystallization; Springer, 1995.

Valdés D., Martinková S., Málek J., Barták J.. Crystal Growth in Ge-Sb-Se Glass and Its Relation to Viscosity and Surface Diffusion. J. Non Cryst. Solids. 2021;566:120865. doi: 10.1016/j.jnoncrysol.2021.120865. DOI

Podzemná V., Bartak J., Malek J.. Crystal Growth Kinetics in GeS2 Amorphous Thin Films. J. Therm. Anal. Calorim. 2014;118(2):775–781. doi: 10.1007/s10973-014-3764-9. DOI

Schmelzer J. W., Abyzov A., Fokin V., Schick C., Zanotto E.. Crystallization in Glass-Forming Liquids: Effects of Decoupling of Diffusion and Viscosity on Crystal Growth. J. Non-Cryst. Solids. 2015;429:45–53. doi: 10.1016/j.jnoncrysol.2015.08.027. DOI

Ngai K. L., Magill J. H., Plazek D. J.. Flow, Diffusion and Crystallization of Supercooled Liquids: Revisited. J. Chem. Phys. 2000;112(4):1887–1892. doi: 10.1063/1.480752. DOI

Slang S., Kurka M., Jancalek J., Rodriguez-Pereira J., Chylii M., Houdek J., Jemelka J., Svoboda R., Bartak J., Vlcek M., Palka K.. Surface Analysis, Oxidation Resistance, and Embossing of Ge-Based Solution-Processed Thin Films as Materials for High Refractive Index Optical Elements. Appl. Surf. Sci. 2024;672:160744. doi: 10.1016/j.apsusc.2024.160744. DOI

Barták J., Málek J., Bagchi K., Ediger M. D., Li Y., Yu L.. Surface Mobility in Amorphous Selenium and Comparison with Organic Molecular Glasses. J. Chem. Phys. 2021;154(7):74703. doi: 10.1063/5.0041273. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...