Exceptional Visual-Opsin Coexpression and Phenotypic Diversity in Outer-Retinal Photoreceptors of Caenophidian Snakes
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
09/2021
Fundação de Apoio à Pesquisa do Estado da Paraíba
0000056/2022
Conselho Nacional de Desenvolvimento Científico e Tecnológico
163302/2020
Conselho Nacional de Desenvolvimento Científico e Tecnológico
309409/2015-2
Conselho Nacional de Desenvolvimento Científico e Tecnológico
314630/2020-1
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Fundação de Amparo à Pesquisa do Estado de Mato Grosso
Marie Skłodowska-Curie Individual Fellowship (101
European Commission
101030356
European Commission
2020/16377-0
Fundação de Amparo à Pesquisa do Estado de São Paulo
2021/07161-8
Fundação de Amparo à Pesquisa do Estado de São Paulo
2022/00191-0
Fundação de Amparo à Pesquisa do Estado de São Paulo
2022/09428-2
Fundação de Amparo à Pesquisa do Estado de São Paulo
2024/16897-4
Fundação de Amparo à Pesquisa do Estado de São Paulo
2025/18844-8
Fundação de Amparo à Pesquisa do Estado de São Paulo
UKRI1936
United Kingdom Research and Innovation
PubMed
41055019
PubMed Central
PMC12501914
DOI
10.1002/cne.70092
Knihovny.cz E-zdroje
- Klíčová slova
- Multiopsin cones, opsin expression, photoreceptor morphology, retinal topography, snake retina,
- MeSH
- čípky retiny metabolismus ultrastruktura MeSH
- fenotyp MeSH
- hadi * anatomie a histologie metabolismus MeSH
- opsiny * metabolismus MeSH
- retina * metabolismus ultrastruktura cytologie MeSH
- rodopsin metabolismus MeSH
- tyčinkové opsiny * metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- opsiny * MeSH
- rodopsin MeSH
- tyčinkové opsiny * MeSH
Snakes are a valuable yet understudied taxon for investigating evolutionary adaptations in the vertebrate retina. They possess up to three visual pigments: a short-wavelength-sensitive opsin (SWS1), a medium/long-wavelength-sensitive opsin (LWS), and rhodopsin (RH1). Nocturnal snakes have duplex retinas containing both rod and cone photoreceptors, whereas diurnal caenophidian ("advanced") snakes exhibit simplex "all-cone" retinas, lacking morphologically typical rods. In this study, we analyzed photoreceptor morphology in the retinas of caenophidian snakes using high-resolution scanning electron microscopy (SEM) and examined visual-opsin expression patterns with immunohistochemistry (IHC). Our analyses revealed remarkable interspecific variability in visual-cell morphology. Light microscopy showed that in all sampled diurnal caenophidians, photoreceptors expressing RH1 exhibit a gross cone-like morphology. However, SEM analysis revealed a subset of photoreceptors with distinct features-thinner inner segments and rod-like synaptic terminals-suggesting they are transmuted, cone-like rods. In retinal sections from nocturnal caenophidian snakes, coexpression of the cone opsins SWS1 and LWS in individual cones was observed, whereas rhodopsin expression remained restricted to morphologically typical rods and showed no coexpression. In contrast, diurnal caenophidians commonly coexpress rhodopsin and SWS1 in single cones, with some instances of triple coexpression (SWS1, RH1, and LWS) in single cones. We evaluated the patterns of spatial distribution of RH1- and SWS1-expressing photoreceptors, as well as SWS1 + RH1 multiopsin cones, in wholemounted retinas of ten species. Our findings revealed considerable species-specific variation in photoreceptor density, topography, and opsin coexpression patterns. IHC results suggest that in some species, rhodopsin is not only expressed in transmuted, cone-like rods but may also be co-opted by UV/violet-sensitive (SWS1-expressing) cones. These findings underscore the exceptional diversity and adaptive innovation in snake visual systems. The unique features and striking interspecific differences in their photoreceptors highlight snakes as an outstanding taxon for studying vertebrate visual-system function and evolution.
Centre for Snakebite Research and Interventions Liverpool School of Tropical Medicine Liverpool UK
Department of Experimental Psychology Psychology Institute University of São Paulo São Paulo Brazil
Department of Systematic and Ecology Federal University of Paraíba João Pessoa Paraíba Brazil
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Institute of Biological Sciences Federal University of Amazonas Manaus Brazil
Institute of Biosciences Federal University of Mato Grosso Cuiabá Brazil
Zobrazit více v PubMed
Ahnelt, P. K. , and Kolb H.. 2000. “The Mammalian Photoreceptor Mosaic‐Adaptive Design.” Progress in Retinal and Eye Research 19, no. 6: 711–777. PubMed
Andrade, F. M. D. 2021. “Ciclo Reprodutivo De Machos Da Falsa Coral Oxyrhopus guibei.” Master's thesis, Universidade de São Paulo.
Applebury, M. L. , Antoch M. P., Baxter L. C., et al. 2000. “The Murine Cone Photoreceptor: A Single Cone Type Expresses Both S and M Opsins With Retinal Spatial Patterning.” Neuron 27: 513–523. PubMed
Baden, T. 2024. “Ancestral Photoreceptor Diversity as the Basis of Visual Behaviour.” Nature Ecology and Evolution 8: 374–386. PubMed
Baden, T. , Angueyra J. M., Bosten J. M., et al. 2025. “A Standardized Nomenclature for the Rods and Cones of the Vertebrate Retina.” PLoS Biology 23, no. 5: e3003157. PubMed PMC
Baden, T. , Schubert T., Chang L., et al. 2013. “A Tale of Two Retinal Domains: Near‐Optimal Sampling of Achromatic Contrasts in Natural Scenes Through Asymmetric Photoreceptor Distribution.” Neuron 80: 1206–1217. PubMed
Ball, J. M. , Chen S., and Li W.. 2022. “Mitochondria in Cone Photoreceptors Act as Microlenses to Enhance Photon Delivery and Confer Directional Sensitivity to Light.” Science Advances 8, no. 9: eabn2070. PubMed PMC
Bellini, G. P. , Arzamendia V., and Giraudo A. R.. 2014. “Comparative Ecology of Three Species of
Bernau, U. 1969. “Versuche über Das Farbsehvermögen Der Erdmännchen (
Bhattacharyya, N. , Darren B., Schott R. K., Tropepe V., and Chang B. S. W.. 2017. “Cone‐Like Rhodopsin Expressed in the All‐Cone Retina of the Colubrid Pine Snake as a Potential Adaptation to Diurnality.” Journal of Experimental Biology 220: 2418–2425. PubMed
Bittencourt, G. B. , Hauzman E., Bonci D. M. O., and Ventura D. F.. 2019. “Photoreceptors Morphology and Genetics of the Visual Pigments of PubMed
Bossomaier, T. R. J. , Wong R. O. L., and Snyder A. W.. 1989. “Large Stiles‐Crawford Efect Expected?” Vision Research 29: 741–746. PubMed
Breuninger, T. , Puller C., Haverkamp S., and Euler T.. 2011. “Chromatic Bipolar Cell Pathways in the Mouse Retina.” Journal of Neuroscience 31: 6504–6517. PubMed PMC
Briggman, K. L. , Helmstaedter M., and Denk W.. 2011. “Wiring Specificity in the Direction‐Selectivity Circuit of the Retina.” Nature 471: 183–188. PubMed
Calderone, J. B. , and Jacobs G. H.. 1995. “Regional Variations in the Relative Sensitivity to UV Light in the Mouse Retina.” Visual Neuroscience 12: 463–468. PubMed
Carrillo, J. F. C. 2017. “Predation of Thamnodynastes Chaquensis (Serpentes, Colubridae) Upon
Carter‐Dawson, L. , and LaVail M. M.. 1979. “Rods and Cones in the Mouse Retina.” Journal of Comparative Neurology 188: 263–272. PubMed
Chippaux, J. P. 1999. Les serpents d'Afrique occidentale et centrale. IRD Éditions.
Coimbra, J. P. , Collin S. P., and Hart N. S.. 2014. “Variations in Retinal Photoreceptor Topography and the Organization of the Rod‐Free Zone Reflect Behavioral Diversity in Australian Passerines.” Journal of Comparative Neurology 523, no. 7: 1073–1094. PubMed
Coimbra, J. P. , Trévia N., Marceliano M. L. V., Andrade‐Da‐Costa B. L. S., Picanço‐Diniz C. W., and Yamada E. S.. 2009. “Number and Distribution of Neurons in the Retinal Ganglion Cell Layer in Relation to Foraging Behaviors of Tyrant Flycatchers.” Journal of Comparative Neurology 514: 66–73. PubMed
Coimbra, P. , Hart N. S., Collin S. P., and Manger P. R.. 2013. “Scene From Above: Retinal Ganglion Cell Topography and Spatial Resolving Power in the Giraffe ( PubMed
Collin, S. P. 1999. “Behavioural Ecology and Retinal Cell Topography.” In Adaptive Mechanisms in the Ecology of Vision, edited by S.N. Archer, M. B. A. Djamgoz, E. R. Loew, J. C. Partridge, and S. Vallerga, 509–535. Springer.
Collin, S. P. 2008. “A Web‐Based Archive for Topographic Maps of Retinal Cell Distribution in Vertebrates.” Clinical and Experimental Optometry 91: 85–95. PubMed
Dalton, B. E. , De Busserolles F., Marshall J. N., and Carleton K. L.. 2017. “Retinal Specialization Through Spatially Varying Cell Densities and Opsin Coexpression in Cichlid Fish.” Journal of Experimental Biology 220: 266–277. PubMed PMC
Dalton, B. E. , Loew E. R., Cronin T. W., and Carleton K. L.. 2014. “Spectral Tuning by Opsin Coexpression in Retinal Regions That View Different Parts of the Visual Field.” Proceedings of the Royal Society B: Biological Sciences 281, no. 1797: 20141980. PubMed PMC
De Aguiar, L. F. S. , and Di‐Bernardo M.. 2004. “Diet and Feeding Behavior of
De Busserolles, F. , Cortesi F., Fogg L., Stieb S. M., Luehrmann M., and Marshall N. J.. 2021. “The Visual Ecology of Holocentridae, a Nocturnal Coral Reef Fish Family With a Deep‐Sea‐Like Multibank Retina.” Journal of Experimental Biology 224, no. 1: jeb233098. PubMed
Denman, D. J. , Luviano J. A., Ollerenshaw D. R., et al. 2018. “Mouse Color and Wavelength‐Specific Luminance Contrast Sensitivity Are Non‐Uniform Across Visual Space.” eLife 7: e31209. PubMed PMC
Emerling, C. A. 2017. “Genomic Regression of Claw Keratin, Taste Receptor and Light‐Associated Genes Provides Insights Into Biology and Evolutionary Origins of Snakes.” Molecular Phylogenetics and Evolution 115: 40–49. PubMed
Ferreira, J. A. 2013. “Hábito Alimentar e Período Reprodutivo Da Cobra‐cipó Leptophis Ahaetulla Marginatus (Serpentes, Colubridae) no Pantanal e Cerrado.” Master's thesis, Federal University of Mato Grosso do Sul.
Foelix, R. F. , Kretz R., and Rager G.. 1987. “Structure and Postnatal Development of Photoreceptors and Their Synapses in the Retina of the Tree Shrew ( PubMed
Fornetto, C. , Euler T., and Baden T.. 2024. “Vertebrate Vision Is Ancestrally Based on Competing Cone Circuits.” Preprint, DOI
Franke, K. , Cai C., Ponder K., et al. 2024. “Asymmetric Distribution of Color‐Opponent Response Types Across Mouse Visual Cortex Supports Superior Color Vision in the Sky.” eLife 12: RP89996. PubMed PMC
Gerkema, M. P. , Davies W. I. L., Foster R. G., Menaker M., and Hut R. A.. 2013. “The Nocturnal Bottleneck and the Evolution of Activity Patterns in Mammals.” Proceedings of the Royal Society B: Biological Sciences 280: 20130508. PubMed PMC
Glaser, E. M. , and Wilson P. D.. 2008. “The Coefficient of Error of Optical Fractionator Population Size Estimates: A Computer Simulation Comparing Three Estimators.” Journal of Microscopy 192: 163–171. PubMed
Glösmann, M. , Steiner M., Peichl L., and Ahnelt P. K.. 2008. “Cone Photoreceptors and Potential UV Vision in a Subterranean Insectivore, the European Mole.” Journal of Vision 8: 23. PubMed
Govardovskii, V. I. , and Chkheidze N. I.. 1989. “Retinal Photoreceptors and Visual Pigments in Certain Snakes.” Biological Abstracts 90: 1036.
Gower, D. J. , Fleming J. F., Pisani D., et al. 2021. “Eye‐Transcriptome and Genome‐Wide Sequencing for Scolecophidia: Implications for Inferring the Visual System of the Ancestral Snake.” Genome Biology and Evolution 13, no. 12: evab253. PubMed PMC
Gower, D. J. , Hauzman E., Simões B. F., and Schott R. K.. 2022. “Eyes, Vision, and the Origins and Early Evolution of Snakes.” In The Origin and Early Evolutionary History of Snakes, Gower D. J. and Zaher H., 316–348. Cambridge University Press.
Gower, D. J. , Sampaio F. L., Peichl L., et al. 2019. “Evolution of the Eyes of Vipers With and Without Infrared‐Sensing Pit Organs.” Biological Journal of the Linnean Society 126: 796–823.
Guedes, T. B. , Nogueira C., and Marques O. A. V.. 2014. “Diversity, Natural History, and Geographic Distribution of Snakes in the Caatinga, Northeastern Brazil.” Zootaxa 3863, no. 1: 1–93. PubMed
Gundersen, H. J. G. 1977. “Notes on the Estimation of the Numerical Density of Arbitrary Profiles: The Edge Effect.” Journal of Microscopy 111: 219–223.
Hart, N. S. , Coimbra J. P., Collin S. P., and Westhoff G.. 2012. “Photoreceptor Types, Visual Pigments, and Topographic Specializations in the Retinas of Hydrophiid Sea Snakes.” Journal of Comparative Neurology 520: 1246–1261. PubMed
Hauzman . 2014. “Ecologia e Evolução do Sistema Visual de Serpentes Caenophidia: Estudos Comparativos da Morfologia Retiniana e Genética de Opsinas.” PhD diss., University of São Paulo.
Hauzman, E. , Bonci D. M. O., Grotzner S. R., et al. 2014. “Comparative Study of Photoreceptor and Retinal Ganglion Cell Topography and Spatial Resolving Power in Dipsadidae Snakes.” Brain Behavior and Evolution 84: 197–213. PubMed
Hauzman, E. , Bonci D. M. O., Suárez‐Villota E. Y., Neitz M., and Ventura D. F.. 2017. “Daily Activity Patterns Influence Retinal Morphology, Signatures of Selection, and Spectral Tuning of Opsin Genes in Colubrid Snakes.” BMC Evolutionary Biology 17: 249–263. PubMed PMC
Hauzman, E. , Bonci D. M. O., and Ventura D. F.. 2018. “Retinal Topographic Maps: a Glimpse Into the Animals' Visual World.” In Sensory Nervous System, edited by Heinbockel T., 101–126. InTech.
Hauzman, E. , Pierotti M. E. R., Bhattacharyya N., et al. 2021. “Simultaneous Expression of UV and Violet SWS1 Opsins Expands the Visual Palette in a Group of Freshwater Snakes.” Molecular Biology and Evolution 38: 5225–5240. PubMed PMC
Haverkamp, S. , Wässle H., Duebel J., et al. 2005. “The Primordial, Blue‐Cone Color System of the Mouse Retina.” Journal of Neuroscience 25: 5438–5445. PubMed PMC
Heukamp, A. S. , Warwick R. A., and Rivlin‐Etzion M.. 2020. “Topographic Variations in Retinal Encoding of Visual Space.” Annual Review of Vision Science 6, no. 1: 237–259. PubMed
Höfling, L. , Szatko K. P., Behrens C., et al. 2024. “A Chromatic Feature Detector in the Retina Signals Visual Context Changes.” eLife 13: e86860. PubMed PMC
Isayama, T. , Chen Y., Kono M., et al. 2014. “Coexpression of Three Opsins in Cone Photoreceptors of the Salamander PubMed PMC
Jacobs, G. H. , Williams G. A., and Fenwick J. A.. 2004. “Influence of Cone Pigment Coexpression on Spectral Sensitivity and Color Vision in the Mouse.” Vision Research 44, no. 14: 1615–1622. PubMed
Kalberer, M. , and Pedler C.. 1963. “The Visual Cells of the Alligator: An Electron Microscopic Study.” Vision Research 3: 323–329. PubMed
Kim, J. W. , Yang H. J., Oel A. P., et al. 2016. “Recruitment of Rod Photoreceptors From Short‐Wavelength‐Sensitive Cones During the Evolution of Nocturnal Vision in Mammals.” Developmental Cell 37: 520–532. PubMed PMC
Knabe, W. , Skatchkov S., and Kuhn H. J.. 1997. “‘Lens Mitochondria’ in the Retinal Cones of the Tree‐Shrew PubMed
Kverková, K. , Marhounová L., Polonyiová A., et al. 2022. “The Evolution of Brain Neuron Numbers in Amniotes.” Proceedings of the National Academy of Sciences of the United States of America 119, no. 11: e2121624119. PubMed PMC
Lamb, T. D. 2009. “Evolution of Vertebrate Retinal Photoreception.” Philosophical Transactions of the Royal Society B: Biological Sciences 364: 2911–2924. PubMed PMC
Lamb, T. D. 2013. “Evolution of Phototransduction, Vertebrate Photoreceptors and Retina.” Progress in Retinal and Eye Research 36: 52–119. PubMed
Loebens, L. , Almeida‐Santos S. M., and Cechin S. Z.. 2020. “Reproductive Biology of the Sword Snake
Loebens, L. , Cechin S. Z., Theis T. F., Moura L. B., and Almeida‐Santos S. M.. 2017. “Reproductive Biology of
Lukáts, Á. , Dkhissi‐Benyahya O., Szepessy Z., et al. 2002. “Visual Pigment Coexpression in all Cones of Two Rodents, the Siberian Hamster, and the Pouched Mouse.” Investigative Ophthalmology and Visual Science 43: 2468–2473. PubMed
Lukáts, Á. , Szabó A., Röhlich P., Vígh B., and Szél Á.. 2005. “Photopigment Coexpression in Mammals: Comparative and Developmental Aspects.” Histology and Histopathology 20: 551–574. PubMed
Makino, C. L. , and Dodd R. L.. 1996. “Multiple Visual Pigments in a Photoreceptor of the Salamander Retina.” Journal of General Physiology 108: 27–34. PubMed PMC
Marques, O. A. V. , Eterovic A., Guedes T. B., and Sazima I.. 2017. Serpentes da Caatinga: guia ilustrado. Ponto A.
Martins, M. , and Oliveira M. E.. 1998. “Herpetological Natural History.” Herpetological Natural History 6: 101–110.
Miller, W. H. , and Snyder A. W.. 1977. “The Tiered Vertebrate Retina.” Vision Research 17: 239–255. PubMed
Moraes‐da‐Silva, A. , Amaro R. C., Nunes P. M. S., et al. 2019. “Chance, Luck and a Fortunate Finding: A New Species of Watersnake of the Genus PubMed
Neitz, M. , and Neitz J.. 2001. “The Uncommon Retina of the Common House Mouse.” Trends in Neuroscience 24: 248–249. PubMed
Ng, L. , Lu A., Swaroop A., Sharlin D. S., Swaroop A., and Forrest D.. 2011. “Two Transcription Factors Can Direct Three Photoreceptor Outcomes From Rod Precursor Cells in Mouse Retinal Development.” Journal of Neuroscience 31: 11118–11125. PubMed PMC
Oh, E. C. T. , Khan N., Novelli E., Khanna H., Strettoi E., and Swaroop A.. 2007. “Transformation of Cone Precursors to Functional Rod Photoreceptors by bZIP Transcription Factor NRL.” Proceedings of the National Academy of Sciences of the United States of America 104: 1679–1684. PubMed PMC
Passos, J. 2018. “Influência no Crescimento de Bothrops Insularis e Bothrops Jararaca: A Dieta Pode Interferir no Tamanho da Maturidade Sexual em Cativeiro?” Master's thesis, University of São Paulo.
Peichl, L. 2005. “Diversity of Mammalian Photoreceptor Properties: Adaptations to Habitat and Lifestyle?” Anatomical Record 287: 1001–1012. PubMed
Peichl, L. , Němec P., and Burda H.. 2004. “Unusual Cone and Rod Properties in Subterranean African Mole‐Rats (Rodentia, Bathyergidae).” European Journal of Neuroscience 19, no. 6: 1545–1558. PubMed
Pergentino, H. E. S. , and Ribeiro L. B.. 2017. “Anurophagy by the Snake
Pizzatto, L. , Cantor M., Oliveira J. L., Marques O. A. V., Capovilla V., and Martins M.. 2008. “Reprodutive Ecology of Dipsadine Snakes, With Emphasis on south American Species.” Herpetologica 62: 168–179.
Pyron, R. A. , Burbrink F. T., and Wiens J. J.. 2013. “A Phylogeny and Revised Classification of Squamata, Including 4161 Species of Lizards and Snakes A Phylogeny and Revised Classification of Squamata, Including 4161 Species of Lizards and Snakes.” BMC Evolutionary Biology 13: 93. PubMed PMC
Qiu, Y. , Zhao Z., Klindt D., et al. 2021. “Natural Environment Statistics in the Upper and Lower Visual Field Are Reflected in Mouse Retinal Specializations.” Current Biology 31, no. 15: 3233–3247. PubMed
Quintela, F. M. , and Loebmann D.. 2019. “Diet, Sexual Dimorphism and Reproduction of Sympatric Racers PubMed
Rieke, F. , and Baylor D. A.. 1998. “Single‐Photon Detection by Rod Cells of the Retina.” Reviews of Modern Physics 70: 1027–1036.
Rister, J. , and Desplan C.. 2011. “The Retinal Mosaics of Opsin Expression in Invertebrates and Vertebrates.” Developmental Neurobiology 71: 1212–1226. PubMed PMC
Röhlich, P. , Van Veen T., and Szél Á.. 1994. “Two Different Visual Pigments in One Retinal Cone Cell.” Neuron 13: 1159–1166. PubMed
Samorajski, T. , Ordy J. M., and Keefe J.. 1966. “Structural Organization of the Retina in the Tree Shrew ( PubMed PMC
Santra, V. , and Wüster W.. 2017. “Natural History Notes.
Sazima, I. 1992. “Natural History of the Jararaca Pitviper,
Scartozzoni, R. R. , Salomão M. G., and Almeida‐Santos S. M.. 2009. “Natural History of the Vine Snake
Schindelin, J. , Arganda‐Carreras I., Frise E., et al. 2012. “Fiji: An Open‐Source Platform for Biological‐Image Analysis.” Nature Methods 9: 676–682. PubMed PMC
Schiviz, A. N. , Ruf T., Kuebber‐Heiss A., Schubert C., and Ahnelt P. K.. 2008. “Retinal Cone Topography of Artiodactyl Mammals: Influence of Body Height and Habitat.” Journal of Comparative Neurology 507, no. 3: 1336–1350. PubMed
Schott, R. K. , Müller J., Yang C. G. Y., et al. 2016. “Evolutionary Transformation of Rod Photoreceptors in the All‐Cone Retina of a Diurnal Garter Snake.” Proceedings of the National Academy of Sciences of the United States of America 113: 356–361. PubMed PMC
Sillman, A. J. , Govardovskii V. I., Rohlich P., Southard J. A., and Loew E. R.. 1997. “The Photoreceptors and Visual Pigments of the Garter Snake ( PubMed
Silva, K. M. , Braz H. B., Kasperoviczus K. N., Marques O. A., and Almeida‐Santos S. M.. 2020. “Reproduction in the Pitviper PubMed
Simões, B. F. , Sampaio F. L., Douglas R. H., et al. 2016. “Visual Pigments, Ocular Filters and the Evolution of Snake Vision.” Molecular Biology and Evolution 33: 2483–2495. PubMed
Siqueira, D. M. , Nascimento L. P., Montingelli G. G., and Santos‐Costa M. C. D.. 2013. “Geographical Variation in the Reproduction and Sexual Dimorphism of the Boddaert's Tropical Racer,
Swaroop, A. , Kim D., and Forrest D.. 2010. “Transcriptional Regulation of Photoreceptor Development and Homeostasis in the Mammalian Retina.” Nature Reviews in Neuroscience 11: 563–576. PubMed PMC
Szatko, K. P. , Korympidou M. M., Ran Y., et al. 2020. “Neural Circuits in the Mouse Retina Support Color Vision in the Upper Visual Field.” Nature Communications 11, no. 1: 3481. PubMed PMC
Szél, Á. , and Röhlich P.. 1988. “Four Photoreceptor Types in the Ground Squirrel Retina as Evidenced by Immunocytochemistry.” Vision Research 28: 1297–1302. PubMed
Tashiro, J. H. , Ventura D. F., and Hauzman E.. 2022. “Morphological Plasticity of the Retina of Viperidae Snakes Is Associated With Ontogenetic Changes in Ecology and Behavior.” Frontiers in Neuroanatomy 15: 770804. PubMed PMC
Torello‐Viera, N. F. , and Marques O. A. V.. 2019. “Daily Activity of Neotropical Dipsadid Snakes.” South American Journal of Herpetology 12: 128–135.
Underwood, G. 1967. A Contribution to the Classification of Snakes. British Museum.
Underwood, G. 1968. “Some Suggestions Concerning Vertebrate Visual Cells.” Vision Research 8: 483–488. PubMed
Underwood, G. 1970. “The Eye.” In Biology of the Reptilia, Morphology B. Vol. 2, edited by Gans C. and Parson T. S., 1–97. Academic Press.
Walls, G. L. 1932. “Visual Purple in Snakes.” Science 75, no. 80: 467–468. PubMed
Walls, G. L. 1934. “The Reptilian Retina. I. A New Concept of Visual‐Cell Evolution.” American Journal of Ophthalmology 17: 892–915.
Walls, G. L. 1942. The Vertebrate Eye and Its Adaptive Radiation. Cranbrook Institute of Science.
West, M. J. , Slomianka L., and Gundersen H. J. G.. 1991. “Unbiased Stereological Estimation of the Total Number of Neurons in the Subdivisions of the Rat Hippocampus Using the Optical Fractionator.” Anatomical Record 231: 482–497. PubMed
Wong, R. O. 1989. “Morphology and Distribution of Neurons in the Retina of the American Garter Snake PubMed
Yin, L. , Smith R. G., Sterling P., and Brainard D. H.. 2006. “Chromatic Properties of Horizontal and Ganglion Cell Responses Follow a Dual Gradient in Cone Opsin Expression.” Journal of Neuroscience 26: 12351–12361. PubMed PMC
Zaher, H. , Grazziotin F. G., Cadle J. E., Murphy R. W., Moura‐Leite J. C., and Bonatto S. L.. 2009. “Molecular Phylogeny of Advanced Snakes (Serpentes, Caenophidia) With an Emphasis on South American Xenodontines: A Revised Classification and Descriptions of New Taxa.” Papéis Avulsos De Zoologia 49, no. 11: 115–153.
Zaher, H. , Murphy R. W., Arredondo J. C., et al. 2019. “Large‐Scale Molecular Phylogeny, Morphology, Divergence‐Time Estimation, and the Fossil Record of Advanced Caenophidian Snakes (Squamata: Serpentes).” PLoS ONE 14, no. 5: e0217959. PubMed PMC
Zhou, M. , Bear J., Roberts P. A., et al. 2020. “Zebrafish Retinal Ganglion Cells Asymmetrically Encode Spectral and Temporal Information Across Visual Space.” Current Biology 30, no. 15: 2927–2942. PubMed PMC