Drought Response and Genetic Variation in Scots Pine Seedlings' Provenances: Insights From High-Throughput Phenotyping for Climate-Resilient Forestry
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41064598
PubMed Central
PMC12501839
DOI
10.1111/eva.70157
PII: EVA70157
Knihovny.cz E-zdroje
- Klíčová slova
- Pinus sylvestris L., SNP array, fluorescence, intraspecific variability, linear mixed models, needle functional traits, pedigreed seedlings, photosystem II, primary photosynthesis, resilience,
- Publikační typ
- časopisecké články MeSH
Scots pine (Pinus sylvestris L.) is characterized by considerable intraspecific adaptive variability in response to environmental stress factors due to its wide geographical range. Adaptability is key for forestry, promising resilience against upcoming Europe's climate-driven droughts. We studied three provenances of pedigreed Scots pine seedlings from distinct upland and lowland habitats in the Czech Republic. A water deficit was induced in 2-year-old, potted seedlings in a greenhouse. Their physiological responses to drought were investigated at the beginning of growing season during the development of new shoots, and after subsequent summer rewatering. (1) We analyzed several physiological traits to assess their effectiveness in detecting treatment effects: steady-state quantum yield of PSII (QY Lss), maximum quantum yield of PSII (QY max), steady-state non-photochemical quenching (NPQ Lss), needle chlorophyll fluorescence ratio (SFR_R), and needle temperature normalized to ambient temperature (∆T), using a high-throughput phenotyping unit. The divergence in SFR_R, QY max, QY Lss, NPQ Lss, and ΔT suggests that drought stress significantly impacts photosynthetic efficiency and heat dissipation, with recovery occurring after rewatering. (2) We detected differences within and among provenances utilizing a single nucleotide polymorphism genotyping array and linear mixed models integrating estimated genomic relationships to investigate genetic variation in needle functional traits in time. Throughout the experiment, heritability (h 2 ) varied widely among traits-with QY max and QY Lss showing the greatest variability (from 0 to 0.37), NPQ Lss exhibiting a narrower range aside from two outlier peaks, and SFR_R and ∆T displaying lower variability and lower h 2 values (0-0.24). The photosynthesis-related traits (QY max, QY Lss) showed the highest genetic variation, underscoring their potential for early-age phenotyping and selection of drought-tolerant genotypes. These findings address practical problems in forest management, particularly in light of changing weather patterns and climate variability, and provide a foundation for advanced optically based, early-age phenotyping to enhance forest resilience.
Faculty of Science Department of Experimental Plant Biology Charles University Prague Czech Republic
Zobrazit více v PubMed
Ahmad, M. , Seitner S., Jez J., et al. 2025. “Drought Stress Responses Deconstructed: A Comprehensive Approach for Norway Spruce Seedlings Using High‐Throughput Phenotyping With Integrated Metabolomics and Transcriptomics.” Plant Phenomics 7: 100037. 10.1016/j.plaphe.2025.100037. DOI
Ahuja, M. R. , and Neale D. B.. 2005. “Evolution of Genome Size in Conifers.” Silvae Genetica 54: 126–137. 10.1515/sg-2005-0020. DOI
Allen, C. D. , Macalady A. K., Chenchouni H., et al. 2010. “A Global Overview of Drought and Heat‐Induced Tree Mortality Reveals Emerging Climate Change Risks for Forests.” Forest Ecology and Management 259: 660–684. 10.1016/j.foreco.2009.09.001. DOI
Amadeu, R. R. , Cellon C., Olmstead J. W., Garcia A. A. F., Resende M. F. R., and Muñoz P. R.. 2016. “AGHmatrix: R Package to Construct Relationship Matrices for Autotetraploid and Diploid Species: A Blueberry Example.” Plant Genome 9: plantgenome2016010009. 10.3835/plantgenome2016.01.0009. PubMed DOI
Andrews, K. R. , Good J. M., Miller M. R., Luikart G., and Hohenlohe P. A.. 2016. “Harnessing the Power of RADseq for Ecological and Evolutionary Genomics.” Nature Reviews. Genetics 17: 81–92. 10.1038/nrg.2015.28. PubMed DOI PMC
Baldi, P. , and La Porta N.. 2022. “Toward the Genetic Improvement of Drought Tolerance in Conifers: An Integrated Approach.” Forests 13: 2016. 10.3390/f13122016. DOI
Bose, A. K. , Gessler A., Bolte A., et al. 2020. “Growth and Resilience Responses of Scots Pine to Extreme Droughts Across Europe Depend on Predrought Growth Conditions.” Global Change Biology 26: 4521–4537. 10.1111/gcb.15153. PubMed DOI PMC
Breshears, D. D. , Fontaine J. B., Ruthrof K. X., et al. 2021. “Underappreciated Plant Vulnerabilities to Heat Waves.” New Phytologist 231: 32–39. 10.1111/nph.17348. PubMed DOI
Brien, C. 2025. “asremlPlus: Augments “ASReml‐R” in Fitting Mixed Models and Packages Generally in Exploring Prediction Differences [WWW Document].” https://briencj.r‐universe.dev/asremlPlus/citation.
Brodribb, T. J. , and McAdam S. A. M.. 2013. “Abscisic Acid Mediates a Divergence in the Drought Response of Two Conifers.” Plant Physiology 162: 1370–1377. 10.1104/pp.113.217877. PubMed DOI PMC
Buras, A. , and Menzel A.. 2019. “Projecting Tree Species Composition Changes of European Forests for 2061–2090 Under RCP 4.5 and RCP 8.5 Scenarios.” Frontiers in Plant Science 9: 1986. 10.3389/fpls.2018.01986. PubMed DOI PMC
Buras, A. , Rammig A., and Zang C. S.. 2020. “Quantifying Impacts of the 2018 Drought on European Ecosystems in Comparison to 2003.” Biogeosciences 17: 1655–1672. 10.5194/bg-17-1655-2020. DOI
Buschmann, C. 2007. “Variability and Application of the Chlorophyll Fluorescence Emission Ratio Red/Far‐Red of Leaves.” Photosynthesis Research 92: 261–271. 10.1007/s11120-007-9187-8. PubMed DOI
Butler, D. G. , Cullis B. R., Gilmour A. R., Gogel B. J., and Thompson R.. 2018. “ASReml Estimates Variance Components Under a General Linear.”
Cappa, E. P. , De Lima B. M., Da Silva‐Junior O. B., Garcia C. C., Mansfield S. D., and Grattapaglia D.. 2019. “Improving Genomic Prediction of Growth and Wood Traits in Eucalyptus Using Phenotypes From Non‐Genotyped Trees by Single‐Step GBLUP.” Plant Science 284: 9–15. 10.1016/j.plantsci.2019.03.017. PubMed DOI
Carvalho, B. , Bastias C. C., Escudero A., Valladares F., and Benavides R.. 2020. “Intraspecific Perspective of Phenotypic Coordination of Functional Traits in Scots Pine.” PLoS One 15: e0228539. 10.1371/journal.pone.0228539. PubMed DOI PMC
Čepl, J. , Holá D., Stejskal J., et al. 2016. “Genetic Variability and Heritability of Chlorophyll a Fluorescence Parameters in Scots Pine ( PubMed DOI
Dallaire, X. , Bouchard R., Hénault P., et al. 2023. “Widespread Deviant Patterns of Heterozygosity in Whole‐Genome Sequencing due to Autopolyploidy, Repeated Elements, and Duplication.” Genome Biology and Evolution 15: evad229. 10.1093/gbe/evad229. PubMed DOI PMC
Dane, J. H. , and Topp C. G.. 2020. Methods of Soil Analysis, Part 4: Physical Methods. John Wiley & Sons.
Dang, H. , Han H., Zhang X., Chen S., Li M., and Liu C.. 2022. “Key Strategies Underlying the Adaptation of Mongolian Scots Pine (Pinussylvestris Var. Mongolica) in Sandy Land Under Climate Change: A Review.” Forests 13: 846. 10.3390/f13060846. DOI
De La Torre, A. R. , Birol I., Bousquet J., et al. 2014. “Insights Into Conifer Giga‐Genomes.” Plant Physiology 166: 1724–1732. 10.1104/pp.114.248708. PubMed DOI PMC
Duque, A. , Stevenson P. R., and Feeley K. J.. 2015. “Thermophilization of Adult and Juvenile Tree Communities in the Northern Tropical Andes.” Proceedings. National Academy of Sciences. United States of America 112: 10744–10749. 10.1073/pnas.1506570112. PubMed DOI PMC
Ehdaie, B. , and Waines J. G.. 1994. “Genetic Analysis of Carbon Isotope Discrimination and Agronomic Characters in a Bread Wheat Cross.” Theoretical and Applied Genetics 88: 1023–1028. 10.1007/BF00220811. PubMed DOI
El‐Kassaby, Y. A. , Cappa E. P., Chen C., Ratcliffe B., and Porth I. M.. 2024. “Efficient Genomics‐Based ‘End‐To‐End’ Selective Tree Breeding Framework.” Heredity 132: 98–105. 10.1038/s41437-023-00667-w. PubMed DOI PMC
Elshire, R. J. , Glaubitz J. C., Sun Q., et al. 2011. “A Robust, Simple Genotyping‐By‐Sequencing (GBS) Approach for High Diversity Species.” PLoS One 6: e19379. 10.1371/journal.pone.0019379. PubMed DOI PMC
Estravis Barcala, M. , van der Valk T., Chen Z., et al. 2024. “Whole‐Genome Resequencing Facilitates the Development of a 50K Single Nucleotide Polymorphism Genotyping Array for Scots Pine ( PubMed DOI
Falconer, D. S. , and Mackay F. C. T.. 1996. Introdutction to Quantitative Genetics. 4th ed. Prentice Hall.
Findurová, H. , Veselá B., Panzarová K., Pytela J., Trtílek M., and Klem K.. 2023. “Phenotyping Drought Tolerance and Yield Performance of Barley Using a Combination of Imaging Methods.” Environmental and Experimental Botany 209: 105314. 10.1016/j.envexpbot.2023.105314. DOI
Gamal El‐Dien, O. , Ratcliffe B., Klápště J., Porth I., Chen C., and El‐Kassaby Y. A.. 2016. “Implementation of the Realized Genomic Relationship Matrix to Open‐Pollinated White Spruce Family Testing for Disentangling Additive From Nonadditive Genetic Effects.” G3: Genes, Genomes, Genetics 6: 743–753. 10.1534/g3.115.025957. PubMed DOI PMC
Ganal, M. W. , Polley A., Graner E.‐M., et al. 2012. “Large SNP Arrays for Genotyping in Crop Plants.” Journal of Biosciences 37: 821–828. 10.1007/s12038-012-9225-3. PubMed DOI
García‐Gil, M. R. , Mikkonen M., and Savolainen O.. 2003. “Nucleotide Diversity at Two Phytochrome Loci Along a Latitudinal Cline in PubMed DOI
García‐Valdés, R. , Estrada A., Early R., Lehsten V., and Morin X.. 2020. “Climate Change Impacts on Long‐Term Forest Productivity Might Be Driven by Species Turnover Rather Than by Changes in Tree Growth.” Global Ecology and Biogeography 29: 1360–1372. 10.1111/geb.13112. DOI
Gessler, A. , Bottero A., Marshall J., and Arend M.. 2020. “The Way Back: Recovery of Trees From Drought and Its Implication for Acclimation.” New Phytologist 228: 1704–1709. 10.1111/nph.16703. PubMed DOI
Ghozlen, N. B. , Cerovic Z. G., Germain C., Toutain S., and Latouche G.. 2010. “Non‐Destructive Optical Monitoring of Grape Maturation by Proximal Sensing.” Sensors 10: 10040–10068. 10.3390/s101110040. PubMed DOI PMC
Gielen, B. , Jach M., and Ceulemans R.. 2000. “Effects of Season, Needle Age, and Elevated Atmospheric CO DOI
Gil‐Muñoz, F. , Hayatgheibi H., Niemi J. M., Östlund L., and García‐Gil M. R.. 2023. “Breeding for Growth Has Resulted in Increased Tolerance to Drought at the Cost of Genetic Diversity in Scots Pine.” 10.1101/2023.09.14.557809. DOI
Groover, A. , Holbrook N. M., Polle A., et al. 2025. “Tree Drought Physiology: Critical Research Questions and Strategies for Mitigating Climate Change Effects on Forests.” New Phytologist 245: 1817–1832. 10.1111/nph.20326. PubMed DOI
Hall, D. , Olsson J., Zhao W., Kroon J., Wennström U., and Wang X.‐R.. 2021. “Divergent Patterns Between Phenotypic and Genetic Variation in Scots Pine.” Plant Communications 2: 100139. PubMed PMC
Hazarika, R. , Bolte A., Bednarova D., et al. 2021. “Multi‐Actor Perspectives on Afforestation and Reforestation Strategies in Central Europe Under Climate Change.” Annals of Forest Science 78: 1–31. 10.1007/s13595-021-01044-5. DOI
Henderson, C. R. 1953. “Estimation of Variance and Covariance Components.” Biometrics 9: 226–252. 10.2307/3001853. DOI
IPCC . 2022. “Summary for Policymakers, Climate Change 2022: Impacts, Adaptation and Vulnerability.” Cambridge University Press. ed. Cambridge, UK and New York, USA.
Irvine, J. , Perks M. P., Magnani F., and Grace J.. 1998. “The Response of PubMed DOI
Isik, F. , Holland J., and Maltecca C.. 2017. Genetic Data Analysis for Plant and Animal Breeding. Springer International Publishing. 10.1007/978-3-319-55177-7. DOI
Ismael, A. , Xue J., Meason D. F., et al. 2022. “Genetic Variation in Drought‐Tolerance Traits and Their Relationships to Growth in PubMed DOI PMC
Jackson, R. D. 1982. “Canopy Temperature and Crop Water Stress.” In Advances in Irrigation, 43–85. Elsevier. 10.1016/B978-0-12-024301-3.50009-5. DOI
Jankowski, A. , Wyka T. P., Żytkowiak R., Danusevičius D., and Oleksyn J.. 2019. “Does Climate‐Related In Situ Variability of Scots Pine ( PubMed DOI
Jombart, T. , and Ahmed I.. 2011. “Adegenet 1.3‐1: New Tools for the Analysis of Genome‐Wide SNP Data.” Bioinformatics 27: 3070–3071. 10.1093/bioinformatics/btr521. PubMed DOI PMC
Kastally, C. , Niskanen A. K., Perry A., et al. 2022. “Taming the Massive Genome of Scots Pine With PiSy50k, a New Genotyping Array for Conifer Research.” Plant Journal 109: 1337–1350. 10.1111/tpj.15628. PubMed DOI PMC
LaFramboise, T. 2009. “Single Nucleotide Polymorphism Arrays: A Decade of Biological, Computational and Technological Advances.” Nucleic Acids Research 37: 4181–4193. 10.1093/nar/gkp552. PubMed DOI PMC
Leo, M. , Oberhuber W., Schuster R., Grams T. E. E., Matyssek R., and Wieser G.. 2014. “Evaluating the Effect of Plant Water Availability on Inner Alpine Coniferous Trees Based on Sap Flow Measurements.” European Journal of Forest Research 133: 691–698. 10.1007/s10342-013-0697-y. DOI
Li, J. , West J. B., Hart A., et al. 2021. “Extensive Variation in Drought‐Induced Gene Expression Changes Between Loblolly Pine Genotypes.” Frontiers in Genetics 12: 661440. 10.3389/fgene.2021.661440. PubMed DOI PMC
Lichtenthaler, H. K. 2021. “Multi‐Colour Fluorescence Imaging of Photosynthetic Activityand Plant Stress.” Photosynthetica 59: 364–380. 10.32615/ps.2021.020. DOI
Lichtenthaler, H. K. , Buschmann C., Rinderle U., and Schmuck G.. 1986. “Application of Chlorophyll Fluorescence in Ecophysiology.” Radiation and Environmental Biophysics 25: 297–308. 10.1007/BF01214643. PubMed DOI
Lindner, M. , Maroschek M., Netherer S., et al. 2010. “Climate Change Impacts, Adaptive Capacity, and Vulnerability of European Forest Ecosystems.” Forest Ecology and Management 259: 698–709. 10.1016/j.foreco.2009.09.023. DOI
Lu, M. , Krutovsky K. V., and Loopstra C. A.. 2019. “Predicting Adaptive Genetic Variation of Loblolly Pine ( PubMed DOI
Lu, M. , Krutovsky K. V., Nelson C. D., West J. B., Reilly N. A., and Loopstra C. A.. 2017. “Association Genetics of Growth and Adaptive Traits in Loblolly Pine ( DOI
Ludovisi, R. , Tauro F., Salvati R., Khoury S., Mugnozza Scarascia G., and Harfouche A.. 2017. “UAV‐Based Thermal Imaging for High‐Throughput Field Phenotyping of Black Poplar Response to Drought.” Frontiers in Plant Science 8: 1681. PubMed PMC
Manes, F. , Donato E., and Vitale M.. 2001. “Physiological Response of PubMed DOI
Marchin, R. M. , Ossola A., Leishman M. R., and Ellsworth D. S.. 2020. “A Simple Method for Simulating Drought Effects on Plants.” Frontiers in Plant Science 10: 1715. 10.3389/fpls.2019.01715. PubMed DOI PMC
Martínez‐Sancho, E. , Dorado‐Liñán I., Hacke U. G., Seidel H., and Menzel A.. 2017. “Contrasting Hydraulic Architectures of Scots Pine and Sessile Oak at Their Southernmost Distribution Limits.” Frontiers in Plant Science 8: 598. 10.3389/fpls.2017.00598. PubMed DOI PMC
Mastretta‐Yanes, A. , Zamudio S., Jorgensen T. H., et al. 2014. “Gene Duplication, Population Genomics, and Species‐Level Differentiation Within a Tropical Mountain Shrub.” Genome Biology and Evolution 6: 2611–2624. 10.1093/gbe/evu205. PubMed DOI PMC
Matallana‐Ramirez, L. P. , Whetten R. W., Sanchez G. M., and Payn K. G.. 2021. “Breeding for Climate Change Resilience: A Case Study of Loblolly Pine ( PubMed DOI PMC
Merlin, M. , Perot T., Perret S., Korboulewsky N., and Vallet P.. 2015. “Effects of Stand Composition and Tree Size on Resistance and Resilience to Drought in Sessile Oak and Scots Pine.” Forest Ecology and Management 339: 22–33. 10.1016/j.foreco.2014.11.032. DOI
Mertens, S. , Verbraeken L., Sprenger H., et al. 2023. “Monitoring of Drought Stress and Transpiration Rate Using Proximal Thermal and Hyperspectral Imaging in an Indoor Automated Plant Phenotyping Platform.” Plant Methods 19: 132. 10.1186/s13007-023-01102-1. PubMed DOI PMC
Michelozzi, M. , Loreto F., Colom R., Rossi F., and Calamassi R.. 2011. “Drought Responses in Aleppo Pine Seedlings From Two Wild Provenances With Different Climatic Features.” Photosynthetica 49: 564–572. 10.1007/s11099-011-0068-1. DOI
Mohammed, G. H. , Binder W. D., and Gillies S. L.. 1995. “Chlorophyll Fluorescence: A Review of Its Practical Forestry Applications and Instrumentation.” Scandinavian Journal of Forest Research 10: 383–410. 10.1080/02827589509382904. DOI
Moran, E. , Lauder J., Musser C., Stathos A., and Shu M.. 2017. “The Genetics of Drought Tolerance in Conifers.” New Phytologist 216: 1034–1048. 10.1111/nph.14774. PubMed DOI
Muller, J. D. , Rotenberg E., Tatarinov F., Oz I., and Yakir D.. 2021. “Evidence for Efficient Nonevaporative Leaf‐To‐Air Heat Dissipation in a Pine Forest Under Drought Conditions.” New Phytologist 232: 2254–2266. 10.1111/nph.17742. PubMed DOI
Nadal‐Sala, D. , Grote R., Birami B., et al. 2021. “Leaf Shedding and Non‐Stomatal Limitations of Photosynthesis Mitigate Hydraulic Conductance Losses in Scots Pine Saplings During Severe Drought Stress.” Frontiers in Plant Science 12: 715127. 10.3389/fpls.2021.715127. PubMed DOI PMC
Neale, D. B. , Wegrzyn J. L., Stevens K. A., et al. 2014. “Decoding the Massive Genome of Loblolly Pine Using Haploid DNA and Novel Assembly Strategies.” Genome Biology 15: R59. 10.1186/gb-2014-15-3-r59. PubMed DOI PMC
Niskanen, A. K. , Kujala S. T., Kärkkäinen K., Savolainen O., and Pyhäjärvi T.. 2024. “Does the Seed Fall Far From the Tree? Weak Fine‐Scale Genetic Structure in a Continuous Scots Pine Population.” Peer Community Journal 4: e45. 10.24072/pcjournal.413. DOI
Noctor, G. , Mhamdi A., and Foyer C. H.. 2014. “The Roles of Reactive Oxygen Metabolism in Drought: Not So Cut and Dried[1][C][W].” Plant Physiology 164: 1636–1648. 10.1104/pp.113.233478. PubMed DOI PMC
Ojeda, D. I. , Mattila T. M., Ruttink T., et al. 2019. “Utilization of Tissue Ploidy Level Variation in De Novo Transcriptome Assembly of PubMed DOI PMC
O'Sullivan, K. S. W. , Vilà‐Cabrera A., Chen J., Greenwood S., Chang C., and Jump A. S.. 2022. “High Intraspecific Trait Variation Results in a Resource Allocation Spectrum of a Subtropical Pine Across an Elevational Gradient.” Journal of Biogeography 49: 668–681. 10.1111/jbi.14336. DOI
Pavan, S. , Delvento C., Ricciardi L., Lotti C., Ciani E., and D'Agostino N.. 2020. “Recommendations for Choosing the Genotyping Method and Best Practices for Quality Control in Crop Genome‐Wide Association Studies.” Frontiers in Genetics 11: 447. PubMed PMC
Pearson, M. , Saarinen M., Nummelin L., et al. 2013. “Tolerance of Peat‐Grown Scots Pine Seedlings to Waterlogging and Drought: Morphological, Physiological, and Metabolic Responses to Stress.” Forest Ecology and Management 307: 43–53. 10.1016/j.foreco.2013.07.007. DOI
Pyhäjärvi, T. , Salmela M. J., and Savolainen O.. 2008. “Colonization Routes of DOI
Rehschuh, R. , Rehschuh S., Gast A., et al. 2022. “Tree Allocation Dynamics Beyond Heat and Hot Drought Stress Reveal Changes in Carbon Storage, Belowground Translocation and Growth.” New Phytologist 233: 687–704. 10.1111/nph.17815. PubMed DOI
Rehschuh, R. , and Ruehr N. K.. 2022. “Diverging Responses of Water and Carbon Relations During and After Heat and Hot Drought Stress in PubMed DOI PMC
Rennenberg, H. , Loreto F., Polle A., et al. 2006. “Physiological Responses of Forest Trees to Heat and Drought.” Plant Biology 8: 556–571. 10.1055/s-2006-924084. PubMed DOI
Ribeyre, Z. , Depardieu C., Prunier J., et al. 2025. “De Novo Transcriptome Assembly and Discovery of Drought‐Responsive Genes in White Spruce ( PubMed DOI PMC
Rodrigues, M. , Cunill Camprubí À., Balaguer‐Romano R., et al. 2023. “Drivers and Implications of the Extreme 2022 Wildfire Season in Southwest Europe.” Science of the Total Environment 859: 160320. 10.1016/j.scitotenv.2022.160320. PubMed DOI
Samaniego, L. , Thober S., Kumar R., et al. 2018. “Anthropogenic Warming Exacerbates European Soil Moisture Droughts.” Nature Climate Change 8: 421–426.
Santini, F. , Kefauver S. C., Araus J. L., et al. 2021. “Bridging the Genotype–Phenotype Gap for a Mediterranean Pine by Semi‐Automatic Crown Identification and Multispectral Imagery.” New Phytologist 229: 245–258. 10.1111/nph.16862. PubMed DOI
Satoh, Y. , Yoshimura K., Pokhrel Y., et al. 2022. “The Timing of Unprecedented Hydrological Drought Under Climate Change.” Nature Communications 13: 3287. 10.1038/s41467-022-30729-2. PubMed DOI PMC
Seidel, H. , Matiu M., and Menzel A.. 2019. “Compensatory Growth of Scots Pine Seedlings Mitigates Impacts of Multiple Droughts Within and Across Years.” Frontiers in Plant Science 10: 519. 10.3389/fpls.2019.00519. PubMed DOI PMC
Seidel, H. , and Menzel A.. 2016. “Above‐Ground Dimensions and Acclimation Explain Variation in Drought Mortality of Scots Pine Seedlings From Various Provenances.” Frontiers in Plant Science 7: 1014. 10.3389/fpls.2016.01014. PubMed DOI PMC
Seidel, H. , Schunk C., Matiu M., and Menzel A.. 2016. “Diverging Drought Resistance of Scots Pine Provenances Revealed by Infrared Thermography.” Frontiers in Plant Science 7: 1247. 10.3389/fpls.2016.01247. PubMed DOI PMC
Seidl, R. , Schelhaas M.‐J., Rammer W., and Verkerk P. J.. 2014. “Increasing Forest Disturbances in Europe and Their Impact on Carbon Storage.” Nature Climate Change 4: 806–810. 10.1038/nclimate2318. PubMed DOI PMC
Seiler, J. R. , and Cazell B. H.. 1990. “Influence of Water Stress on the Physiology and Growth of Red Spruce Seedlings.” Tree Physiology 6: 69–77. 10.1093/treephys/6.1.69. PubMed DOI
Semerci, A. , Semerci H., Çalişkan B., Çiçek N., Ekmekçi Y., and Mencuccini M.. 2017. “Morphological and Physiological Responses to Drought Stress of European Provenances of Scots Pine.” European Journal of Forest Research 136: 91–104. 10.1007/s10342-016-1011-6. DOI
Senf, C. , Pflugmacher D., Zhiqiang Y., et al. 2018. “Canopy Mortality Has Doubled in Europe's Temperate Forests Over the Last Three Decades.” Nature Communications 9: 4978. 10.1038/s41467-018-07539-6. PubMed DOI PMC
Smith, S. M. , Fulton D. C., Chia T., et al. 2004. “Diurnal Changes in the Transcriptome Encoding Enzymes of Starch Metabolism Provide Evidence for Both Transcriptional and Posttranscriptional Regulation of Starch Metabolism in Arabidopsis Leaves.” Plant Physiology 136: 2687–2699. 10.1104/pp.104.044347. PubMed DOI PMC
Sofronova, V. E. , Dymova O. V., Golovko T. K., Chepalov V. A., and Petrov K. A.. 2016. “Adaptive Changes in Pigment Complex of DOI
Stejskal, J. , Čepl J., Neuwirhtová E., et al. 2023. “Making the Genotypic Variation Visible: Hyperspectral Phenotyping in Scots Pine Seedlings.” Plant Phenomics 5: e0111. 10.34133/plantphenomics.0111. PubMed DOI PMC
Suissa, J. S. , De La Cerda G. Y., Graber L. C., et al. 2024. “Data‐Driven Guidelines for Phylogenomic Analyses Using SNP Data.” Applications in Plant Sciences 12: e11611. 10.1002/aps3.11611. PubMed DOI PMC
Taeger, S. , Sparks T. H., and Menzel A.. 2015. “Effects of Temperature and Drought Manipulations on Seedlings of Scots Pine Provenances.” Plant Biology 17: 361–372. 10.1111/plb.12245. PubMed DOI
Traversari, S. , Giovannelli A., and Emiliani G.. 2022. “Wood Formation Under Changing Environment: Omics Approaches to Elucidate the Mechanisms Driving the Early‐To‐Latewood Transition in Conifers.” Forests 13: 608. 10.3390/f13040608. DOI
Tuberosa, R. 2012. “Phenotyping for Drought Tolerance of Crops in the Genomics Era.” Frontiers in Physiology 3: 347. PubMed PMC
Tyrmi, J. S. , Vuosku J., Acosta J. J., et al. 2020. “Genomics of Clinal Local Adaptation in PubMed DOI PMC
Verdu, C. F. , Guichoux E., Quevauvillers S., et al. 2016. “Dealing With Paralogy in RADseq Data: In Silico Detection and Single Nucleotide Polymorphism Validation in PubMed DOI PMC
Violle, C. , Navas M.‐L., Vile D., et al. 2007. “Let the Concept of Trait Be Functional!” Oikos 116: 882–892. 10.1111/j.0030-1299.2007.15559.x. DOI
Wachowiak, W. , Salmela M. J., Ennos R. A., Iason G., and Cavers S.. 2011. “High Genetic Diversity at the Extreme Range Edge: Nucleotide Variation at Nuclear Loci in Scots Pine ( PubMed DOI PMC
Wang, K.‐Y. , Kellomäki S., and Zha T.. 2003. “Modifications in Photosynthetic Pigments and Chlorophyll Fluorescence in 20‐Year‐Old Pine Trees After a Four‐Year Exposure to Carbon Dioxide and Temperature Elevation.” Photosynthetica 41: 167–175. 10.1023/B:PHOT.0000011948.00870.db. DOI
Wu, D. , Shu M., and Moran E. V.. 2023. “Heritability of Plastic Trait Changes in Drought‐Exposed Ponderosa Pine Seedlings.” Ecosphere 14: e4454. 10.1002/ecs2.4454. DOI
Yang, J. , Benyamin B., McEvoy B. P., et al. 2010. “Common SNPs Explain a Large Proportion of the Heritability for Human Height.” Nature Genetics 42: 565–569. 10.1038/ng.608. PubMed DOI PMC
Zlobin, I. E. 2024. “Tree Post‐Drought Recovery: Scenarios, Regulatory Mechanisms and Ways to Improve.” Biological Reviews 99: 1595–1612. 10.1111/brv.13083. PubMed DOI
figshare
10.6084/m9.figshare.29474057