Molecular Landscape of Pediatric Low-Grade Gliomas: Insights From RNA-NGS and Bioinformatic Analysis

. 2025 Oct ; 64 (10) : e70085.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41074694

Grantová podpora
No 00064203 MH CZ-DRO, University Hospital Motol, Prague, Czech Republic
The foundation "Nation to Children", the project "1000 Braves"
LX22NPO5102 The project National Institute for Cancer Research (Program EXCELES, Funded by the European Union-Next Generation EU)

Pediatric low-grade gliomas (pLGG) are the most common group of childhood brain tumors. Genetic alterations in the RAS-RAF-mitogen-activated protein kinase (MAPK) pathway are the molecular drivers in the vast majority of pLGG. A large proportion of pediatric pLGG are characterized by the presence of fusion genes. An institutional molecular analysis together with an RNA-NGS study was performed to reveal LGG-associated molecular alterations. In our cohort of pLGG patients, molecular alterations were identified in 318 out of 342 cases (92.9%) through a combination of RT-PCR, Sanger sequencing, and NGS methodologies. Fusion events were independently called using three fusion callers: Archer Analysis 6.0 and/or 7.0, Arriba version 2.4, and STAR-Fusion 24. Among these, STAR-Fusion had the lowest sensitivity, detecting rearrangements in only 67% of fusion-positive cases. In contrast, Arriba detected rearrangements in 97.77% of cases, while Archer detected rearrangements in 88.6% of cases. These findings highlight differences in detection efficiency among fusion callers, emphasizing the importance of tool selection in molecular diagnostics. The detection of fusion genes is very important for correct diagnosis, prognosis, and adequate targeted treatment.

Zobrazit více v PubMed

Manoharan N., Liu K. X., Mueller S., Haas‐Kogan D. A., and Bandopadhayay P., “Pediatric Low‐Grade Glioma: Targeted Therapeutics and Clinical Trials in the Molecular Era,” Neoplasia 36 (2023): 100857, 10.1016/j.neo.2022.100857. PubMed DOI PMC

Ali R. H., Almanabri M., Ali N. Y., et al., “Clinicopathological Analysis of BRAF and Non‐BRAF MAPK Pathway‐Altered Gliomas in Paediatric and Adult Patients: A Single‐Institution Study of 40 Patients,” Journal of Clinical Pathology 78, no. 3 (2025): 177–186, 10.1136/jcp-2023-209318. PubMed DOI PMC

Zhang J., Wu G., Miller C. P., et al., “Whole‐Genome Sequencing Identifies Genetic Alterations in Pediatric Low‐Grade Gliomas,” Nature Genetics 45 (2013): 602–612, 10.1038/ng.2611. PubMed DOI PMC

Ryall S., Zapotocky M., Fukuoka K., et al., “Integrated Molecular and Clinical Analysis of 1,000 Pediatric Low‐Grade Gliomas,” Cancer Cell 37 (2020): 569–583.e5, 10.1016/j.ccell.2020.03.011. PubMed DOI PMC

Jones D. T., Hutter B., Jäger N., et al., “Recurrent Somatic Alterations of FGFR1 and NTRK2 in Pilocytic Astrocytoma,” Nature Genetics 45 (2013): 927–932, 10.1038/ng.2682. PubMed DOI PMC

Rivera B., Gayden T., Carrot‐Zhang J., et al., “Germline and Somatic FGFR1 Abnormalities in Dysembryoplastic Neuroepithelial Tumors,” Acta Neuropathologica 131 (2016): 847–863, 10.1007/s00401-016-1549-x. PubMed DOI PMC

Funakoshi Y., Hata N., Kuga D., et al., “Pediatric Glioma: An Update of Diagnosis, Biology, and Treatment,” Cancers 13 (2021): 1–17, 10.3390/cancers13040758. PubMed DOI PMC

Ramkissoon L. A., Horowitz P. M., Craig J. M., et al., “Genomic Analysis of Diffuse Pediatric Low‐Grade Gliomas Identifies Recurrent Oncogenic Truncating Rearrangements in the Transcription Factor MYBL1,” Proceedings of the National Academy of Sciences of the United States of America 110 (2013): 8188–8193, 10.1073/pnas.1300252110. PubMed DOI PMC

Fangusaro J., Jones D. T., Packer R. J., et al., “Pediatric Low‐Grade Glioma: State‐Of‐The‐Art and Ongoing Challenges,” Neuro‐Oncology 26 (2024): 25–37, 10.1093/neuonc/noad195. PubMed DOI PMC

Chang E. K., Smith‐Cohn M. A., Tamrazi B., et al., “IDH‐Mutant Brainstem Gliomas in Adolescent and Young Adult Patients: Report of Three Cases and Review of the Literature,” Brain Pathology 31 (2021): e12959, 10.1111/bpa.12959. PubMed DOI PMC

Jones D. T., Kocialkowski S., Liu L., et al., “Tandem Duplication Producing a Novel Oncogenic BRAF Fusion Gene Defines the Majority of Pilocytic Astrocytomas,” Cancer Research 68, no. 21 (2008): 8673–8677, 10.1158/0008-5472.CAN-08-2097. PubMed DOI PMC

Jones D. T., Gronych J., Lichter P., Witt O., and Pfister S. M., “MAPK Pathway Activation in Pilocytic Astrocytoma,” Cellular and Molecular Life Sciences 69 (2012): 1799–1811, 10.1007/s00018-011-0898-9. PubMed DOI PMC

Zwaig M., Baguette A., Hu B., et al., “Detection and Genomic Analysis of BRAF Fusions in Juvenile Pilocytic Astrocytoma Through the Combination and Integration of Multi‐Omic Data,” BMC Cancer 22 (2022): 1–13, 10.1186/s12885-022-10359-z. PubMed DOI PMC

Ahmed M., Sieben A., Van Genechten T., et al., “Rare Oncogenic Fusions in Pediatric Central Nervous System Tumors: A Case Series and Literature Review,” Cancers 16, no. 19 (2024): 3344, 10.3390/cancers16193344. PubMed DOI PMC

Sahm F., Brandner S., Bertero L., et al., “Molecular Diagnostic Tools for the World Health Organization (WHO) 2021 Classification of Gliomas, Glioneuronal and Neuronal Tumors; an EANO Guideline,” Neuro‐Oncology 25 (2023): 1731–1749, 10.1093/neuonc/noad100. PubMed DOI PMC

Roosen M., Odé Z., Bunt J., and Kool M., “The Oncogenic Fusion Landscape in Pediatric CNS Neoplasms,” Acta Neuropathologica 143 (2022): 427–451, 10.1007/s00401-022-02405-8. PubMed DOI PMC

Hostein I., Faur N., Primois C., et al., “BRAF Mutation Status in Gastrointestinal Stromal Tumors,” American Journal of Clinical Pathology 133 (2010): 141–148, 10.1309/AJCPPCKGA2QGBJ1R. PubMed DOI

Becker A. P., Scapulatempo‐Neto C., Carloni A. C., et al., “KIAA1549: BRAF Gene Fusion and FGFR1 Hotspot Mutations Are Prognostic Factors in Pilocytic Astrocytomas,” Journal of Neuropathology and Experimental Neurology 74 (2015): 743–754, 10.1097/NEN.0000000000000213. PubMed DOI PMC

Badiali M., Gleize V., Paris S., et al., “KIAA1549‐BRAF Fusions and IDH Mutations Can Coexist in Diffuse Gliomas of Adults,” Brain Pathology 22 (2012): 841–847, 10.1111/j.1750-3639.2012.00603.x. PubMed DOI PMC

Kilday J. P., Bartels U. K., and Bouffet E., “Targeted Therapy in Pediatric Low‐Grade Glioma,” Current Neurology and Neuroscience Reports 14, no. 4 (2014): 441, 10.1007/s11910-014-0441-0. PubMed DOI

Chen S., Zhou Y., Chen Y., and Gu J., “Fastp: An Ultra‐Fast All‐In‐One FASTQ Preprocessor,” Bioinformatics 34, no. 17 (2018): i884–i890, 10.1093/bioinformatics/bty560. PubMed DOI PMC

Andrews S., FastQC: A Quality Control Tool for High Throughput Sequence Data, 2010.

Dobin A., Davis C. A., Schlesinger F., et al., “STAR: Ultrafast Universal RNA‐seq Aligner,” Bioinformatics 29 (2013): 15–21, 10.1093/bioinformatics/bts635. PubMed DOI PMC

Jung S., Lee H., Kim J., et al., “Accurate and Efficient Detection of Gene Fusions From RNA Sequencing Data,” Genome Research 30, no. 7 (2020): 1134–1145, 10.1101/gr.257246.119. PubMed DOI PMC

Haas B. J., Dobin A., Li B., et al., “Accuracy Assessment of Fusion Transcript Detection Via Read‐Mapping and De Novo Fusion Transcript Assembly‐Based Methods,” Genome Biology 20 (2019): 213, 10.1186/s13059-019-1842-9. PubMed DOI PMC

Ryall S., Tabori U., and Hawkins C., “Pediatric Low‐Grade Glioma in the Era of Molecular Diagnostics,” Acta Neuropathologica Communications 8, no. 1 (2020): 30, 10.1186/s40478-020-00902-z. PubMed DOI PMC

Janzarik W. G., Kratz C. P., Loges N. T., et al., “Further Evidence for a Somatic KRAS Mutation in a Pilocytic Astrocytoma,” Neuropediatrics 38 (2007): 61–63, 10.1055/s-2007-984451. PubMed DOI

Johnson A., Severson E., Gay L., et al., “Comprehensive Genomic Profiling of 282 Pediatric Low‐ and High‐Grade Gliomas Reveals Genomic Drivers, Tumor Mutational Burden, and Hypermutation Signatures,” Oncologist 22 (2017): 1478–1490, 10.1634/theoncologist.2017-0242. PubMed DOI PMC

Pekmezci M., Villanueva‐Meyer J. E., Goode B., et al., “The Genetic Landscape of Ganglioglioma,” Acta Neuropathologica Communications 6 (2018): 47, 10.1186/s40478-018-0551-z. PubMed DOI PMC

Rankin A., Johnson A., Roos A., et al., “Targetable BRAF and RAF1 Alterations in Advanced Pediatric Cancers,” Oncologist 26 (2021): e153–e163, 10.1002/ONCO.13519. PubMed DOI PMC

Qaddoumi I., Orisme W., Wen J., et al., “Genetic Alterations in Uncommon Low‐Grade Neuroepithelial Tumors: BRAF, FGFR1, and MYB Mutations Occur at High Frequency and Align With Morphology,” Acta Neuropathologica 131 (2016): 833–845, 10.1007/s00401-016-1539-z. PubMed DOI PMC

Ryall S., Tabori U., and Hawkins C., “A Comprehensive Review of Paediatric Low‐Grade Diffuse Glioma: Pathology, Molecular Genetics and Treatment,” Brain Tumor Pathology 34 (2017): 51–61, 10.1007/s10014-017-0282-z. PubMed DOI

Guerreiro Stucklin A. S., Ryall S., Fukuoka K., et al., “Alterations in ALK/ROS1/NTRK/MET Drive a Group of Infantile Hemispheric Gliomas,” Nature Communications 10, no. 1 (2019): 4343, 10.1038/s41467-019-12187-5. PubMed DOI PMC

Louis D. N., Perry A., Wesseling P., et al., “The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary,” Neuro‐Oncology 23 (2021): 1231–1251, 10.1093/neuonc/noab106. PubMed DOI PMC

Wu L., Yao H., Chen H., et al., “Landscape of Somatic Alterations in Large‐Scale Solid Tumors From an Asian Population,” Nature Communications 13, no. 1 (2022): 4264, 10.1038/s41467-022-31780-9. PubMed DOI PMC

Oon M. L., Low S. Y. Y., Kuick C. H., et al., “An Unusual Ganglioglioma With Pseudopapillary Features and PRKAR2B‐BRAF Fusion,” Journal of Neuropathology and Experimental Neurology 80 (2021): 1000–1003, 10.1093/jnen/nlab099. PubMed DOI

Li S., Lai M., and Cai L., “LGG‐36. Analysis of BRAF‐Related Mutations in Pediatric Low‐Grade Glioma,” Neuro‐Oncology 24, no. Suppl 1 (2022): i96, 10.1093/neuonc/noac079.348. DOI

Phillips J. J., Gong H., Chen K., et al., “Activating NRF1BRAF and ATG7RAF1 Fusions in Anaplastic Pleomorphic Xanthoastrocytoma Without BRAF p.V600E Mutation,” Acta Neuropathologica 132, no. 5 (2016): 757–760, 10.1007/s00401-016-1616-3. PubMed DOI PMC

Galbraith K., Serrano J., Shen G., et al., “Impact of Rare and Multiple Concurrent Gene Fusions on Diagnostic DNA Methylation Classifier in Brain Tumors,” Molecular Cancer Research 22 (2024): 21–28, 10.1158/1541-7786.MCR-23-0627. PubMed DOI PMC

Cin H., Meyer C., Herr R., et al., “Oncogenic FAM131B‐BRAF Fusion Resulting From 7q34 Deletion Comprises an Alternative Mechanism of MAPK Pathway Activation in Pilocytic Astrocytoma,” Acta Neuropathologica 121 (2011): 763–774, 10.1007/s00401-011-0817-z. PubMed DOI

Zhang Y., Chen F., Donehower L. A., Scheurer M. E., and Creighton C. J., “A Pediatric Brain Tumor Atlas of Genes Deregulated by Somatic Genomic Rearrangement,” Nature Communications 12, no. 1 (2021): 937, 10.1038/s41467-021-21081-y. PubMed DOI PMC

Hutchinson K. E., Lipson D., Stephens P. J., et al., “BRAF Fusions Define a Distinct Molecular Subset of Melanomas With Potential Sensitivity to MEK Inhibition,” Clinical Cancer Research 19 (2013): 6696–6702, 10.1158/1078-0432.CCR-13-1746. PubMed DOI PMC

Botton T., Yeh I., Nelson T., et al., “Recurrent BRAF Kinase Fusions in Melanocytic Tumors Offer an Opportunity for Targeted Therapy,” Pigment Cell & Melanoma Research 26, no. 6 (2013): 845–851, 10.1111/pcmr.12148. PubMed DOI PMC

Tomić T. T., Olausson J., Wilzén A., et al., “A New Fusion Mediating MAPK Pathway Activation in Pilocytic Astrocytoma,” PLoS One 12, no. 4 (2017): e0175638, 10.1371/journal.pone.0175638. PubMed DOI PMC

Gao Q., Liang W. W., Foltz S. M., et al., “Driver Fusions and Their Implications in the Development and Treatment of Human Cancers,” Cell Reports 23, no. 1 (2018): 227–238.e3, 10.1016/j.celrep.2018.03.050. PubMed DOI PMC

Hu X., Wang Q., Tang M., et al., “Tumor Fusions: An Integrative Resource for Cancer‐Associated Transcript Fusions,” Nucleic Acids Research 46, no. D1 (2018): D1144–D1149, 10.1093/nar/gkx1018. PubMed DOI PMC

Yoshihara K., Wang Q., Torres‐Garcia W., et al., “The Landscape and Therapeutic Relevance of Cancer‐Associated Transcript Fusions,” Oncogene 34 (2015): 4845–4854, 10.1038/onc.2014.406. PubMed DOI PMC

Frattini V., Trifonov V., Chan J. M., et al., “The Integrated Landscape of Driver Genomic Alterations in Glioblastoma,” Nature Genetics 45, no. 10 (2013): 1141–1149, 10.1038/ng.2734. PubMed DOI PMC

Yao Z., Torres N. M., Tao A., et al., “BRAF Mutants Evade ERK‐Dependent Feedback by Different Mechanisms That Determine Their Sensitivity to Pharmacologic Inhibition,” Cancer Cell 28 (2015): 370–383, 10.1016/j.ccell.2015.08.001. PubMed DOI PMC

Cardarella S., Ogino A., Nishino M., et al., “Clinical, Pathologic, and Biologic Features Associated With BRAF Mutations in Non‐Small Cell Lung Cancer,” Clinical Cancer Research 19 (2013): 4532–4540, 10.1158/1078-0432.CCR-13-0657. PubMed DOI PMC

Röring M., Herr R., Fiala G. J., et al., “Distinct Requirement for an Intact Dimer Interface in Wild‐Type, V600E and Kinase‐Dead B‐Raf Signalling,” EMBO Journal 31 (2012): 2629–2647, 10.1038/emboj.2012.100. PubMed DOI PMC

Poulikakos P. I., Zhang C., Bollag G., Shokat K. M., and Rosen N., “RAF Inhibitors Transactivate RAF Dimers and ERK Signalling in Cells With Wild‐Type BRAF,” Nature 464 (2010): 427–430, 10.1038/nature08902. PubMed DOI PMC

Brown L. M., Ekert P. G., and Fleuren E. D. G., “Biological and Clinical Implications of FGFR Aberrations in Paediatric and Young Adult Cancers,” Oncogene 42, no. 23 (2023): 1875–1888, 10.1038/s41388-023-02705-7. PubMed DOI PMC

Sievers P., Stichel D., Schrimpf D., et al., “FGFR1:TACC1 Fusion Is a Frequent Event in Molecularly Defined Extraventricular Neurocytoma,” Acta Neuropathologica 136 (2018): 293–302, 10.1007/s00401-018-1882-3. PubMed DOI

Singh D., Chan J. M., Zoppoli P., et al., “Transforming Fusions of FGFR and TACC Genes in Human Glioblastoma,” Science 337 (2012): 1231–1235, 10.1126/science.1220834. PubMed DOI PMC

Di Stefano A. L., Fucci A., Frattini V., et al., “Detection, Characterization, and Inhibition of FGFR‐TACC Fusions in IDH Wild‐Type Glioma,” Clinical Cancer Research 21 (2015): 3307–3317, 10.1158/1078-0432.CCR-14-2199. PubMed DOI PMC

Huse J. T., Snuderl M., Jones D. T., et al., “Polymorphous Low‐Grade Neuroepithelial Tumor of the Young (PLNTY): An Epileptogenic Neoplasm With Oligodendroglioma‐Like Components, Aberrant CD34 Expression, and Genetic Alterations Involving the MAP Kinase Pathway,” Acta Neuropathologica 133 (2017): 417–429, 10.1007/s00401-016-1639-9. PubMed DOI PMC

Pagès M., Debily M. A., Fina F., et al., “The Genomic Landscape of Dysembryoplastic Neuroepithelial Tumours and a Comprehensive Analysis of Recurrent Cases,” Neuropathology and Applied Neurobiology 48 (2022): e12834, 10.1111/NAN.12834. PubMed DOI PMC

Rand V., Huang J., Stockwell T., et al., “Sequence Survey of Receptor Tyrosine Kinases Reveals Mutations in Glioblastomas,” Proceedings of the National Academy of Sciences of the United States of America 102 (2005): 14344–14349, 10.1073/pnas.0507200102. PubMed DOI PMC

Lew E. D., Furdui C. M., Anderson K. S., and Schlessinger J., “The Precise Sequence of FGF Receptor Autophosphorylation Is Kinetically Driven and Is Disrupted by Oncogenic Mutations,” Science Signaling 2, no. 58 (2009): ra6, 10.1126/scisignal.2000021. PubMed DOI PMC

Yoon K., Nery S., Rutlin M. L., Radtke F., Fishell G., and Gaiano N., “Fibroblast Growth Factor Receptor Signaling Promotes Radial Glial Identity and Interacts With Notch1 Signaling in Telencephalic Progenitors,” Journal of Neuroscience 24 (2004): 9497–9506, 10.1523/JNEUROSCI.0993-04.2004. PubMed DOI PMC

Mohammadi M., Honegger A. M., Rotin D., et al., “A Tyrosine‐Phosphorylated Carboxy‐Terminal Peptide of the Fibroblast Growth Factor Receptor (Flg) is a Binding Site for the SH2 Domain of Phospholipase C‐Gamma 1,” Molecular and Cellular Biology 11 (1991): 5068–5078, 10.1128/mcb.11.10.5068-5078.1991. PubMed DOI PMC

Lind K. T., Chatwin H. V., DeSisto J., et al., “Novel RAF Fusions in Pediatric Low‐Grade Gliomas Demonstrate MAPK Pathway Activation,” Journal of Neuropathology and Experimental Neurology 80, no. 12 (2021): 1099–1107, 10.1093/jnen/nlab110. PubMed DOI

Palanisamy N., Ateeq B., Kalyana‐Sundaram S., et al., “Rearrangements of the RAF Kinase Pathway in Prostate Cancer, Gastric Cancer and Melanoma,” Nature Medicine 16, no. 7 (2011): 793–798, 10.1038/nm.2166. PubMed DOI PMC

McEvoy C. R., Xu H., Smith K., et al., “Profound MEK Inhibitor Response in a Cutaneous Melanoma Harboring a GOLGA4‐RAF1 Fusion,” Journal of Clinical Investigation 129 (2019): 1940–1945, 10.1172/JCI123089. PubMed DOI PMC

Jones K. A., Bossler A. D., Bellizzi A. M., and Snow A. N., “ PubMed DOI PMC

Papenhausen P., Kelly C. A., Zhang Z., Tepperberg J., Burnside R. D., and Schwartz S., “Multidisciplinary Analysis of Pediatric T‐ALL: 9q34 Gene Fusions,” Cancer Genetics 231–232 (2019): 1–13, 10.1016/j.cancergen.2018.12.002. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...