"Precision on Two Wheels"─Structural Refinement of 64Cu- and 68Ga-Labeled Bicyclic Peptides Targeting Nectin-4 for Improved Tumor Imaging: From Preclinical Development to First-in-Human Application
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41081542
PubMed Central
PMC12557367
DOI
10.1021/acs.jmedchem.5c02371
Knihovny.cz E-zdroje
- MeSH
- cyklické peptidy * chemie MeSH
- lidé MeSH
- molekuly buněčné adheze * metabolismus MeSH
- myši nahé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nektiny MeSH
- pozitronová emisní tomografie metody MeSH
- radiofarmaka * chemie chemická syntéza MeSH
- radioizotopy galia chemie MeSH
- radioizotopy mědi * chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Copper-64 MeSH Prohlížeč
- cyklické peptidy * MeSH
- Gallium-68 MeSH Prohlížeč
- molekuly buněčné adheze * MeSH
- NECTIN4 protein, human MeSH Prohlížeč
- nektiny MeSH
- radiofarmaka * MeSH
- radioizotopy galia MeSH
- radioizotopy mědi * MeSH
The cell adhesion protein nectin-4 emerged as a valid therapeutic target for antibody- and peptide-drug conjugates in cancer. To support patient stratification for such targeted therapies, there is a clinical need for molecular imaging agents capable of quantifying nectin-4 levels noninvasively in vivo. For this purpose, we developed 64Cu- and 68Ga-labeled ligands derived from bicyclic peptide-drug conjugate BT8009. A library of peptides was prepared with a major focus on the bioisosteric replacement of the original methionine residue due to its susceptibility to oxidation. The peptides were characterized for their binding behavior to nectin-4, and radiopharmacological characterization of selected radioligands was performed using urothelial carcinoma cell lines and tumor xenograft models derived thereof. The suitability of the most promising ligand from the preclinical studies, NECT-224, for PET imaging purposes was also demonstrated in a first-in-human application using [68Ga]Ga-NECT-224. The results suggest its further clinical development, but also that of [64Cu]Cu-NECT-224.
German Cancer Consortium Partner Site Dresden 01307 Dresden Germany
German Cancer Research Center 69120 Heidelberg Germany
Zobrazit více v PubMed
Tran H. H., Yamaguchi A., Manning H. C.. Radiotheranostic landscape: A review of clinical and preclinical development. Eur. J. Nucl. Med. Mol. Imaging. 2025;52:2685. doi: 10.1007/s00259-025-07103-7. PubMed DOI
Zhang S., Wang X., Gao X., Chen X., Li L., Li G., Liu C., Miao Y., Wang R., Hu K.. Radiopharmaceuticals and their applications in medicine. Signal Transduct. Target. Ther. 2025;10:1. doi: 10.1038/s41392-024-02041-6. PubMed DOI PMC
Armstrong A., Coburn F., Nsereko Y., Al Musaimi O.. Peptide-drug conjugates: a new hope for cancer. J. Pept. Sci. 2025;31:e70040. doi: 10.1002/psc.70040. PubMed DOI PMC
Boy R. G., Mier W., Nothelfer E. M., Altmann A., Eisenhut M., Kolmar H., Tomaszowski M., Kramer S., Haberkorn U.. Sunflower trypsin inhibitor 1 derivatives as molecular scaffolds for the development of novel peptidic Radiopharmaceuticals. Mol. Imaging Biol. 2010;12:377–385. doi: 10.1007/s11307-009-0287-z. PubMed DOI
Fani M., Mueller A., Tamma M. L., Nicolas G., Rink H. R., Cescato R., Reubi J. C., Maecke H. R.. Radiolabeled Bicyclic somatostatin-based analogs: a novel class of potential radiotracers for SPECT/PET of neuroendocrine tumors. J. Nucl. Med. 2010;51:1771–1779. doi: 10.2967/jnumed.110.076695. PubMed DOI
Rhodes C. A., Pei D.. Bicyclic peptides as next-generation therapeutics. Chemistry. 2017;23:12690–12703. doi: 10.1002/chem.201702117. PubMed DOI PMC
Ahangarzadeh S., Kanafi M. M., Hosseinzadeh S., Mokhtarzadeh A., Barati M., Ranjbari J., Tayebi L.. Bicyclic peptides: types, synthesis and applications. Drug Discovery Today. 2019;24:1311–1319. doi: 10.1016/j.drudis.2019.05.008. PubMed DOI
Feng D., Liu L., Shi Y., Du P., Xu S., Zhu Z., Xu J., Yao H.. Current development of Bicyclic peptides. Chin. Chem. Lett. 2023;34:108026. doi: 10.1016/j.cclet.2022.108026. DOI
Ullrich S., Nitsche C.. Bicyclic peptides: Paving the road for therapeutics of the future. Pept. Sci. 2023;116:e24326. doi: 10.1002/pep2.24326. DOI
Wieland T., Faulstich H.. Amatoxins, phallotoxins, phallolysin, and antamanide: the biologically active components of poisonous Amanita mushrooms. CRC Crit. Rev. Biochem. 1978;5:185–260. doi: 10.3109/10409237809149870. PubMed DOI
Kemp D. S., McNamara P.. Peptides containing β-turns I-- (gly-1-cys-gly)3 triply bridged by 1,3,5-(thiomethyl)benzene. Tetrahedron Lett. 1981;22:4571–4574. doi: 10.1016/S0040-4039(01)82984-1. DOI
Kemp D. S., McNamara P. E.. Conformationally restricted cyclic nonapeptides derived from L-cysteine and LL-3-amino-2-piperidone-6-carboxylic acid (LL-Acp), a potent.beta.-turn-inducing dipeptide analog. J. Org. Chem. 1985;50:5834–5838. doi: 10.1021/jo00350a077. DOI
Heinis C., Rutherford T., Freund S., Winter G.. Phage-encoded combinatorial chemical libraries based on Bicyclic peptides. Nat. Chem. Biol. 2009;5:502–507. doi: 10.1038/nchembio.184. PubMed DOI
Lamers C.. Overcoming the shortcomings of peptide-based therapeutics. Future Drug Discovery. 2022;4:FDD75. doi: 10.4155/fdd-2022-0005. DOI
Diderich P., Heinis C.. Directed evolution of Bicyclic peptides for therapeutic application. Chimia. 2013;67:910–915. doi: 10.2533/chimia.2013.910. PubMed DOI
Eder M., Pavan S., Bauder-Wust U., van Rietschoten K., Baranski A. C., Harrison H., Campbell S., Stace C. L., Walker E. H., Chen L., Bennett G., Mudd G., Schierbaum U., Leotta K., Haberkorn U., Kopka K., Teufel D. P.. Bicyclic peptides as a new modality for imaging and targeting of proteins overexpressed by tumors. Cancer Res. 2019;79:841–852. doi: 10.1158/0008-5472.CAN-18-0238. PubMed DOI
Mudd G. E., Scott H., Chen L., van Rietschoten K., Ivanova-Berndt G., Dzionek K., Brown A., Watcham S., White L., Park P. U., Jeffrey P., Rigby M., Beswick P.. Discovery of BT8009: A nectin-4 Targeting Bicycle Toxin Conjugate for the Treatment of Cancer. J. Med. Chem. 2022;65:14337–14347. doi: 10.1021/acs.jmedchem.2c00065. PubMed DOI PMC
Mudd G. E., Brown A., Chen L., van Rietschoten K., Watcham S., Teufel D. P., Pavan S., Lani R., Huxley P., Bennett G. S.. Identification and optimization of EphA2-selective bicycles for the delivery of cytotoxic payloads. J. Med. Chem. 2020;63:4107–4116. doi: 10.1021/acs.jmedchem.9b02129. PubMed DOI
Gan Q., Cui K., Cao Q., Zhang N., Yang M. F., Yang X.. Development of a 18F-labeled Bicyclic peptide targeting EphA2 for molecular imaging of PSMA-negative prostate cancer. J. Med. Chem. 2023;66:14623–14632. doi: 10.1021/acs.jmedchem.3c01135. PubMed DOI
El Fakiri M., Regupathy A. R., Uhlmann L., Ayada N., Geis N. M., Domogalla L. C., Lahdenranta J., Blakeman B., Wood F., Meyer P. T., Huxley P., Eder M., Mudd G. E., Eder A. C.. Development and preclinical characterization of a novel radiotheranostic EphA2-targeting Bicyclic peptide. Theranostics. 2024;14:4701–4712. doi: 10.7150/thno.96641. PubMed DOI PMC
Harman M. A. J., Stanway S. J., Scott H., Demydchuk Y., Bezerra G. A., Pellegrino S., Chen L., Brear P., Lulla A., Hyvonen M., Beswick P. J., Skynner M. J.. Structure-guided chemical optimization of Bicyclic peptide (bicycle) inhibitors of angiotensin-converting enzyme 2. J. Med. Chem. 2023;66:9881–9893. doi: 10.1021/acs.jmedchem.3c00710. PubMed DOI
Narjes F., Edfeldt F., Petersen J., Oster L., Hamblet C., Bird J., Bold P., Rae R., Back E., Stomilovic S., Zlatoidsky P., Svensson T., Hidestal L., Kunalingam L., Shamovsky I., De Maria L., Gordon E., Lewis R. J., Watcham S., van Rietschoten K., Mudd G. E., Harrison H., Chen L., Skynner M. J.. Discovery and characterization of a Bicyclic peptide (bicycle) binder to thymic stromal lymphopoietin. J. Med. Chem. 2024;67:2220–2235. doi: 10.1021/acs.jmedchem.3c02163. PubMed DOI
Reymond N., Fabre S., Lecocq E., Adelaide J., Dubreuil P., Lopez M.. Nectin4/PRR4, a new afadin-associated member of the nectin family that trans-interacts with nectin1/PRR1 through V domain interaction. J. Biol. Chem. 2001;276:43205–43215. doi: 10.1074/jbc.M103810200. PubMed DOI
Challita-Eid P. M., Satpayev D., Yang P., An Z., Morrison K., Shostak Y., Raitano A., Nadell R., Liu W., Lortie D. R., Capo L., Verlinsky A., Leavitt M., Malik F., Avina H., Guevara C. I., Dinh N., Karki S., Anand B. S., Pereira D. S., Joseph I. B., Donate F., Morrison K., Stover D. R.. Enfortumab vedotin antibody-drug conjugate targeting nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models. Cancer Res. 2016;76:3003–3013. doi: 10.1158/0008-5472.CAN-15-1313. PubMed DOI
Bouleftour W., Guillot A., Magne N.. The anti-nectin 4: a promising tumor cells target. A systematic review. Mol. Cancer Ther. 2022;21:493–501. doi: 10.1158/1535-7163.MCT-21-0846. PubMed DOI
Heath E. I., Rosenberg J. E.. The biology and rationale of targeting nectin-4 in urothelial carcinoma. Nat. Rev. Urol. 2021;18:93–103. doi: 10.1038/s41585-020-00394-5. PubMed DOI
Huang K., Lui W. Y.. Nectins and nectin-like molecules (Necls): recent findings and their role and regulation in spermatogenesis. Semin. Cell Dev. Biol. 2016;59:54–61. doi: 10.1016/j.semcdb.2016.01.034. PubMed DOI
FDA grants regular approval to enfortumab vedotin-ejfv for locally advanced or metastatic urothelial cancer. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-regular-approval-enfortumab-vedotin-ejfv-locally-advanced-or-metastatic-urothelial-cancer (accessed Mar 13, 2025).
FDA approves enfortumab vedotin-ejfv with pembrolizumab for locally advanced or metastatic urothelial cancer. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-enfortumab-vedotin-ejfv-pembrolizumab-locally-advanced-or-metastatic-urothelial-cancer (accessed Mar 13, 2025).
Information for Padcev from European Medicines Agency. https://www.ema.europa.eu/en/medicines/human/EPAR/padcev (accessed Mar 13, 2025).
Rigby M., Bennett G., Chen L., Mudd G. E., Harrison H., Beswick P. J., Van Rietschoten K., Watcham S. M., Scott H. S., Brown A. N., Park P. U., Campbell C., Haines E., Lahdenranta J., Skynner M. J., Jeffrey P., Keen N., Lee K.. BT8009; A nectin-4 Targeting Bicycle Toxin Conjugate for Treatment of Solid Tumors. Mol. Cancer Ther. 2022;21:1747–1756. doi: 10.1158/1535-7163.MCT-21-0875. PubMed DOI PMC
Klümper N., Eckstein M., Hölzel M., Herrmann K., Hadaschik B., Grünwald V.. Re: First-in-human study of the radioligand 68Ga-N188 targeting nectin-4 for PET/CT imaging of advanced urothelial carcinoma: navigating metastatic urothelial cancer with nectin-4 PET/CT. Eur. Urol. 2023;84:514–515. doi: 10.1016/j.eururo.2023.05.029. PubMed DOI
Klümper N., Ralser D. J., Ellinger J., Roghmann F., Albrecht J., Below E., Alajati A., Sikic D., Breyer J., Bolenz C., Zengerling F., Erben P., Schwamborn K., Wirtz R. M., Horn T., Nagy D., Toma M., Kristiansen G., Buttner T., Hahn O., Grunwald V., Darr C., Erne E., Rausch S., Bedke J., Schlack K., Abbas M., Zschabitz S., Schwab C., Mustea A., Adam P., Manseck A., Wullich B., Ritter M., Hartmann A., Gschwend J., Weichert W., Erlmeier F., Holzel M., Eckstein M.. Membranous nectin-4 expression frequently decreases during metastatic spread of urothelial carcinoma and is associated with enfortumab vedotin resistance. Clin. Cancer Res. 2023;29:1496–1505. doi: 10.1158/1078-0432.CCR-22-1764. PubMed DOI PMC
Shao F., Pan Z., Long Y., Zhu Z., Wang K., Ji H., Zhu K., Song W., Song Y., Song X., Gai Y., Liu Q., Qin C., Jiang D., Zhu J., Lan X.. Nectin-4-targeted immunoSPECT/CT imaging and photothermal therapy of triple-negative breast cancer. J. Nanobiotechnol. 2022;20:243. doi: 10.1186/s12951-022-01444-3. PubMed DOI PMC
Campbell D. O., Noda A., Verlinsky A., Snyder J., Fujita Y., Murakami Y., Fushiki H., Miyoshi S., Lacayo S., Cabral E., Yang P., Stover D. R., Joseph I. B.. Preclinical Evaluation of an Anti-nectin-4 ImmunoPET Reagent in Tumor-Bearing Mice and Biodistribution Studies in Cynomolgus Monkeys. Mol. Imaging Biol. 2016;18:768–775. doi: 10.1007/s11307-016-0953-x. PubMed DOI
Ren Y., Liu T., Li S., Ma X., Xia L., Wang P., Guo Q., Yao Y., Hou X., Sheng X., Zhu H., Yang Z.. An iodine-labelled antibody-drug conjugate PET probe for noninvasive monitoring of nectin-4 expression in urothelial carcinoma. Int. J. Pharm. 2024;651:123756. doi: 10.1016/j.ijpharm.2023.123756. PubMed DOI
Huang W., Li L., Liang Y., Yang Q., Mixdorf J. C., Engle J. W., Fan Y., Kang L., Cai W.. ImmunoPET Imaging of Nectin4 Expression in Gastric and Bladder Cancer Using [64Cu]Cu-NOTA-Padcev. Mol. Pharmaceutics. 2025;22:3468–3478. doi: 10.1021/acs.molpharmaceut.5c00469. PubMed DOI PMC
Duan X., Xia L., Zhang Z., Ren Y., Pomper M. G., Rowe S. P., Li X., Li N., Zhang N., Zhu H., Yang Z., Sheng X., Yang X.. First-in-human study of the radioligand 68Ga-N188 targeting nectin-4 for PET/CT imaging of advanced urothelial carcinoma. Clin. Cancer Res. 2023;29:3395–3407. doi: 10.1158/1078-0432.CCR-23-0609. PubMed DOI
Zhang J., Duan X., Chen X., Zhang Z., Sun H., Shou J., Zhao G., Wang J., Ma Y., Yang Y., Tian X., Shen Q., Yu W., He Z., Fan Y., Yang X.. Translational PET imaging of nectin-4 expression in multiple different cancers with 68Ga-N188. J. Nucl. Med. 2024;65:12S–18S. doi: 10.2967/jnumed.123.266830. PubMed DOI
Chu J. W., Yin J., Wang D. I., Trout B. L.. Molecular dynamics simulations and oxidation rates of methionine residues of granulocyte colony-stimulating factor at different pH values. Biochemistry. 2004;43:1019–1029. doi: 10.1021/bi0356000. PubMed DOI
Nikolovska-Coleska Z., Wang R., Fang X., Pan H., Tomita Y., Li P., Roller P. P., Krajewski K., Saito N. G., Stuckey J. A., Wang S.. Development and optimization of a binding assay for the XIAP BIR3 domain using fluorescence polarization. Anal. Biochem. 2004;332:261–273. doi: 10.1016/j.ab.2004.05.055. PubMed DOI
Huang X.. Fluorescence polarization competition assay: the range of resolvable inhibitor potency is limited by the affinity of the fluorescent ligand. J. Biomol. Screen. 2003;8:34–38. doi: 10.1177/1087057102239666. PubMed DOI
Broan C. J., Cox J. P. L., Craig A. S., Kataky R., Parker D., Harrison A., Randall A. M., Ferguson G.. Structure and solution stability of indium and gallium complexes of 1,4,7-triazacyclononanetriacetate and of yttrium complexes of 1,4,7,10-tetraazacyclododecanetetraacetate and related ligands: kinetically stable complexes for use in imaging and radioimmunotherapy. X-Ray molecular structure of the indium and gallium complexes of 1,4,7-triazacyclononane-1,4,7-triacetic acid. J. Chem. Soc., Perkin Trans. 2. 1991:87. doi: 10.1039/p29910000087. DOI
Kubicek V., Bohmova Z., Sevcikova R., Vanek J., Lubal P., Polakova Z., Michalicova R., Kotek J., Hermann P.. NOTA complexes with Copper(II) and divalent metal ions: kinetic and thermodynamic studies. Inorg. Chem. 2018;57:3061–3072. doi: 10.1021/acs.inorgchem.7b02929. PubMed DOI
Padmaja S., Squadrito G. L., Lemercier J. N., Cueto R., Pryor W. A.. Rapid oxidation of DL-selenomethionine by peroxynitrite. Free Radic. Biol. Med. 1996;21:317–322. doi: 10.1016/0891-5849(96)00132-3. PubMed DOI
Hou W., Xu H.. Incorporating selenium into heterocycles and natural products - from chemical properties to pharmacological activities. J. Med. Chem. 2022;65:4436–4456. doi: 10.1021/acs.jmedchem.1c01859. PubMed DOI
Harrison O. J., Vendome J., Brasch J., Jin X., Hong S., Katsamba P. S., Ahlsen G., Troyanovsky R. B., Troyanovsky S. M., Honig B., Shapiro L.. nectin ectodomain structures reveal a canonical adhesive interface. Nat. Struct. Mol. Biol. 2012;19:906–915. doi: 10.1038/nsmb.2366. PubMed DOI PMC
Zhang X., Lu G., Qi J., Li Y., He Y., Xu X., Shi J., Zhang C. W., Yan J., Gao G. F.. Structure of measles virus hemagglutinin bound to its epithelial receptor nectin-4. Nat. Struct. Mol. Biol. 2013;20:67–72. doi: 10.1038/nsmb.2432. PubMed DOI
Toniolo, C. ; Formaggio, F. ; Woody, R. W. . Electronic circular dichroism of peptides. In Chromprehensive chiroptical spectroscopy. Applications in Stereochemical analysis of synthetic compounds, natural products, and biomolecules; Berova, N. ; Polavarapu, P. L. ; Nakanishi, K. ; Woody, R. W. , Eds.; John Wiley & Sons. Inc.: Hoboken, NJ, 2012; Vol. 2, pp 499–544.
Thieme S., Walther M., Pietzsch H. J., Henniger J., Preusche S., Mäding P., Steinbach J.. Module-assisted preparation of 64Cu with high specific activity. Appl. Radiat. Isot. 2012;70:602–608. doi: 10.1016/j.apradiso.2012.01.019. PubMed DOI
Grob N. M., Behe M., von Guggenberg E., Schibli R., Mindt T. L.. methoxinine - an alternative stable amino acid substitute for oxidation-sensitive methionine in radiolabelled peptide conjugates. J. Pept. Sci. 2017;23:38–44. doi: 10.1002/psc.2948. PubMed DOI
Sun L., Sun Y., Zuo K., Fan L., Wang X., Zhang J., Hu S., Liu X., Li J., Li Y., Shao Z., Xu X., Wu A., Song S.. Pilot study of nectin-4-targeted PET imaging agent 68Ga-FZ-NR-1 in triple-negative breast cancer from bench to first-in-human. J. Nucl. Med. 2025;66:473–479. doi: 10.2967/jnumed.124.269024. PubMed DOI
Duan X., Zhang Z., Xu H., Zhang J., Yan Y., Yang X.. Preclinical evaluation of an Al18F-radiolabeled Bicyclic peptide targeting nectin-4. Mol. Pharmaceutics. 2025;22:221–228. doi: 10.1021/acs.molpharmaceut.4c00858. PubMed DOI
Wan Q., Yuan H., Cai P., Liu Y., Yan T., Wang L., Zhou Z., Zhang W., Liu N.. Effects of PEGylation on imaging contrast of 68Ga-labeled Bicyclic peptide PET probes targeting nectin-4. Mol. Pharmaceutics. 2024;21:4430–4440. doi: 10.1021/acs.molpharmaceut.4c00366. PubMed DOI
Ge S., Jia T., Shi J., Cao J., Sang S., Li J., Zhang B., Deng S.. A cutting-edge 68Ga-labeled Bicyclic peptide PET molecular probe for noninvasive assessment of Nectin4 expression. Bioorg. Chem. 2024;152:107745. doi: 10.1016/j.Bioorg.2024.107745. PubMed DOI
Jiang Z., Reilly J., Everatt B., Briard E.. A rapid vesicle electrokinetic chromatography method for the in vitro prediction of non-specific binding for potential PET ligands. J. Pharm. Biomed. Anal. 2011;54:722–729. doi: 10.1016/j.jpba.2010.11.004. PubMed DOI
Auberson Y. P., Briard E., Sykes D., Reilly J., Healy M.. Ligand Specific Efficiency (LSE) Index for PET Tracer Optimization. ChemMedChem. 2016;11:1415–1427. doi: 10.1002/cmdc.201600112. PubMed DOI
Wadas T. J., Wong E. H., Weisman G. R., Anderson C. J.. Copper chelation chemistry and its role in copper Radiopharmaceuticals. Curr. Pharm. Des. 2007;13:3–16. doi: 10.2174/138161207779313768. PubMed DOI
Brandt F., Ullrich M., Laube M., Kopka K., Bachmann M., Löser R., Pietzsch J., Pietzsch H. J., van den Hoff J., Wodtke R.. ″Clickable″ albumin binders for modulating the tumor uptake of targeted Radiopharmaceuticals. J. Med. Chem. 2022;65:710–733. doi: 10.1021/acs.jmedchem.1c01791. PubMed DOI
Ruseska I., Zimmer A.. Internalization mechanisms of cell-penetrating peptides. Beilstein J. Nanotechnol. 2020;11:101–123. doi: 10.3762/bjnano.11.10. PubMed DOI PMC
Dougherty P. G., Sahni A., Pei D.. Understanding cell penetration of cyclic peptides. Chem. Rev. 2019;119:10241–10287. doi: 10.1021/acs.chemrev.9b00008. PubMed DOI PMC
Voss S., Adair L. D., Achazi K., Kim H., Bergemann S., Bartenschlager R., New E. J., Rademann J., Nitsche C.. Cell-penetrating peptide-bismuth bicycles. Angew. Chem., Int. Ed. Engl. 2024;63:e202318615. doi: 10.1002/anie.202318615. PubMed DOI
Schneider P., Schneider G.. De novo design at the edge of chaos. J. Med. Chem. 2016;59:4077–4086. doi: 10.1021/acs.jmedchem.5b01849. PubMed DOI
Kreller M., Pietzsch H., Walther M., Tietze H., Kaever P., Knieß T., Füchtner F., Steinbach J., Preusche S.. Introduction of the new center for radiopharmaceutical cancer research at Helmholtz-Zentrum Dresden-Rossendorf. Instruments. 2019;3:9. doi: 10.3390/instruments3010009. DOI
Linder K. E., Metcalfe E., Arunachalam T., Chen J., Eaton S. M., Feng W., Fan H., Raju N., Cagnolini A., Lantry L. E., Nunn A. D., Swenson R. E.. In vitro and in vivo metabolism of Lu-AMBA, a GRP-receptor binding compound, and the synthesis and characterization of its metabolites. Bioconjugate Chem. 2009;20:1171–1178. doi: 10.1021/bc9000189. PubMed DOI
Brandt F., Ullrich M., Wodtke J., Kopka K., Bachmann M., Löser R., Pietzsch J., Pietzsch H. J., Wodtke R.. Enzymological characterization of 64Cu-labeled neprilysin substrates and their application for modulating the renal clearance of targeted Radiopharmaceuticals. J. Med. Chem. 2023;66:516–537. doi: 10.1021/acs.jmedchem.2c01472. PubMed DOI
Sihver W., Walther M., Ullrich M., Nitt-Weber A. K., Bohme J., Reissig F., Saager M., Zarschler K., Neuber C., Steinbach J., Kopka K., Pietzsch H. J., Wodtke R., Pietzsch J.. Cyclohexanediamine triazole (CHDT) functionalization enables labeling of target molecules with Al18F/68Ga/111In. Bioconjugate Chem. 2024;35:1402–1416. doi: 10.1021/acs.bioconjchem.4c00313. PubMed DOI PMC
Ullrich M., Brandt F., Löser R., Pietzsch J., Wodtke R.. Comparative saturation binding analysis of 64Cu-labeled somatostatin analogues using cell homogenates and intact cells. ACS Omega. 2023;8:24003–24009. doi: 10.1021/acsomega.3c02755. PubMed DOI PMC
Angelini A., Morales-Sanfrutos J., Diderich P., Chen S., Heinis C.. Bicyclization and tethering to albumin yields long-acting peptide antagonists. J. Med. Chem. 2012;55:10187–10197. doi: 10.1021/jm301276e. PubMed DOI
Massiere F., Wiedemann N., Borrego I., Hoehne A., Osterkamp F., Paschke M., Zboralski D., Schumann A., Bredenbeck A., Brichory F., Attinger A.. Preclinical characterization of DPI-4452: a 68Ga/177Lu theranostic ligand for carbonic anhydrase IX. J. Nucl. Med. 2024;65:761–767. doi: 10.2967/jnumed.123.266309. PubMed DOI PMC
Copeland R. A., Pompliano D. L., Meek T. D.. Drug-target residence time and its implications for lead optimization. Nat. Rev. Drug Discovery. 2006;5:730–739. doi: 10.1038/nrd2082. PubMed DOI
Copeland R. A.. The drug-target residence time model: a 10-year retrospective. Nat. Rev. Drug Discovery. 2016;15:87–95. doi: 10.1038/nrd.2015.18. PubMed DOI
Lin F., Clift R., Ehara T., Yanagida H., Horton S., Noncovich A., Guest M., Kim D., Salvador K., Richardson S., Miller T., Han G., Bhat A., Song K., Li G.. Peptide binder to glypican-3 as a theranostic agent for hepatocellular carcinoma. J. Nucl. Med. 2024;65:586–592. doi: 10.2967/jnumed.123.266766. PubMed DOI
Mansi R., Plas P., Vauquelin G., Fani M.. Distinct In Vitro Binding Profile of the Somatostatin Receptor Subtype 2 Antagonist [177Lu]Lu-OPS201 Compared to the Agonist [177Lu]Lu-DOTA-TATE. Pharmaceuticals. 2021;14:1265. doi: 10.3390/ph14121265. PubMed DOI PMC
Müller M., Georgiev T., Mock J., Neri D., Cazzamalli S., Oehler S.. Small organic carbonic anhydrase IX ligands from DNA-encoded chemical libraries for tumor-targeted delivery of radionuclides. J. Am. Chem. Soc. 2025;147:18230–18239. doi: 10.1021/jacs.5c05198. PubMed DOI
Way, J. ; Blackwell, III, W. ; Clay, A. ; Copeland, M. ; Doligalski, M. L. ; Gober, I. ; Kil, H. J. ; Kosciuk, T. ; Lipovsek, D. ; Lau, W. ; Makvandi, M. ; Paulus, I. ; Price, T. ; Sauls, H. ; Subramanian, S. ; Swiger, E. ; Woodward, M. Presented in part at the 36th EORTC-NCI-AACR Symposium, 2024.
Wodtke R., Hauser C., Ruiz-Gomez G., Jäckel E., Bauer D., Lohse M., Wong A., Pufe J., Ludwig F. A., Fischer S., Hauser S., Greif D., Pisabarro M. T., Pietzsch J., Pietsch M., Löser R.. N e-Acryloyllysine piperazides as irreversible inhibitors of transglutaminase 2: synthesis, structure-activity relationships, and pharmacokinetic profiling. J. Med. Chem. 2018;61:4528–4560. doi: 10.1021/acs.jmedchem.8b00286. PubMed DOI
Valko K., Du C. M., Bevan C. D., Reynolds D. P., Abraham M. H.. Rapid-gradient HPLC method for measuring drug interactions with immobilized artificial membrane: comparison with other lipophilicity measures. J. Pharm. Sci. 2000;89:1085–1096. doi: 10.1002/1520-6017(200008)89:8<1085::AID-JPS13>3.0.CO;2-N. PubMed DOI
Seebach D., Dubost E., Mathad R. I., Jaun B., Limbach M., Löweneck M., Flögel O., Gardiner J., Capone S., Beck A. K., Widmer H., Langenegger D., Monna D., Hoyer D.. New open-chain and cyclic tetrapeptides, consisting of alpha-, beta(2)-, and beta(3)-amino-acid residues, as somatostatin mimics - A survey. Helv. Chim. Acta. 2008;91:1736–1786. doi: 10.1002/hlca.200890190. DOI
Hulme E. C., Trevethick M. A.. Ligand binding assays at equilibrium: validation and interpretation. Br. J. Pharmacol. 2010;161:1219–1237. doi: 10.1111/j.1476-5381.2009.00604.x. PubMed DOI PMC
Qi J., Kizjakina K., Robinson R., Tolani K., Sobrado P.. A fluorescence polarization binding assay to identify inhibitors of flavin-dependent monooxygenases. Anal. Biochem. 2012;425:80–87. doi: 10.1016/j.ab.2012.03.002. PubMed DOI PMC
Hochscherf J., Lindenblatt D., Steinkrüger M., Yoo E., Ulucan O., Herzig S., Issinger O. G., Helms V., Götz C., Neundorf I., Niefind K., Pietsch M.. Development of a high-throughput screening-compatible assay to identify inhibitors of the CK2a/CK2b interaction. Anal. Biochem. 2015;468:4–14. doi: 10.1016/j.ab.2014.09.003. PubMed DOI
Spreckelmeyer S., Balzer M., Poetzsch S., Brenner W.. Fully-automated production of [68Ga]Ga-FAPI-46 for clinical application. EJNMMI Radiopharm. Chem. 2020;5:31. doi: 10.1186/s41181-020-00112-x. PubMed DOI PMC
Miederer, M. ; Pretze, M. ; Abbate, E. ; Hartig, A. ; do Mar Ferreira Machado, J. ; Böhm, K. ; Sommer, U. ; Hoberück, S. ; Bundschuh, R. A. ; Kotzerke, J. ; Thomas, C. . Staging metastatic urothelial cancer with Nectin-4 imaging using Gallium-68-N188 PET/CT. BJU Int. 2025, 10.1111/bju.16901. PubMed DOI PMC