"Precision on Two Wheels"─Structural Refinement of 64Cu- and 68Ga-Labeled Bicyclic Peptides Targeting Nectin-4 for Improved Tumor Imaging: From Preclinical Development to First-in-Human Application

. 2025 Oct 23 ; 68 (20) : 21962-21987. [epub] 20251013

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41081542

The cell adhesion protein nectin-4 emerged as a valid therapeutic target for antibody- and peptide-drug conjugates in cancer. To support patient stratification for such targeted therapies, there is a clinical need for molecular imaging agents capable of quantifying nectin-4 levels noninvasively in vivo. For this purpose, we developed 64Cu- and 68Ga-labeled ligands derived from bicyclic peptide-drug conjugate BT8009. A library of peptides was prepared with a major focus on the bioisosteric replacement of the original methionine residue due to its susceptibility to oxidation. The peptides were characterized for their binding behavior to nectin-4, and radiopharmacological characterization of selected radioligands was performed using urothelial carcinoma cell lines and tumor xenograft models derived thereof. The suitability of the most promising ligand from the preclinical studies, NECT-224, for PET imaging purposes was also demonstrated in a first-in-human application using [68Ga]Ga-NECT-224. The results suggest its further clinical development, but also that of [64Cu]Cu-NECT-224.

Zobrazit více v PubMed

Tran H. H., Yamaguchi A., Manning H. C.. Radiotheranostic landscape: A review of clinical and preclinical development. Eur. J. Nucl. Med. Mol. Imaging. 2025;52:2685. doi: 10.1007/s00259-025-07103-7. PubMed DOI

Zhang S., Wang X., Gao X., Chen X., Li L., Li G., Liu C., Miao Y., Wang R., Hu K.. Radiopharmaceuticals and their applications in medicine. Signal Transduct. Target. Ther. 2025;10:1. doi: 10.1038/s41392-024-02041-6. PubMed DOI PMC

Armstrong A., Coburn F., Nsereko Y., Al Musaimi O.. Peptide-drug conjugates: a new hope for cancer. J. Pept. Sci. 2025;31:e70040. doi: 10.1002/psc.70040. PubMed DOI PMC

Boy R. G., Mier W., Nothelfer E. M., Altmann A., Eisenhut M., Kolmar H., Tomaszowski M., Kramer S., Haberkorn U.. Sunflower trypsin inhibitor 1 derivatives as molecular scaffolds for the development of novel peptidic Radiopharmaceuticals. Mol. Imaging Biol. 2010;12:377–385. doi: 10.1007/s11307-009-0287-z. PubMed DOI

Fani M., Mueller A., Tamma M. L., Nicolas G., Rink H. R., Cescato R., Reubi J. C., Maecke H. R.. Radiolabeled Bicyclic somatostatin-based analogs: a novel class of potential radiotracers for SPECT/PET of neuroendocrine tumors. J. Nucl. Med. 2010;51:1771–1779. doi: 10.2967/jnumed.110.076695. PubMed DOI

Rhodes C. A., Pei D.. Bicyclic peptides as next-generation therapeutics. Chemistry. 2017;23:12690–12703. doi: 10.1002/chem.201702117. PubMed DOI PMC

Ahangarzadeh S., Kanafi M. M., Hosseinzadeh S., Mokhtarzadeh A., Barati M., Ranjbari J., Tayebi L.. Bicyclic peptides: types, synthesis and applications. Drug Discovery Today. 2019;24:1311–1319. doi: 10.1016/j.drudis.2019.05.008. PubMed DOI

Feng D., Liu L., Shi Y., Du P., Xu S., Zhu Z., Xu J., Yao H.. Current development of Bicyclic peptides. Chin. Chem. Lett. 2023;34:108026. doi: 10.1016/j.cclet.2022.108026. DOI

Ullrich S., Nitsche C.. Bicyclic peptides: Paving the road for therapeutics of the future. Pept. Sci. 2023;116:e24326. doi: 10.1002/pep2.24326. DOI

Wieland T., Faulstich H.. Amatoxins, phallotoxins, phallolysin, and antamanide: the biologically active components of poisonous Amanita mushrooms. CRC Crit. Rev. Biochem. 1978;5:185–260. doi: 10.3109/10409237809149870. PubMed DOI

Kemp D. S., McNamara P.. Peptides containing β-turns I-- (gly-1-cys-gly)3 triply bridged by 1,3,5-(thiomethyl)­benzene. Tetrahedron Lett. 1981;22:4571–4574. doi: 10.1016/S0040-4039(01)82984-1. DOI

Kemp D. S., McNamara P. E.. Conformationally restricted cyclic nonapeptides derived from L-cysteine and LL-3-amino-2-piperidone-6-carboxylic acid (LL-Acp), a potent.beta.-turn-inducing dipeptide analog. J. Org. Chem. 1985;50:5834–5838. doi: 10.1021/jo00350a077. DOI

Heinis C., Rutherford T., Freund S., Winter G.. Phage-encoded combinatorial chemical libraries based on Bicyclic peptides. Nat. Chem. Biol. 2009;5:502–507. doi: 10.1038/nchembio.184. PubMed DOI

Lamers C.. Overcoming the shortcomings of peptide-based therapeutics. Future Drug Discovery. 2022;4:FDD75. doi: 10.4155/fdd-2022-0005. DOI

Diderich P., Heinis C.. Directed evolution of Bicyclic peptides for therapeutic application. Chimia. 2013;67:910–915. doi: 10.2533/chimia.2013.910. PubMed DOI

Eder M., Pavan S., Bauder-Wust U., van Rietschoten K., Baranski A. C., Harrison H., Campbell S., Stace C. L., Walker E. H., Chen L., Bennett G., Mudd G., Schierbaum U., Leotta K., Haberkorn U., Kopka K., Teufel D. P.. Bicyclic peptides as a new modality for imaging and targeting of proteins overexpressed by tumors. Cancer Res. 2019;79:841–852. doi: 10.1158/0008-5472.CAN-18-0238. PubMed DOI

Mudd G. E., Scott H., Chen L., van Rietschoten K., Ivanova-Berndt G., Dzionek K., Brown A., Watcham S., White L., Park P. U., Jeffrey P., Rigby M., Beswick P.. Discovery of BT8009: A nectin-4 Targeting Bicycle Toxin Conjugate for the Treatment of Cancer. J. Med. Chem. 2022;65:14337–14347. doi: 10.1021/acs.jmedchem.2c00065. PubMed DOI PMC

Mudd G. E., Brown A., Chen L., van Rietschoten K., Watcham S., Teufel D. P., Pavan S., Lani R., Huxley P., Bennett G. S.. Identification and optimization of EphA2-selective bicycles for the delivery of cytotoxic payloads. J. Med. Chem. 2020;63:4107–4116. doi: 10.1021/acs.jmedchem.9b02129. PubMed DOI

Gan Q., Cui K., Cao Q., Zhang N., Yang M. F., Yang X.. Development of a 18F-labeled Bicyclic peptide targeting EphA2 for molecular imaging of PSMA-negative prostate cancer. J. Med. Chem. 2023;66:14623–14632. doi: 10.1021/acs.jmedchem.3c01135. PubMed DOI

El Fakiri M., Regupathy A. R., Uhlmann L., Ayada N., Geis N. M., Domogalla L. C., Lahdenranta J., Blakeman B., Wood F., Meyer P. T., Huxley P., Eder M., Mudd G. E., Eder A. C.. Development and preclinical characterization of a novel radiotheranostic EphA2-targeting Bicyclic peptide. Theranostics. 2024;14:4701–4712. doi: 10.7150/thno.96641. PubMed DOI PMC

Harman M. A. J., Stanway S. J., Scott H., Demydchuk Y., Bezerra G. A., Pellegrino S., Chen L., Brear P., Lulla A., Hyvonen M., Beswick P. J., Skynner M. J.. Structure-guided chemical optimization of Bicyclic peptide (bicycle) inhibitors of angiotensin-converting enzyme 2. J. Med. Chem. 2023;66:9881–9893. doi: 10.1021/acs.jmedchem.3c00710. PubMed DOI

Narjes F., Edfeldt F., Petersen J., Oster L., Hamblet C., Bird J., Bold P., Rae R., Back E., Stomilovic S., Zlatoidsky P., Svensson T., Hidestal L., Kunalingam L., Shamovsky I., De Maria L., Gordon E., Lewis R. J., Watcham S., van Rietschoten K., Mudd G. E., Harrison H., Chen L., Skynner M. J.. Discovery and characterization of a Bicyclic peptide (bicycle) binder to thymic stromal lymphopoietin. J. Med. Chem. 2024;67:2220–2235. doi: 10.1021/acs.jmedchem.3c02163. PubMed DOI

Reymond N., Fabre S., Lecocq E., Adelaide J., Dubreuil P., Lopez M.. Nectin4/PRR4, a new afadin-associated member of the nectin family that trans-interacts with nectin1/PRR1 through V domain interaction. J. Biol. Chem. 2001;276:43205–43215. doi: 10.1074/jbc.M103810200. PubMed DOI

Challita-Eid P. M., Satpayev D., Yang P., An Z., Morrison K., Shostak Y., Raitano A., Nadell R., Liu W., Lortie D. R., Capo L., Verlinsky A., Leavitt M., Malik F., Avina H., Guevara C. I., Dinh N., Karki S., Anand B. S., Pereira D. S., Joseph I. B., Donate F., Morrison K., Stover D. R.. Enfortumab vedotin antibody-drug conjugate targeting nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models. Cancer Res. 2016;76:3003–3013. doi: 10.1158/0008-5472.CAN-15-1313. PubMed DOI

Bouleftour W., Guillot A., Magne N.. The anti-nectin 4: a promising tumor cells target. A systematic review. Mol. Cancer Ther. 2022;21:493–501. doi: 10.1158/1535-7163.MCT-21-0846. PubMed DOI

Heath E. I., Rosenberg J. E.. The biology and rationale of targeting nectin-4 in urothelial carcinoma. Nat. Rev. Urol. 2021;18:93–103. doi: 10.1038/s41585-020-00394-5. PubMed DOI

Huang K., Lui W. Y.. Nectins and nectin-like molecules (Necls): recent findings and their role and regulation in spermatogenesis. Semin. Cell Dev. Biol. 2016;59:54–61. doi: 10.1016/j.semcdb.2016.01.034. PubMed DOI

FDA grants regular approval to enfortumab vedotin-ejfv for locally advanced or metastatic urothelial cancer. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-regular-approval-enfortumab-vedotin-ejfv-locally-advanced-or-metastatic-urothelial-cancer (accessed Mar 13, 2025).

FDA approves enfortumab vedotin-ejfv with pembrolizumab for locally advanced or metastatic urothelial cancer. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-enfortumab-vedotin-ejfv-pembrolizumab-locally-advanced-or-metastatic-urothelial-cancer (accessed Mar 13, 2025).

Information for Padcev from European Medicines Agency. https://www.ema.europa.eu/en/medicines/human/EPAR/padcev (accessed Mar 13, 2025).

Rigby M., Bennett G., Chen L., Mudd G. E., Harrison H., Beswick P. J., Van Rietschoten K., Watcham S. M., Scott H. S., Brown A. N., Park P. U., Campbell C., Haines E., Lahdenranta J., Skynner M. J., Jeffrey P., Keen N., Lee K.. BT8009; A nectin-4 Targeting Bicycle Toxin Conjugate for Treatment of Solid Tumors. Mol. Cancer Ther. 2022;21:1747–1756. doi: 10.1158/1535-7163.MCT-21-0875. PubMed DOI PMC

Klümper N., Eckstein M., Hölzel M., Herrmann K., Hadaschik B., Grünwald V.. Re: First-in-human study of the radioligand 68Ga-N188 targeting nectin-4 for PET/CT imaging of advanced urothelial carcinoma: navigating metastatic urothelial cancer with nectin-4 PET/CT. Eur. Urol. 2023;84:514–515. doi: 10.1016/j.eururo.2023.05.029. PubMed DOI

Klümper N., Ralser D. J., Ellinger J., Roghmann F., Albrecht J., Below E., Alajati A., Sikic D., Breyer J., Bolenz C., Zengerling F., Erben P., Schwamborn K., Wirtz R. M., Horn T., Nagy D., Toma M., Kristiansen G., Buttner T., Hahn O., Grunwald V., Darr C., Erne E., Rausch S., Bedke J., Schlack K., Abbas M., Zschabitz S., Schwab C., Mustea A., Adam P., Manseck A., Wullich B., Ritter M., Hartmann A., Gschwend J., Weichert W., Erlmeier F., Holzel M., Eckstein M.. Membranous nectin-4 expression frequently decreases during metastatic spread of urothelial carcinoma and is associated with enfortumab vedotin resistance. Clin. Cancer Res. 2023;29:1496–1505. doi: 10.1158/1078-0432.CCR-22-1764. PubMed DOI PMC

Shao F., Pan Z., Long Y., Zhu Z., Wang K., Ji H., Zhu K., Song W., Song Y., Song X., Gai Y., Liu Q., Qin C., Jiang D., Zhu J., Lan X.. Nectin-4-targeted immunoSPECT/CT imaging and photothermal therapy of triple-negative breast cancer. J. Nanobiotechnol. 2022;20:243. doi: 10.1186/s12951-022-01444-3. PubMed DOI PMC

Campbell D. O., Noda A., Verlinsky A., Snyder J., Fujita Y., Murakami Y., Fushiki H., Miyoshi S., Lacayo S., Cabral E., Yang P., Stover D. R., Joseph I. B.. Preclinical Evaluation of an Anti-nectin-4 ImmunoPET Reagent in Tumor-Bearing Mice and Biodistribution Studies in Cynomolgus Monkeys. Mol. Imaging Biol. 2016;18:768–775. doi: 10.1007/s11307-016-0953-x. PubMed DOI

Ren Y., Liu T., Li S., Ma X., Xia L., Wang P., Guo Q., Yao Y., Hou X., Sheng X., Zhu H., Yang Z.. An iodine-labelled antibody-drug conjugate PET probe for noninvasive monitoring of nectin-4 expression in urothelial carcinoma. Int. J. Pharm. 2024;651:123756. doi: 10.1016/j.ijpharm.2023.123756. PubMed DOI

Huang W., Li L., Liang Y., Yang Q., Mixdorf J. C., Engle J. W., Fan Y., Kang L., Cai W.. ImmunoPET Imaging of Nectin4 Expression in Gastric and Bladder Cancer Using [64Cu]­Cu-NOTA-Padcev. Mol. Pharmaceutics. 2025;22:3468–3478. doi: 10.1021/acs.molpharmaceut.5c00469. PubMed DOI PMC

Duan X., Xia L., Zhang Z., Ren Y., Pomper M. G., Rowe S. P., Li X., Li N., Zhang N., Zhu H., Yang Z., Sheng X., Yang X.. First-in-human study of the radioligand 68Ga-N188 targeting nectin-4 for PET/CT imaging of advanced urothelial carcinoma. Clin. Cancer Res. 2023;29:3395–3407. doi: 10.1158/1078-0432.CCR-23-0609. PubMed DOI

Zhang J., Duan X., Chen X., Zhang Z., Sun H., Shou J., Zhao G., Wang J., Ma Y., Yang Y., Tian X., Shen Q., Yu W., He Z., Fan Y., Yang X.. Translational PET imaging of nectin-4 expression in multiple different cancers with 68Ga-N188. J. Nucl. Med. 2024;65:12S–18S. doi: 10.2967/jnumed.123.266830. PubMed DOI

Chu J. W., Yin J., Wang D. I., Trout B. L.. Molecular dynamics simulations and oxidation rates of methionine residues of granulocyte colony-stimulating factor at different pH values. Biochemistry. 2004;43:1019–1029. doi: 10.1021/bi0356000. PubMed DOI

Nikolovska-Coleska Z., Wang R., Fang X., Pan H., Tomita Y., Li P., Roller P. P., Krajewski K., Saito N. G., Stuckey J. A., Wang S.. Development and optimization of a binding assay for the XIAP BIR3 domain using fluorescence polarization. Anal. Biochem. 2004;332:261–273. doi: 10.1016/j.ab.2004.05.055. PubMed DOI

Huang X.. Fluorescence polarization competition assay: the range of resolvable inhibitor potency is limited by the affinity of the fluorescent ligand. J. Biomol. Screen. 2003;8:34–38. doi: 10.1177/1087057102239666. PubMed DOI

Broan C. J., Cox J. P. L., Craig A. S., Kataky R., Parker D., Harrison A., Randall A. M., Ferguson G.. Structure and solution stability of indium and gallium complexes of 1,4,7-triazacyclononanetriacetate and of yttrium complexes of 1,4,7,10-tetraazacyclododecanetetraacetate and related ligands: kinetically stable complexes for use in imaging and radioimmunotherapy. X-Ray molecular structure of the indium and gallium complexes of 1,4,7-triazacyclononane-1,4,7-triacetic acid. J. Chem. Soc., Perkin Trans. 2. 1991:87. doi: 10.1039/p29910000087. DOI

Kubicek V., Bohmova Z., Sevcikova R., Vanek J., Lubal P., Polakova Z., Michalicova R., Kotek J., Hermann P.. NOTA complexes with Copper­(II) and divalent metal ions: kinetic and thermodynamic studies. Inorg. Chem. 2018;57:3061–3072. doi: 10.1021/acs.inorgchem.7b02929. PubMed DOI

Padmaja S., Squadrito G. L., Lemercier J. N., Cueto R., Pryor W. A.. Rapid oxidation of DL-selenomethionine by peroxynitrite. Free Radic. Biol. Med. 1996;21:317–322. doi: 10.1016/0891-5849(96)00132-3. PubMed DOI

Hou W., Xu H.. Incorporating selenium into heterocycles and natural products - from chemical properties to pharmacological activities. J. Med. Chem. 2022;65:4436–4456. doi: 10.1021/acs.jmedchem.1c01859. PubMed DOI

Harrison O. J., Vendome J., Brasch J., Jin X., Hong S., Katsamba P. S., Ahlsen G., Troyanovsky R. B., Troyanovsky S. M., Honig B., Shapiro L.. nectin ectodomain structures reveal a canonical adhesive interface. Nat. Struct. Mol. Biol. 2012;19:906–915. doi: 10.1038/nsmb.2366. PubMed DOI PMC

Zhang X., Lu G., Qi J., Li Y., He Y., Xu X., Shi J., Zhang C. W., Yan J., Gao G. F.. Structure of measles virus hemagglutinin bound to its epithelial receptor nectin-4. Nat. Struct. Mol. Biol. 2013;20:67–72. doi: 10.1038/nsmb.2432. PubMed DOI

Toniolo, C. ; Formaggio, F. ; Woody, R. W. . Electronic circular dichroism of peptides. In Chromprehensive chiroptical spectroscopy. Applications in Stereochemical analysis of synthetic compounds, natural products, and biomolecules; Berova, N. ; Polavarapu, P. L. ; Nakanishi, K. ; Woody, R. W. , Eds.; John Wiley & Sons. Inc.: Hoboken, NJ, 2012; Vol. 2, pp 499–544.

Thieme S., Walther M., Pietzsch H. J., Henniger J., Preusche S., Mäding P., Steinbach J.. Module-assisted preparation of 64Cu with high specific activity. Appl. Radiat. Isot. 2012;70:602–608. doi: 10.1016/j.apradiso.2012.01.019. PubMed DOI

Grob N. M., Behe M., von Guggenberg E., Schibli R., Mindt T. L.. methoxinine - an alternative stable amino acid substitute for oxidation-sensitive methionine in radiolabelled peptide conjugates. J. Pept. Sci. 2017;23:38–44. doi: 10.1002/psc.2948. PubMed DOI

Sun L., Sun Y., Zuo K., Fan L., Wang X., Zhang J., Hu S., Liu X., Li J., Li Y., Shao Z., Xu X., Wu A., Song S.. Pilot study of nectin-4-targeted PET imaging agent 68Ga-FZ-NR-1 in triple-negative breast cancer from bench to first-in-human. J. Nucl. Med. 2025;66:473–479. doi: 10.2967/jnumed.124.269024. PubMed DOI

Duan X., Zhang Z., Xu H., Zhang J., Yan Y., Yang X.. Preclinical evaluation of an Al18F-radiolabeled Bicyclic peptide targeting nectin-4. Mol. Pharmaceutics. 2025;22:221–228. doi: 10.1021/acs.molpharmaceut.4c00858. PubMed DOI

Wan Q., Yuan H., Cai P., Liu Y., Yan T., Wang L., Zhou Z., Zhang W., Liu N.. Effects of PEGylation on imaging contrast of 68Ga-labeled Bicyclic peptide PET probes targeting nectin-4. Mol. Pharmaceutics. 2024;21:4430–4440. doi: 10.1021/acs.molpharmaceut.4c00366. PubMed DOI

Ge S., Jia T., Shi J., Cao J., Sang S., Li J., Zhang B., Deng S.. A cutting-edge 68Ga-labeled Bicyclic peptide PET molecular probe for noninvasive assessment of Nectin4 expression. Bioorg. Chem. 2024;152:107745. doi: 10.1016/j.Bioorg.2024.107745. PubMed DOI

Jiang Z., Reilly J., Everatt B., Briard E.. A rapid vesicle electrokinetic chromatography method for the in vitro prediction of non-specific binding for potential PET ligands. J. Pharm. Biomed. Anal. 2011;54:722–729. doi: 10.1016/j.jpba.2010.11.004. PubMed DOI

Auberson Y. P., Briard E., Sykes D., Reilly J., Healy M.. Ligand Specific Efficiency (LSE) Index for PET Tracer Optimization. ChemMedChem. 2016;11:1415–1427. doi: 10.1002/cmdc.201600112. PubMed DOI

Wadas T. J., Wong E. H., Weisman G. R., Anderson C. J.. Copper chelation chemistry and its role in copper Radiopharmaceuticals. Curr. Pharm. Des. 2007;13:3–16. doi: 10.2174/138161207779313768. PubMed DOI

Brandt F., Ullrich M., Laube M., Kopka K., Bachmann M., Löser R., Pietzsch J., Pietzsch H. J., van den Hoff J., Wodtke R.. ″Clickable″ albumin binders for modulating the tumor uptake of targeted Radiopharmaceuticals. J. Med. Chem. 2022;65:710–733. doi: 10.1021/acs.jmedchem.1c01791. PubMed DOI

Ruseska I., Zimmer A.. Internalization mechanisms of cell-penetrating peptides. Beilstein J. Nanotechnol. 2020;11:101–123. doi: 10.3762/bjnano.11.10. PubMed DOI PMC

Dougherty P. G., Sahni A., Pei D.. Understanding cell penetration of cyclic peptides. Chem. Rev. 2019;119:10241–10287. doi: 10.1021/acs.chemrev.9b00008. PubMed DOI PMC

Voss S., Adair L. D., Achazi K., Kim H., Bergemann S., Bartenschlager R., New E. J., Rademann J., Nitsche C.. Cell-penetrating peptide-bismuth bicycles. Angew. Chem., Int. Ed. Engl. 2024;63:e202318615. doi: 10.1002/anie.202318615. PubMed DOI

Schneider P., Schneider G.. De novo design at the edge of chaos. J. Med. Chem. 2016;59:4077–4086. doi: 10.1021/acs.jmedchem.5b01849. PubMed DOI

Kreller M., Pietzsch H., Walther M., Tietze H., Kaever P., Knieß T., Füchtner F., Steinbach J., Preusche S.. Introduction of the new center for radiopharmaceutical cancer research at Helmholtz-Zentrum Dresden-Rossendorf. Instruments. 2019;3:9. doi: 10.3390/instruments3010009. DOI

Linder K. E., Metcalfe E., Arunachalam T., Chen J., Eaton S. M., Feng W., Fan H., Raju N., Cagnolini A., Lantry L. E., Nunn A. D., Swenson R. E.. In vitro and in vivo metabolism of Lu-AMBA, a GRP-receptor binding compound, and the synthesis and characterization of its metabolites. Bioconjugate Chem. 2009;20:1171–1178. doi: 10.1021/bc9000189. PubMed DOI

Brandt F., Ullrich M., Wodtke J., Kopka K., Bachmann M., Löser R., Pietzsch J., Pietzsch H. J., Wodtke R.. Enzymological characterization of 64Cu-labeled neprilysin substrates and their application for modulating the renal clearance of targeted Radiopharmaceuticals. J. Med. Chem. 2023;66:516–537. doi: 10.1021/acs.jmedchem.2c01472. PubMed DOI

Sihver W., Walther M., Ullrich M., Nitt-Weber A. K., Bohme J., Reissig F., Saager M., Zarschler K., Neuber C., Steinbach J., Kopka K., Pietzsch H. J., Wodtke R., Pietzsch J.. Cyclohexanediamine triazole (CHDT) functionalization enables labeling of target molecules with Al18F/68Ga/111In. Bioconjugate Chem. 2024;35:1402–1416. doi: 10.1021/acs.bioconjchem.4c00313. PubMed DOI PMC

Ullrich M., Brandt F., Löser R., Pietzsch J., Wodtke R.. Comparative saturation binding analysis of 64Cu-labeled somatostatin analogues using cell homogenates and intact cells. ACS Omega. 2023;8:24003–24009. doi: 10.1021/acsomega.3c02755. PubMed DOI PMC

Angelini A., Morales-Sanfrutos J., Diderich P., Chen S., Heinis C.. Bicyclization and tethering to albumin yields long-acting peptide antagonists. J. Med. Chem. 2012;55:10187–10197. doi: 10.1021/jm301276e. PubMed DOI

Massiere F., Wiedemann N., Borrego I., Hoehne A., Osterkamp F., Paschke M., Zboralski D., Schumann A., Bredenbeck A., Brichory F., Attinger A.. Preclinical characterization of DPI-4452: a 68Ga/177Lu theranostic ligand for carbonic anhydrase IX. J. Nucl. Med. 2024;65:761–767. doi: 10.2967/jnumed.123.266309. PubMed DOI PMC

Copeland R. A., Pompliano D. L., Meek T. D.. Drug-target residence time and its implications for lead optimization. Nat. Rev. Drug Discovery. 2006;5:730–739. doi: 10.1038/nrd2082. PubMed DOI

Copeland R. A.. The drug-target residence time model: a 10-year retrospective. Nat. Rev. Drug Discovery. 2016;15:87–95. doi: 10.1038/nrd.2015.18. PubMed DOI

Lin F., Clift R., Ehara T., Yanagida H., Horton S., Noncovich A., Guest M., Kim D., Salvador K., Richardson S., Miller T., Han G., Bhat A., Song K., Li G.. Peptide binder to glypican-3 as a theranostic agent for hepatocellular carcinoma. J. Nucl. Med. 2024;65:586–592. doi: 10.2967/jnumed.123.266766. PubMed DOI

Mansi R., Plas P., Vauquelin G., Fani M.. Distinct In Vitro Binding Profile of the Somatostatin Receptor Subtype 2 Antagonist [177Lu]­Lu-OPS201 Compared to the Agonist [177Lu]­Lu-DOTA-TATE. Pharmaceuticals. 2021;14:1265. doi: 10.3390/ph14121265. PubMed DOI PMC

Müller M., Georgiev T., Mock J., Neri D., Cazzamalli S., Oehler S.. Small organic carbonic anhydrase IX ligands from DNA-encoded chemical libraries for tumor-targeted delivery of radionuclides. J. Am. Chem. Soc. 2025;147:18230–18239. doi: 10.1021/jacs.5c05198. PubMed DOI

Way, J. ; Blackwell, III, W. ; Clay, A. ; Copeland, M. ; Doligalski, M. L. ; Gober, I. ; Kil, H. J. ; Kosciuk, T. ; Lipovsek, D. ; Lau, W. ; Makvandi, M. ; Paulus, I. ; Price, T. ; Sauls, H. ; Subramanian, S. ; Swiger, E. ; Woodward, M. Presented in part at the 36th EORTC-NCI-AACR Symposium, 2024.

Wodtke R., Hauser C., Ruiz-Gomez G., Jäckel E., Bauer D., Lohse M., Wong A., Pufe J., Ludwig F. A., Fischer S., Hauser S., Greif D., Pisabarro M. T., Pietzsch J., Pietsch M., Löser R.. N e-Acryloyllysine piperazides as irreversible inhibitors of transglutaminase 2: synthesis, structure-activity relationships, and pharmacokinetic profiling. J. Med. Chem. 2018;61:4528–4560. doi: 10.1021/acs.jmedchem.8b00286. PubMed DOI

Valko K., Du C. M., Bevan C. D., Reynolds D. P., Abraham M. H.. Rapid-gradient HPLC method for measuring drug interactions with immobilized artificial membrane: comparison with other lipophilicity measures. J. Pharm. Sci. 2000;89:1085–1096. doi: 10.1002/1520-6017(200008)89:8<1085::AID-JPS13>3.0.CO;2-N. PubMed DOI

Seebach D., Dubost E., Mathad R. I., Jaun B., Limbach M., Löweneck M., Flögel O., Gardiner J., Capone S., Beck A. K., Widmer H., Langenegger D., Monna D., Hoyer D.. New open-chain and cyclic tetrapeptides, consisting of alpha-, beta(2)-, and beta(3)-amino-acid residues, as somatostatin mimics - A survey. Helv. Chim. Acta. 2008;91:1736–1786. doi: 10.1002/hlca.200890190. DOI

Hulme E. C., Trevethick M. A.. Ligand binding assays at equilibrium: validation and interpretation. Br. J. Pharmacol. 2010;161:1219–1237. doi: 10.1111/j.1476-5381.2009.00604.x. PubMed DOI PMC

Qi J., Kizjakina K., Robinson R., Tolani K., Sobrado P.. A fluorescence polarization binding assay to identify inhibitors of flavin-dependent monooxygenases. Anal. Biochem. 2012;425:80–87. doi: 10.1016/j.ab.2012.03.002. PubMed DOI PMC

Hochscherf J., Lindenblatt D., Steinkrüger M., Yoo E., Ulucan O., Herzig S., Issinger O. G., Helms V., Götz C., Neundorf I., Niefind K., Pietsch M.. Development of a high-throughput screening-compatible assay to identify inhibitors of the CK2a/CK2b interaction. Anal. Biochem. 2015;468:4–14. doi: 10.1016/j.ab.2014.09.003. PubMed DOI

Spreckelmeyer S., Balzer M., Poetzsch S., Brenner W.. Fully-automated production of [68Ga]­Ga-FAPI-46 for clinical application. EJNMMI Radiopharm. Chem. 2020;5:31. doi: 10.1186/s41181-020-00112-x. PubMed DOI PMC

Miederer, M. ; Pretze, M. ; Abbate, E. ; Hartig, A. ; do Mar Ferreira Machado, J. ; Böhm, K. ; Sommer, U. ; Hoberück, S. ; Bundschuh, R. A. ; Kotzerke, J. ; Thomas, C. . Staging metastatic urothelial cancer with Nectin-4 imaging using Gallium-68-N188 PET/CT. BJU Int. 2025, 10.1111/bju.16901. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...