Influence of Mineral Fillers on the Curing Process and Thermal Degradation of Polyethylene Glycol Maleate-Acrylic Acid-Based Systems
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
AP23488036
Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan
PubMed
41096320
PubMed Central
PMC12527094
DOI
10.3390/polym17192675
PII: polym17192675
Knihovny.cz E-zdroje
- Klíčová slova
- curing kinetics, mineral fillers, polyethylene glycol maleate, thermal stability, thixotropic properties, unsaturated polyester resins,
- Publikační typ
- časopisecké články MeSH
For the first time, the kinetics of isothermal curing and thermal degradation of polyethylene glycol maleate (pEGM)-based systems and their composites with mineral fillers were investigated in the presence of a benzoyl peroxide/N,N-Dimethylaniline redox-initiating system. DSC analysis revealed that the curing process at 20 °C can be described by the modified Kamal autocatalytic model; the critical degree of conversion (αc) decreases with increasing content of the unsaturated polyester pEGM and in the presence of fillers. In particular, for unfilled systems, αc was 0.77 for pEGM45 and 0.60 for pEGM60. TGA results demonstrated that higher pEGM content and the incorporation of fillers lead to increased thermal stability and residual mass, along with a reduction in the maximum decomposition rate (dTGₘₐₓ). Calculations using the Kissinger-Akahira-Sunose and Friedman methods also confirmed an increase in the activation energy of thermal degradation (Ea): EKAS was 419 kJ/mol for pEGM45 and 470 kJ/mol for pEGM60, with the highest values observed for pEGM60 systems with fillers (496 kJ/mol for SiO2 and 514 kJ/mol for CaCO3). Rheological studies employing three-interval thixotropy tests revealed the onset of thixotropic behavior upon filler addition and an increase in structure recovery after deformation of up to 56%. These findings underscore the potential of pEGM-based systems for low-temperature curing and for the design of composite materials with improved thermal resistance.
Zobrazit více v PubMed
Penczek P., Czub P., Pielichowski J. Unsaturated polyester resins: Chemistry and technology. In: Abe A., Dus K., Kobayashi S., editors. Crosslinking in Materials Science. Springer; Berlin/Heidelberg, Germany: 2005. pp. 1–95. DOI
Lee B.-Y., Lee D.-H., Jang K.-S. Impact Modifiers and Compatibilizers for Versatile Epoxy-Based Adhesive Films with Curing and Deoxidizing Capabilities. Polymers. 2021;13:1129. doi: 10.3390/polym13071129. PubMed DOI PMC
Gao Y., Romero P., Zhang H., Huang M., Lai F. Unsaturated polyester resin concrete: A review. Constr. Build. Mater. 2019;228:116709. doi: 10.1016/j.conbuildmat.2019.116709. DOI
Oliveira M., Pereira A., Garcia F., Demosthenes L., Nunes L., Braga F., da Luz F., Monteiro S. Comparison of Interfacial Adhesion Between Polyester and Epoxy Matrix Composites Reinforced with Fique Natural Fiber. In: Ikhmayies S., Li J., Vieira C., Margem (Deceased) J., de Oliveira Braga F., editors. Green Materials Engineering, 2019-01-01. Springer; Cham, Switzerland: 2019. (The Minerals, Metals & Materials Series). DOI
Berdnikova P., Zhizhina E.G., Pai Z.P. Phenol-Formaldehyde Resins: Properties, Fields of Application, and Methods of Synthesis. Catal. Ind. 2021;13:113–124. doi: 10.1134/S2070050421020033. DOI
Liu C.G., Dai Y., Hu Y., Shang Q.Q., Feng G.D., Zhou J., Zhou Y.H. Highly Functional Unsaturated Ester Macromonomer Derived from Soybean Oil: Synthesis and Copolymerization with Styrene. Acs Sustain. Chem. Eng. 2016;4:4208–4216. doi: 10.1021/acssuschemeng.6b00700. DOI
Burkeev M., Zhunissova M., Tazhbayev Y., Fomin V., Sarsenbekova A., Burkeyeva G., Kazhmuratova A., Zhumagalieva T., Zhakupbekova E., Khamitova T. Influence of RAFT Agent on the Mechanism of Copolymerization of Polypropylene Glycol Maleinate with Acrylic Acid. Polymers. 2022;14:1884. doi: 10.3390/polym14091884. PubMed DOI PMC
Burkeyev M., Kudaibergen G., Tazhbayev Y., Burkeyeva G., Omasheva A., Yesentayeva N., Bolatbay A. The number average and mass average molar masses of polyethylene (propylene) glycol fumarates. Bull. Univ. Karaganda Ser. Chem. 2018;90:17–22. doi: 10.31489/2018Ch2/17-22. DOI
Burkeyev M., Kovaleva A., Plocek J., Tazhbayev E., Burkeyeva G., Bolatbai A., Davrenbekov S. Synthesis and Properties of Poly (Propylene Glycol Maleate Phthalate)-Styrene Copolymers as a Base of Composite Materials. Russ. J. Appl. Chem. 2018;91:1742–1749. doi: 10.1134/S1070427218110022. DOI
Burkeyeva G., Kovaleva A., Tazhbayev Y., Ibrayeva Z., Zhaparova L. Investigation of Curing Process and Thermal Behavior of Copolymers Based on Polypropylene Glycol Fumarate and Acrylic Acid Using the Methods of DSC and TGA. Polymers. 2023;15:3753. doi: 10.3390/polym15183753. PubMed DOI PMC
Kirshanov K., Toms R., Melnikov P., Gervald A. Unsaturated Polyester Resin Nanocomposites Based on Post-Consumer Polyethylene Terephthalate. Polymers. 2022;14:1602. doi: 10.3390/polym14081602. PubMed DOI PMC
Chabros A., Gawdzik B. Methacrylate monomer as an alternative to styrene in typical polyester-styrene copolymers. J. Appl. Polym. Sci. 2019;136:47735. doi: 10.1002/app.47735. DOI
Tank R., Gupta D. Modification of styrene-divinyl benzene copolymers using monoacrylates as ter-monomer. J. Porous Mater. 2009;16:387–392. doi: 10.1007/s10934-008-9211-1. DOI
Wang K., Wang J., Zhu Y., Xia Y. The effect of low profile additives on unsaturated polyester resins during curing at low/medium temperature: Shrinkage behavior study. In: Zhang L., Guo J.K., Tuan W.H., editors. Composite Materials III, Proceedings of the 3rd China Cross-strait Conference on Composite Materials, Wuhan, China, 7–12 May 2003. Volume 249. Trans Tech Publications Ltd.; Baech, Switzerland: 2003. pp. 351–354. DOI
Zhang X., Kong L., Yang A., Sayem H. Thixotropic mechanism of clay: A microstructural investigation. Soils Found. 2017;57:23–35. doi: 10.1016/j.sandf.2017.01.002. DOI
Oleksy M., Heneczkowski M., Galina H. Thixotropic compositions: Unsaturated polyester resins/modified bentonites. Polimery. 2007;52:345–350. doi: 10.14314/polimery.2007.345. DOI
Kiehl J., Huser J., Bistac S., Delaite C. Influence of fillers content on the viscosity of unsaturated polyester resin/calcium carbonate blends. J. Compos. Mater. 2012;46:1937–1942. doi: 10.1177/0021998311427780. DOI
Spasojevic P., Seslija S., Markovic M., Pantic O., Antic K., Spasojevic M. Optimization of Reactive Diluent for Bio-Based Unsaturated Polyester Resin: A Rheological and Thermomechanical Study. Polymers. 2021;13:2667. doi: 10.3390/polym13162667. PubMed DOI PMC
Bartolomeo P., Chailan J., Vernet J. Curing of cyanate ester resin: A novel approach based on FTIR spectroscopy and comparison with other techniques. Eur. Polym. J. 2001;37:659–670. doi: 10.1016/S0014-3057(00)00165-8. DOI
Fraga F., Burgo S., Núñez E. Curing kinetic of the epoxy system BADGE n=0/1,2 DCH by Fourier Transform Infrared Spectroscopy (FTIR) J. Appl. Polym. Sci. 2001;82:3366–3372. doi: 10.1002/app.2195. DOI
Arasa M., Ramis X., Salla J., Mantecón A., Serra A. Kinetic study by FTIR and DSC on the cationic curing of a DGEBA/γ-valerolactone mixture with ytterbium triflate as an initiator. Thermochim. Acta. 2008;479:37–44. doi: 10.1016/j.tca.2008.09.020. DOI
Garschke C., Parlevliet P., Weimer C., Fox B. Cure kinetics and viscosity modelling of a high-performance epoxy resin film. Polym. Test. 2013;32:150–157. doi: 10.1016/j.polymertesting.2012.09.011. DOI
Domínguez J., Alonso M., Oliet M., Rojo E., Rodríguez F. Kinetic study of a phenolic-novolac resin curing process by rheological and DSC analysis. Thermochim. Acta. 2010;498:39–44. doi: 10.1016/j.tca.2009.09.010. DOI
Sourour S., Kamal M. Differential Scanning Calorimetry of Epoxy Cure—Isothermal Cure Kinetics. Thermochim. Acta. 1976;14:41–59. doi: 10.1016/0040-6031(76)80056-1. DOI
Lascano D., Lerma-Canto A., Fombuena V., Balart R., Montanes N., Quiles-Carrillo L. Kinetic Analysis of the Curing Process of Biobased Epoxy Resin from Epoxidized Linseed Oil by Dynamic Differential Scanning Calorimetry. Polymers. 2021;13:1279. doi: 10.3390/polym13081279. PubMed DOI PMC
Vyazovkin S. Thermal analysis. Anal. Chem. 2006;78:3875–3886. doi: 10.1021/ac0605546. PubMed DOI
Kamal M.R. Thermoset characterization for moldability analysis. Polym. Eng. Sci. 1974;14:231–239. doi: 10.1002/pen.760140312. DOI
Khanna U., Chanda M. Kinetics of Anhydride Curing of Isophthalic Diglycidyl Ester Using Differential Scanning Calorimetry. J. Appl. Polym. Sci. 1993;49:319–329. doi: 10.1002/app.1993.070490212. DOI
Fraga F., Soto V., Rodríguez-Núñez E., Martínez-Ageitos J., Rodríguez V. Cure kinetic of the epoxy network diglycidyl ether of bisphenol A (BADGE n = 0)/Amantidine. J. Therm. Anal. Calorim. 2007;87:97–100. doi: 10.1007/s10973-006-7823-8. DOI
Burkeyev M., Tazhbayev Y., Bolatbay A., Minayeva Y., Davrenbekov S., Nassikhatuly Y., Kovaleva A., Kutzhanova K., Kazhmuratova A. Study of Thermal Decomposition of the Copolymer Based on Polyethylene Glycol Fumarate with Acrylic Acid. J. Chem. 2022;2022:3514358. doi: 10.1155/2022/3514358. DOI
Mezger T.G. Applied Rheology: With Joe Flow on Rheology Road. 1st ed. Anton Paar GmbH; Graz, Austria: 2015. [(accessed on 21 August 2023)]. pp. 145–175. Available online: https://www.anton-paar.com/corp-en/applied-rheology/?srsltid=AfmBOoprlHDGCq9apBptEh_0jgmBgbi7MFLa0McyzT3hyFOyGigqxpHr.
Wang Y., Yu M.-J. Effect of volume loading and surface treatment on the thixotropic behavior of polypropylene filled with calcium carbonate. Polym. Compos. 2004;21:1–12. doi: 10.1002/pc.10159. DOI
Liu F., Yu W., Wang Y., Shang R., Zheng Q. Curing kinetics and thixotropic properties of epoxy resin composites with different kinds of fillers. J. Mater. Res. Technol.-JMRT. 2022;18:2125–2139. doi: 10.1016/j.jmrt.2022.03.102. DOI
Pucić I., Jurkin T. FTIR Assessment of Poly(ethylene oxide) Irradiated in Solid State, Melt and Aqueous Solution. Radiat. Phys. Chem. 2012;81:1426–1429. doi: 10.1016/j.radphyschem.2011.12.005. DOI
Balart R., Garcia-Sanoguera D., Quiles-Carrillo L., Montanes N., Torres-Giner S. Kinetic Analysis of the Thermal Degradation of Recycled Acrylonitrile-Butadiene-Styrene by non-Isothermal Thermogravimetry. Polymers. 2019;11:281. doi: 10.3390/polym11020281. PubMed DOI PMC
Lei J., Wang Y., Wang Q., Deng S., Fu Y. Evaluation of Kinetic and Thermodynamic Parameters of Pyrolysis and Combustion Processes for Bamboo Using Thermogravimetric Analysis. Processes. 2024;12:2458. doi: 10.3390/pr12112458. DOI
Paredes R., Castells B., Tascón A. Thermogravimetric Assessment of Biomass: Unravelling Kinetic, Chemical Composition and Combustion Profiles. Fire. 2024;7:396. doi: 10.3390/fire7110396. DOI
Dubdub I., Al-Yaari M. Thermal Behavior of Mixed Plastics at Different Heating Rates: I. Pyrolysis Kinetics. Polymers. 2021;13:3413. doi: 10.3390/polym13193413. PubMed DOI PMC
Najafi H., Golrokh Sani A., Sobati M.A. Thermogravimetric and thermo-kinetic analysis of sugarcane bagasse pith: A comparative evaluation with other sugarcane residues. Sci. Rep. 2024;14:2076. doi: 10.1038/s41598-024-52500-x. PubMed DOI PMC
Gola A., Knysak T., Mucha I., Musiał W.S. Thermogravimetric Analysis, and Kinetic Study of Poly-N-Isopropylacrylamide with Varied Initiator Content. Polymers. 2023;15:2427. doi: 10.3390/polym15112427. PubMed DOI PMC
Sarikhani N., Arabshahi Z., Saberi A., Moshfegh A. Unified modeling and experimental realization of electrical and thermal percolation in polymer composites. Appl. Phys. Rev. 2022;9:041403. doi: 10.1063/5.0089445. DOI
Peng Y., Musah M., Via B., Wang X. Calcium Carbonate Particles Filled Homopolymer Polypropylene at Different Loading Levels: Mechanical Properties Characterization and Materials Failure Analysis. J. Compos. Sci. 2021;5:302. doi: 10.3390/jcs5110302. DOI
Kherici S., Benouali D., Nouredine C. The Effects of Calcium Carbonate Filler on HDPE Pipe. Adv. Sci. Technol.-Res. J. 2022;16:213–218. doi: 10.12913/22998624/149606. DOI
Takenouchi S., Takasu A., Inai Y., Hirabayashi T. Effects of geometrical difference of unsaturated aliphatic polyesters on their biodegradability III. Cross effects of molecular weight and geometric structure of poly(ethylene maleate/fumarate) and its model compounds. Polym. J. 2002;34:882–890. doi: 10.1295/polymj.34.882. DOI
Yang H., Du J. Crystallinity, Rheology, and Mechanical Properties of Low-/High-Molecular-Weight PLA Blended Systems. Molecules. 2024;29:169. doi: 10.3390/molecules29010169. PubMed DOI PMC
Huang B., Hu X., Fu C., Liu C., Wang Y., An X. Rheological Model and Transition Velocity Equation of a Polymer Solution in a Partial Pressure Tool. Polymers. 2019;11:855. doi: 10.3390/polym11050855. PubMed DOI PMC
Sánchez J.H., Rubio-Hernández F.J., Páez-Flor N.M. Time-Dependent Viscous Flow Behavior of a Hydrophobic Fumed Silica Suspension. Processes. 2021;9:807. doi: 10.3390/pr9050807. DOI
Selim K.A., Farghaly M.G., Abdallah S.S., Abdel-khalek M.A. Effect of polyacrylic acid molar mass as a surface modifier on rheological properties of calcium carbonate suspensions. Physicochem. Probl. Miner. Process. 2021;57:18–26. doi: 10.37190/ppmp/137327. DOI
Varfolomeeva L.A., Skvortsov I.Y., Kuzin M.S., Kulichikhin V.G. Silica-Filled Polyacrylonitrile Solutions: Rheology, Morphology, Coagulation, and Fiber Spinning. Polymers. 2022;14:4548. doi: 10.3390/polym14214548. PubMed DOI PMC
Barakat A., Al Ghazal M., Fono Tamo R.S., Phadatare A., Unser J., Hagan J., Vaidya U. Development of a Cure Model for Unsaturated Polyester Resin Systems Based on Processing Conditions. Polymers. 2024;16:2391. doi: 10.3390/polym16172391. PubMed DOI PMC
Ren K., Tsai Y. Thermal Hazard Characteristics of Unsaturated Polyester Resin Mixed with Hardeners. Polymers. 2021;13:522. doi: 10.3390/polym13040522. PubMed DOI PMC
Chencheni A., Belkhiri S., Tarchoun A.F., Abdelaziz A., Bessa W., Boucheffa Y., Trache D. Unravelling the Thermal Behavior and Kinetics of Unsaturated Polyester Resin Supplemented with Organo-Nanoclay. RSC Adv. 2024;14:517–528. doi: 10.1039/D3RA06076D. PubMed DOI PMC
Jankovic B. The kinetic analysis of isothermal curing reaction of an unsaturated polyester resin: Estimation of the density distribution function of the apparent activation energy. Chem. Eng. J. 2010;162:331–340. doi: 10.1016/j.cej.2010.05.010. DOI
Teil H., Page S., Michaud V., Månson J. TTT-cure diagram of an anhydride-cured epoxy system including gelation, vitrification, curing kinetics model, and monitoring of the glass transition temperature. J. Appl. Polym. Sci. 2004;93:1774–1787. doi: 10.1002/app.20631. DOI
Wise C., Cook W., Goodwin A. Chemico-diffusion kinetics of model epoxy-amine resins. Polymer. 1997;38:3251–3261. doi: 10.1016/S0032-3861(96)00882-8. DOI
Flammersheim H., Opfermann J. Formal kinetic evaluation of reactions with partial diffusion control. Thermochim. Acta. 1999;337:141–148. doi: 10.1016/S0040-6031(99)00162-8. DOI
Granado L., Kempa S., Gregoriades L., Brüning F., Genix A., Fréty N., Anglaret E. Kinetic regimes in the curing process of epoxy-phenol composites. Thermochim. Acta. 2018;667:185–192. doi: 10.1016/j.tca.2018.07.019. DOI
Zhao Y., Drummer D. Influence of Filler Content and Filler Size on the Curing Kinetics of an Epoxy Resin. Polymers. 2019;11:1797. doi: 10.3390/polym11111797. PubMed DOI PMC
Chiu Y.C., Chen C.Y., Lee L.T., Chang F.C. Effect of Silica Fillers on Epoxy–Imidazole Curing Reaction. J. Appl. Polym. Sci. 2025;142:56895. doi: 10.1002/app.56895. DOI
Vazquez I. Influence of the Filler CaCO3 on the Cure Kinetic of the Epoxy Network Diglycidyl Ether of Bisphenol A (BADGE n = 0) with Isophorone Diamine. J. Appl. Polym. Sci. 2009;114:3678–3686. doi: 10.1002/app.30253. DOI
Achilias D.S., Karabela M.M., Varkopoulou E.A., Sideridou I.D. Cure Kinetics Study of Two Epoxy Systems with Fourier Tranform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC) J. Macromol. Sci. Part A. 2012;49:630–638. doi: 10.1080/10601325.2012.696995. DOI
Cañavate J., Colom X., Pagès P., Carrasco F. Study of the Curing Process of an Epoxy Resin by Ftir Spectroscopy. Polym. Technol. Eng. 2000;39:937–943. doi: 10.1081/PPT-100101414. DOI
Oh S., Kim M., Lee D. Recent Advances in Oxidative Degradation of Plastics. Chem. Soc. Rev. 2024;53:1785–1812. doi: 10.1039/D4CS00407H. PubMed DOI
Zhumanazarova G.M., Sarsenbekova A.Z., Abulyaissova L.K., Figurinene I.V., Zhaslan R.K., Makhmutova A.S., Sotchenko R.K., Aikynbayeva G.M., Hranicek J. Study of Mathematical Models Describing the Thermal Decomposition of Polymers Using Numerical Methods. Polymers. 2025;17:1197. doi: 10.3390/polym17091197. PubMed DOI PMC
Tomaszewska J., Sterzyński T., Walczak D. Thermal Stability of Nanosilica-Modified Poly(vinyl chloride) Polymers. 2021;13:2057. doi: 10.3390/polym13132057. PubMed DOI PMC
Pashmforoush F., Ajori S., Azimi H.R. Interfacial Characteristics and Thermo-Mechanical Properties of Calcium Carbonate/Polystyrene Nanocomposite. Mater. Chem. Phys. 2020;247:122871. doi: 10.1016/j.matchemphys.2020.122871. DOI