Study of Mathematical Models Describing the Thermal Decomposition of Polymers Using Numerical Methods

. 2025 Apr 27 ; 17 (9) : . [epub] 20250427

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40362980

Grantová podpora
AP15473241 This research has been is funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan

This research presents the results of a combined numerical and experimental study of the thermal decomposition behavior of copolymers based on polypropylene glycol fumarate phthalate. The thermal decomposition of polymers plays a key role in various fields, such as waste recycling and energy recovery, and in the development of new materials. The objective of this study is to model the degradation kinetics using thermogravimetric data, matrix-based numerical methods, and quantum chemical calculations. To solve the resulting systems of linear algebraic equations (SLAEs), matrix decomposition algorithms (QR, SVD, and Cholesky) were employed, which enabled the determination of activation energy values for the process. Comparison of the activation energy (Ea) results obtained using the decomposition method of Cholesky (207.21 kJ/mol), normal equations (205.22 kJ/mol), singular value decomposition (206.23 kJ/mol), and QR decomposition (206.23 kJ/mol) showed minor changes that were associated with the features of each method. Quantum chemical calculations based on density functional theory (DFT) at the B3LYP/6-31G(d) level were performed to analyze the molecular structure and interpret the IR spectra. This study establishes that the content of functional groups (ether and ester) and the type of chemical bonds exert critical influences on the decomposition mechanism and associated thermal parameters. The results confirm that the polymer's structural architecture governs its thermal stability. The scientific novelty of this work lies in the integration of numerical approximation methods and quantum chemical analysis for investigating the thermal behavior of polymers. This approach is applied for the first time to copolymers of this composition and may be employed in the design of heat-resistant materials for agricultural and environmental applications.

Zobrazit více v PubMed

Kandelbauer A., Tondi G., Zaske O.C., Goodman S.H. Unsaturated Polyesters and Vinyl Esters. In: Dodiuk H., Goodman S.H., editors. Handbook of Thermoset Plastics. 3rd ed. Elsevier; Amsterdam, The Netherlands: 2014. pp. 111–172.

Sarsenbekova A.Z., Burkeyev M.Z., Zhumanazarova G.M., Kudaibergen G.K., Nasikhatuly Y. The Effect of Liquid Active Media on the Character of Equilibrium Swelling of Copolymers Based on Polypropylene Fumarate Phthalate with Acrylic Acid. Eurasian J. Chem. 2023;109:51–58. doi: 10.31489/2959-0663/1-23-12. DOI

Taha M.R., Genedy M., Ohama Y. Polymer Concrete Developments in the Formulation and Reinforcement of Concrete. Elsevier; Amsterdam, The Netherlands: 2019. pp. 391–408. DOI

Benig G.V. Unsaturated Polyesters: Structure and Properties. Elsevier; Amsterdam, The Netherlands: 1968. pp. 251–253.

Kim J., Jeong D., Son C., Lee Y., Kim E., Moom I. Synthesis & Application of Unsaturated Polyester Resins based on PET Waste. Korean J. Chem. Eng. 2007;24:1076–1083. doi: 10.1007/s11814-007-0124-5. DOI

Dholakiya B. Unsaturated Polyester Resin for Specialty Applications. Polyester. 2012;7:167–202. doi: 10.5772/48479. DOI

Malchiodi B., Siligardi C., Pozzi P. Unsaturated polyester-based polymer concrete containing recycled cathode ray tube glass aggregate. J. Compos. Sci. 2022;6:47. doi: 10.3390/jcs6020047. DOI

Wypych G. Handbook of Polymers. Elsevier; Amsterdam, The Netherlands: 2022.

Arasu P.M., Karthikayan A., Venkatachalam R. Mechanical and thermal behavior of hybrid glass/jute fiber reinforced composites with epoxy/polyester resin. Polimery. 2019;64:504–508. doi: 10.14314/polimery.2019.7.6. DOI

Akaluzia R.O., Edoziuno F.O., Adediran A.A., Odoni B.U., Edibo S., Olayanju T.M.A. Evaluation of the effect of reinforcement particle sizes on the impact and hardness properties of hardwood charcoal particulate-polyester resin composites. Mater. Today Proc. 2021;38:570–577. doi: 10.1016/j.matpr.2020.02.980. DOI

Abu-Jdayil B. Unsaturated Polyester Microcomposites. In: Sabu T., Mahesh H., Cintil J.C., editors. Unsaturated Polyester Resins. Elsevier; Amsterdam, The Netherlands: 2019. pp. 67–100. DOI

Burkeev M., Zhumanazarova G., Tazhbayev E., Kudaibergen G., Aukadieva S., Zhakupbekova E. Poly(propylenefumarate phthalate)and Acrylic Acid Radical Copolymerization Constants and Parameters. Bull. Karaganda Univ. Chem Ser. 2020;97:68–74. doi: 10.31489/2020Ch1/68-74. DOI

Burkeev M.Z., Bolatbay A.N., Sarsenbekova A.Z., Davrenbekov S.Z., Nasikhatuly E. Integral Ways of Calculating the Destruction of Copolymers of Polyethylene Glycol Fumarate with Acrylic Acid. Russ. J. Phys. Chem. A. 2021;95:2009–2013. doi: 10.1134/S0036024421100034. DOI

Burkeev M.Z., Tazhbaev E.M., Mustafin E.S., Fomin V.N., Magzumova A.K. Method of Obtaining of Unsaturated Polyester Resin from Maleic Acid and Ethylene Glycol. Patent 31799. 2008 December 26;

Burkeev M.Z., Tazhbaev E.M., Sarsenbekova A.Z. Method for Producing Unsaturated Polyester Resins Based on Propylene glycol, Phthalic Anhydride and Fumaric Acid. Patent 31052. 2016 April 15;

Kadam V., Jagtap C., Kumkale V., Rednam U., Lokhande P., Pathan H. Photocatalytic Degradation of Rose Bengal Dye using Chemically Synthesized Pristine and Molybdenum doped ZnO. Eng. Sci. 2024;28:1077. doi: 10.30919/es1077. DOI

More S.G., Parveen F., Pathan H.M., Jadkar S.R., Gadakh S.R. Biomolecule-Assisted Hydrothermal Synthesis of Copper Aluminium Sulfide: Application for Dye Degradation. ES Energy Environ. 2024;25:1209. doi: 10.30919/esee1209. DOI

Sarsenbekova A.Z., Bolatbay A.N., Havlicek D., Issina Z.A., Sarsenbek A.Z., Kabdenova N.A., Kilybay M.A. Effect of Heat Treatment on the Supramolecular Structure of Copolymers Based on Poly(propylene glycol fumarate phthalate) with Acrylic Acid. Eurasian J. Chem. 2024;2:61–73. doi: 10.31489/2959-0663/2-24-9. DOI

Lyulin S.V., Larin S.V., Nazarychev V.M., Fal’kovich S.G., Kenny J.M. Multiscale computer simulation of polymer nanocomposites based on thermoplastics. Polym. Sci. Ser. C. 2016;58:2–15. doi: 10.1134/S1811238216010082. DOI

Martin F., Zipse H. Charge distribution in the water molecule−A comparison of methods. J. Comput. Chem. 2005;26:97–105. doi: 10.1002/jcc.20157. PubMed DOI

Standard Practice for Calibration of Temperature Scale for Thermogravimetry. ASTM International; West Conshohocken, PA, USA: 2016.

Alanazi A., Brown T., Kendell S., Miron D., Munshi A. Time-Varying Flexible Least Squares for Thermal Desorption of Gases. Int. J. Chem. Kinet. 2013;45:374–386. doi: 10.1002/kin.20772. DOI

Koga N., Vyazovkin S., Burnham A., Favergeon L., Muravyev N., Pérez-Maqueda L., Saggese C., Sánchez-Jiménez P. ICTAC Kinetics Committee recommendations for analysis of thermal decomposition kinetics. Thermochim. Acta. 2023;719:17384. doi: 10.1016/j.tca.2022.179384. DOI

Bau D., III, Trefethen L. Numerical Linear Algebra. Siam; Philadelphia, PA, USA: 1997. pp. 77–85.

DaCosta H., Fan M. Rate Constant Calculation for Thermal Reactions: Methods and Applications. Wiley; Hoboken, NJ, USA: 2012.

Garrido M., Larrechi M., Rius F. Multivariate curve resolution-alternating least squares and kinetic modeling applied to near-infrared data from curing reactions of epoxy resins: Mechanistic approach and estimation of kinetic rate constants. Appl. Spectrosc. 2006;60:174–181. doi: 10.1366/000370206776023395. PubMed DOI

Gilbert T., Kirss R., Foster N., Davies G. Chemistry: The Science in Context. W.W. Norton and Company; New York, NY, USA: 2004. pp. 702–761.

Golub G., Van Loan C. Matrix Computations. 4th ed. Johns Hopkins University; Baltimore, MD, USA: 2013. pp. 76–80, 163–164, 246–250, 262–264.

Sadun L. Applied Linear Algebra: The Decoupling Principle. 2nd ed. American Mathematical Society; Providence, RI, USA: 2008. pp. 143, 167–181.

Sundberg R. Statistical aspects on fitting the Arrhenius equation. Chemom. Intell. Lab. Syst. 1998;41:249–252. doi: 10.1016/S0169-7439(98)00052-5. DOI

Sarsenbekova A.Z., Zhumanazarova G.M., Yildirim E., Tazhbayev Y.M., Kudaibergen G.K. RAFT agent effect on graft poly(acrylic acid) to polypropylene glycol fumarate phthalate. Chem. Pap. 2024;78:3831–3843. doi: 10.1007/s11696-024-03354-0. DOI

Sarsenbekova A.Z., Zhumanazarova G.M., Tazhbayev Y.M., Kudaibergen G.K., Kabieva S.K., Issina Z.A., Kaldybayeva A.K., Mukabylova A.O., Kilybay M.A. Research the Thermal Decomposition Processes of Copolymers Based on Polypropyleneglycolfumaratephthalate with Acrylic Acid. Polymers. 2023;15:1725. doi: 10.3390/polym15071725. PubMed DOI PMC

Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian 16, Revision A.03. Gaussian Inc.; Wallingford, CT, USA: 2016.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...