Study of Mathematical Models Describing the Thermal Decomposition of Polymers Using Numerical Methods
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
AP15473241
This research has been is funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan
PubMed
40362980
PubMed Central
PMC12073326
DOI
10.3390/polym17091197
PII: polym17091197
Knihovny.cz E-zdroje
- Klíčová slova
- matrix, polymer, polymer degradation, polypropylene glycol fumarate phthalate, thermodynamic characteristics,
- Publikační typ
- časopisecké články MeSH
This research presents the results of a combined numerical and experimental study of the thermal decomposition behavior of copolymers based on polypropylene glycol fumarate phthalate. The thermal decomposition of polymers plays a key role in various fields, such as waste recycling and energy recovery, and in the development of new materials. The objective of this study is to model the degradation kinetics using thermogravimetric data, matrix-based numerical methods, and quantum chemical calculations. To solve the resulting systems of linear algebraic equations (SLAEs), matrix decomposition algorithms (QR, SVD, and Cholesky) were employed, which enabled the determination of activation energy values for the process. Comparison of the activation energy (Ea) results obtained using the decomposition method of Cholesky (207.21 kJ/mol), normal equations (205.22 kJ/mol), singular value decomposition (206.23 kJ/mol), and QR decomposition (206.23 kJ/mol) showed minor changes that were associated with the features of each method. Quantum chemical calculations based on density functional theory (DFT) at the B3LYP/6-31G(d) level were performed to analyze the molecular structure and interpret the IR spectra. This study establishes that the content of functional groups (ether and ester) and the type of chemical bonds exert critical influences on the decomposition mechanism and associated thermal parameters. The results confirm that the polymer's structural architecture governs its thermal stability. The scientific novelty of this work lies in the integration of numerical approximation methods and quantum chemical analysis for investigating the thermal behavior of polymers. This approach is applied for the first time to copolymers of this composition and may be employed in the design of heat-resistant materials for agricultural and environmental applications.
Chemistry Faculty Karaganda Buketov University Karaganda 100024 Kazakhstan
Department of Analytical Chemistry Charles University 128 43 Praha Czech Republic
School of Pharmacy Karaganda Medical University Karaganda 100024 Kazakhstan
Zobrazit více v PubMed
Kandelbauer A., Tondi G., Zaske O.C., Goodman S.H. Unsaturated Polyesters and Vinyl Esters. In: Dodiuk H., Goodman S.H., editors. Handbook of Thermoset Plastics. 3rd ed. Elsevier; Amsterdam, The Netherlands: 2014. pp. 111–172.
Sarsenbekova A.Z., Burkeyev M.Z., Zhumanazarova G.M., Kudaibergen G.K., Nasikhatuly Y. The Effect of Liquid Active Media on the Character of Equilibrium Swelling of Copolymers Based on Polypropylene Fumarate Phthalate with Acrylic Acid. Eurasian J. Chem. 2023;109:51–58. doi: 10.31489/2959-0663/1-23-12. DOI
Taha M.R., Genedy M., Ohama Y. Polymer Concrete Developments in the Formulation and Reinforcement of Concrete. Elsevier; Amsterdam, The Netherlands: 2019. pp. 391–408. DOI
Benig G.V. Unsaturated Polyesters: Structure and Properties. Elsevier; Amsterdam, The Netherlands: 1968. pp. 251–253.
Kim J., Jeong D., Son C., Lee Y., Kim E., Moom I. Synthesis & Application of Unsaturated Polyester Resins based on PET Waste. Korean J. Chem. Eng. 2007;24:1076–1083. doi: 10.1007/s11814-007-0124-5. DOI
Dholakiya B. Unsaturated Polyester Resin for Specialty Applications. Polyester. 2012;7:167–202. doi: 10.5772/48479. DOI
Malchiodi B., Siligardi C., Pozzi P. Unsaturated polyester-based polymer concrete containing recycled cathode ray tube glass aggregate. J. Compos. Sci. 2022;6:47. doi: 10.3390/jcs6020047. DOI
Wypych G. Handbook of Polymers. Elsevier; Amsterdam, The Netherlands: 2022.
Arasu P.M., Karthikayan A., Venkatachalam R. Mechanical and thermal behavior of hybrid glass/jute fiber reinforced composites with epoxy/polyester resin. Polimery. 2019;64:504–508. doi: 10.14314/polimery.2019.7.6. DOI
Akaluzia R.O., Edoziuno F.O., Adediran A.A., Odoni B.U., Edibo S., Olayanju T.M.A. Evaluation of the effect of reinforcement particle sizes on the impact and hardness properties of hardwood charcoal particulate-polyester resin composites. Mater. Today Proc. 2021;38:570–577. doi: 10.1016/j.matpr.2020.02.980. DOI
Abu-Jdayil B. Unsaturated Polyester Microcomposites. In: Sabu T., Mahesh H., Cintil J.C., editors. Unsaturated Polyester Resins. Elsevier; Amsterdam, The Netherlands: 2019. pp. 67–100. DOI
Burkeev M., Zhumanazarova G., Tazhbayev E., Kudaibergen G., Aukadieva S., Zhakupbekova E. Poly(propylenefumarate phthalate)and Acrylic Acid Radical Copolymerization Constants and Parameters. Bull. Karaganda Univ. Chem Ser. 2020;97:68–74. doi: 10.31489/2020Ch1/68-74. DOI
Burkeev M.Z., Bolatbay A.N., Sarsenbekova A.Z., Davrenbekov S.Z., Nasikhatuly E. Integral Ways of Calculating the Destruction of Copolymers of Polyethylene Glycol Fumarate with Acrylic Acid. Russ. J. Phys. Chem. A. 2021;95:2009–2013. doi: 10.1134/S0036024421100034. DOI
Burkeev M.Z., Tazhbaev E.M., Mustafin E.S., Fomin V.N., Magzumova A.K. Method of Obtaining of Unsaturated Polyester Resin from Maleic Acid and Ethylene Glycol. Patent 31799. 2008 December 26;
Burkeev M.Z., Tazhbaev E.M., Sarsenbekova A.Z. Method for Producing Unsaturated Polyester Resins Based on Propylene glycol, Phthalic Anhydride and Fumaric Acid. Patent 31052. 2016 April 15;
Kadam V., Jagtap C., Kumkale V., Rednam U., Lokhande P., Pathan H. Photocatalytic Degradation of Rose Bengal Dye using Chemically Synthesized Pristine and Molybdenum doped ZnO. Eng. Sci. 2024;28:1077. doi: 10.30919/es1077. DOI
More S.G., Parveen F., Pathan H.M., Jadkar S.R., Gadakh S.R. Biomolecule-Assisted Hydrothermal Synthesis of Copper Aluminium Sulfide: Application for Dye Degradation. ES Energy Environ. 2024;25:1209. doi: 10.30919/esee1209. DOI
Sarsenbekova A.Z., Bolatbay A.N., Havlicek D., Issina Z.A., Sarsenbek A.Z., Kabdenova N.A., Kilybay M.A. Effect of Heat Treatment on the Supramolecular Structure of Copolymers Based on Poly(propylene glycol fumarate phthalate) with Acrylic Acid. Eurasian J. Chem. 2024;2:61–73. doi: 10.31489/2959-0663/2-24-9. DOI
Lyulin S.V., Larin S.V., Nazarychev V.M., Fal’kovich S.G., Kenny J.M. Multiscale computer simulation of polymer nanocomposites based on thermoplastics. Polym. Sci. Ser. C. 2016;58:2–15. doi: 10.1134/S1811238216010082. DOI
Martin F., Zipse H. Charge distribution in the water molecule−A comparison of methods. J. Comput. Chem. 2005;26:97–105. doi: 10.1002/jcc.20157. PubMed DOI
Standard Practice for Calibration of Temperature Scale for Thermogravimetry. ASTM International; West Conshohocken, PA, USA: 2016.
Alanazi A., Brown T., Kendell S., Miron D., Munshi A. Time-Varying Flexible Least Squares for Thermal Desorption of Gases. Int. J. Chem. Kinet. 2013;45:374–386. doi: 10.1002/kin.20772. DOI
Koga N., Vyazovkin S., Burnham A., Favergeon L., Muravyev N., Pérez-Maqueda L., Saggese C., Sánchez-Jiménez P. ICTAC Kinetics Committee recommendations for analysis of thermal decomposition kinetics. Thermochim. Acta. 2023;719:17384. doi: 10.1016/j.tca.2022.179384. DOI
Bau D., III, Trefethen L. Numerical Linear Algebra. Siam; Philadelphia, PA, USA: 1997. pp. 77–85.
DaCosta H., Fan M. Rate Constant Calculation for Thermal Reactions: Methods and Applications. Wiley; Hoboken, NJ, USA: 2012.
Garrido M., Larrechi M., Rius F. Multivariate curve resolution-alternating least squares and kinetic modeling applied to near-infrared data from curing reactions of epoxy resins: Mechanistic approach and estimation of kinetic rate constants. Appl. Spectrosc. 2006;60:174–181. doi: 10.1366/000370206776023395. PubMed DOI
Gilbert T., Kirss R., Foster N., Davies G. Chemistry: The Science in Context. W.W. Norton and Company; New York, NY, USA: 2004. pp. 702–761.
Golub G., Van Loan C. Matrix Computations. 4th ed. Johns Hopkins University; Baltimore, MD, USA: 2013. pp. 76–80, 163–164, 246–250, 262–264.
Sadun L. Applied Linear Algebra: The Decoupling Principle. 2nd ed. American Mathematical Society; Providence, RI, USA: 2008. pp. 143, 167–181.
Sundberg R. Statistical aspects on fitting the Arrhenius equation. Chemom. Intell. Lab. Syst. 1998;41:249–252. doi: 10.1016/S0169-7439(98)00052-5. DOI
Sarsenbekova A.Z., Zhumanazarova G.M., Yildirim E., Tazhbayev Y.M., Kudaibergen G.K. RAFT agent effect on graft poly(acrylic acid) to polypropylene glycol fumarate phthalate. Chem. Pap. 2024;78:3831–3843. doi: 10.1007/s11696-024-03354-0. DOI
Sarsenbekova A.Z., Zhumanazarova G.M., Tazhbayev Y.M., Kudaibergen G.K., Kabieva S.K., Issina Z.A., Kaldybayeva A.K., Mukabylova A.O., Kilybay M.A. Research the Thermal Decomposition Processes of Copolymers Based on Polypropyleneglycolfumaratephthalate with Acrylic Acid. Polymers. 2023;15:1725. doi: 10.3390/polym15071725. PubMed DOI PMC
Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Petersson G.A., Nakatsuji H., et al. Gaussian 16, Revision A.03. Gaussian Inc.; Wallingford, CT, USA: 2016.