Achievements and challenges with equilibrium and kinetic passive sampling of hydrophobic and hydrophilic organic compounds in surface waters
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
P42 ES027706
NIEHS NIH HHS - United States
PubMed
41098686
PubMed Central
PMC12520609
DOI
10.1021/acsestwater.5c00384
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Passive sampling in surface waters is an important method in the monitoring and risk assessment of hydrophobic and hydrophilic organic chemicals. Sampler designs can be optimized for fast equilibrium attainment (equilibrium sampling) or improved time-integrative capability (kinetic sampling). We argue that both equilibrium and kinetic sampling can be applied when aqueous concentrations do not vary with time, whereas kinetic sampling also yields useful results for time-variable concentrations that are often observed with hydrophilic compounds in surface waters. We show that these methods have similar accuracy in principle, but that their dominant error sources are different: sampler-water sorption coefficients for equilibrium sampling and sampling rates for kinetic sampling. In contrast to passive sampling of hydrophobic compounds, passive sampling of hydrophilic compounds is not as well-established, but major progress has been made over the last decade in the modeling of transport through the water boundary layer, membrane, and sorbent, while less progress has been made for transport in the biofouling layer. We recommend a more extensive use of diffusion cells as a research tool to gain a better understanding of transport through the respective subphases, leading to a greater maturity of passive water sampling of hydrophilic compounds.
PaSOC 8821 LV Kimswerd The Netherlands
RECETOX Faculty of Science Masaryk University 61137 Brno Czech Republic
University of Rhode Island Graduate School of Oceanography Narragansett RI 02882 USA
Zobrazit více v PubMed
Huckins JN; Tubergen MW; Manuweera GK Semipermeable Membrane Devices Containing Model Lipid: A New Approach to Monitoring the Bioavailability of Lipophilic Contaminants and Estimating Their Bioconcentration Potential. Chemosphere 1990, 20 (5), 533–552. 10.1016/0045-6535(90)90110-F. DOI
Huckins JN; Manuweera GK; Petty JD; Mackay D; Lebo JA Lipid-Containing Semipermeable Membrane Devices for Monitoring Organic Contaminants in Water. Environ. Sci. Technol 1993, 27, 2489–2496. 10.1021/es00048a028. DOI
Mayer P; Tolls J; Hermens JLM; Mackay D Equilibrium Sampling Devices. Environ. Sci. Technol 2003, 37 (9), 184A–191A. 10.1021/es032433i. DOI
Jahnke A; Mayer P; McLachlan MS Sensitive Equilibrium Sampling to Study Polychlorinated Biphenyl Disposition in Baltic Sea Sediment. Environ. Sci. Technol 2012, 46 (18), 10114–10122. 10.1021/es302330v. PubMed DOI
Jahnke A; McLachlan MS; Mayer P Equilibrium Sampling: Partitioning of Organochlorine Compounds from Lipids into Polydimethylsiloxane. Chemosphere 2008, 73 (10), 1575–1581. 10.1016/j.chemosphere.2008.09.017. PubMed DOI
Mayer P; Torang L; Glaesner N; Jonsson JA Silicone Membrane Equilibrator: Measuring Chemical Activity of Nonpolar Chemicals with Poly(Dimethylsiloxane) Microtubes Immersed Directly in Tissue and Lipids. Anal. Chem 2009, 81 (4), 1536–1542. 10.1021/ac802261z. PubMed DOI
Jahnke A; Mayer P; Broman D; McLachlan MS Possibilities and Limitations of Equilibrium Sampling Using Polydimethylsiloxane in Fish Tissue. Chemosphere 2009, 77 (6), 764–770. 10.1016/j.chemosphere.2009.08.025. PubMed DOI
Rusina TP; Carlsson P; Vrana B; Smedes F Equilibrium Passive Sampling of POP in Lipid-Rich and Lean Fish Tissue: Quality Control Using Performance Reference Compounds. Environ. Sci. Technol 2017, 51 (19), 11250–11257. 10.1021/acs.est.7b03113. PubMed DOI
Maenpaa K; Leppanen MT; Reichenberg F; Figueiredo K; Mayer P Equilibrium Sampling of Persistent and Bioaccumulative Compounds in Soil and Sediment: Comparison of Two Approaches to Determine Equilibrium Partitioning Concentrations in Lipids. Environ. Sci. Technol 2011, 45 (3), 1041–1047. 10.1021/es1029969. PubMed DOI
Reichenberg F; Smedes F; Jonsson JA; Mayer P Determining the Chemical Activity of Hydrophobic Organic Compounds in Soil Using Polymer Coated Vials. Chem. Cent. J 2008, 2 (1), 8. 10.1186/1752-153X-2-8. PubMed DOI PMC
Vitale CM; Knudsmark Sjøholm K; Di Guardo A; Mayer P Accelerated Equilibrium Sampling of Hydrophobic Organic Chemicals in Solid Matrices: A Proof of Concept on How to Reach Equilibrium for PCBs within 1 Day. Chemosphere 2019, 237, 124537. 10.1016/j.chemosphere.2019.124537. PubMed DOI
Booij K. Passive Sampler Exchange Kinetics in Large and Small Water Volumes under Mixed Rate Control by Sorbent and Water Boundary Layer. Environ. Toxicol. Chem 2021, 40 (5), 1241–1254. 10.1002/etc.4989. PubMed DOI
Tcaciuc AP; Apell JN; Gschwend PM Modeling the Transport of Organic Chemicals between Polyethylene Passive Samplers and Water in Finite and Infinite Bath Conditions. Environ. Toxicol. Chem 2015, 34 (12), 2739–2749. 10.1002/etc.3128. PubMed DOI
Thompson JM; Hsieh CH; Luthy RG Modeling Uptake of Hydrophobic Organic Contaminants into Polyethylene Passive Samplers. Environ. Sci. Technol 2015, 49 (4), 2270–2277. 10.1021/es504442s. PubMed DOI
Booij K; Vrana B; Huckins JN Chapter 7, Theory, Modelling and Calibration of Passive Samplers Used in Water Monitoring. In Passive sampling techniques in environmental monitoring; Greenwood R, Mills GA, Vrana B, Eds.; Elsevier: Amsterdam. 10.1016/S0166-526X(06)48007-7, 2007; pp 141–169. DOI
Becker B; Kochleus C; Spira D; Bachtin J; König F; Meinecke S; Möhlenkamp C; Booij K Modelling Passive Sampling of Hydrophilic Compounds under Time-Variable Aqueous Concentrations. Environ. Sci. Pollut. Res 2024, 31, 51844–51857. 10.1007/s11356-024-34460-x. DOI
Joyce AS; Burgess RM Using Performance Reference Compounds to Compare Mass Transfer Calibration Methodologies in Passive Samplers Deployed in the Water Column. Environ. Toxicol. Chem 2018, 37 (8), 2089–2097. 10.1002/etc.4167. PubMed DOI PMC
Sobotka J; Smedes F; Vrana B Performance Comparison of Silicone and Low-Density Polyethylene as Passive Samplers in a Global Monitoring Network for Aquatic Organic Contaminants. Environ. Pollut 2022, 302, 119050. 10.1016/j.envpol.2022.119050. PubMed DOI
Booij K; Smedes F An Improved Method for Estimating in Situ Sampling Rates of Nonpolar Passive Samplers. Environ. Sci. Technol 2010, 44 (17), 6789–6794. 10.1021/es101321v. PubMed DOI
Booij K; Crum S; Vrana B; Grabic R; Morin NAO; Parmentier K; Kech C; Krystek P; Noro K; Becker B; Lohmann R; Malleret L; Kaserzon SL; Miège C; Alliot F; Pfeiffer F; Crowley D; Rakowska M; Ocelka T; Kim GB; Röhler L Ongoing Laboratory Performance Study on Chemical Analysis of Hydrophobic and Hydrophilic Compounds in Three Aquatic Passive Samplers. Environ. Sci. Technol 2024, 58 (15), 6772–6780. 10.1021/acs.est.3c10272. PubMed DOI
Booij K; Smedes F; Crum S Laboratory Performance Study for Passive Sampling of Nonpolar Chemicals in Water. Environ. Toxicol. Chem 2017, 36 (5), 1156–1161. 10.1002/etc.3657. PubMed DOI
Jonker MTO; van der Heijden SA; Adelman D; Apell JN; Burgess RM; Choi Y; Fernandez LA; Flavetta GM; Ghosh U; Gschwend PM; Hale SE; Jalalizadeh M; Khairy M; Lampi MA; Lao W; Lohmann R; Lydy MJ; Maruya KA; Nutile SA; Oen AMP; Rakowska MI; Reible D; Rusina TP; Smedes F; Wu Y Advancing the Use of Passive Sampling in Risk Assessment and Management of Sediments Contaminated with Hydrophobic Organic Chemicals: Results of an International Ex Situ Passive Sampling Interlaboratory Comparison. Environ. Sci. Technol 2018, 52 (6), 3574–3582. 10.1021/acs.est.7b05752. PubMed DOI PMC
Fuchte HE; Schäffer A; Booij K; Smith KEC Kinetic Passive Sampling: In Situ Calibration Using the Contaminant Mass Measured in Parallel Samplers with Different Thicknesses. Environ. Sci. Technol 2020, 54 (24), 15759–15767. 10.1021/acs.est.0c04437. PubMed DOI
Rusina TP; Smedes F; Koblizkova M; Klanova J Calibration of Silicone Rubber Passive Samplers: Experimental and Modeled Relations between Sampling Rate and Compound Properties. Environ. Sci. Technol 2010, 44 (1), 362–367. 10.1021/es900938r. PubMed DOI
Belles A; Alary C; Mamindy-Pajany Y Thickness and Material Selection of Polymeric Passive Samplers for Polycyclic Aromatic Hydrocarbons in Water: Which More Strongly Affects Sampler Properties? Environ. Toxicol. Chem 2016, 35 (7), 1708–1717. 10.1002/etc.3326. PubMed DOI
Hong L; Luthy RG Uptake of PAHs into Polyoxymethylene and Application to Oil-Soot (Lampblack)-Impacted Soil Samples. Chemosphere 2008, 72 (2), 272–281. 10.1016/j.chemosphere.2008.01.028. PubMed DOI
Rusina TP; Smedes F; Klanova J; Booij K; Holoubek I Polymer Selection for Passive Sampling: A Comparison of Critical Properties. Chemosphere 2007, 68 (7), 1344–1351. 10.1016/j.chemosphere.2011.03.018. PubMed DOI
Lohmann R Critical Review of Low-Density Polyethylene’s Partitioning and Diffusion Coefficients for Trace Organic Contaminants and Implications for Its Use as a Passive Sampler. Environ. Sci. Technol 2012, 46 (2), 606–618. 10.1021/es202702y. PubMed DOI
Smedes F; Geertsma RW; van der Zande T; Booij K Polymer-Water Partition Coefficients of Hydrophobic Compounds for Passive Sampling: Application of Cosolvent Models for Validation. Environ. Sci. Technol 2009, 43 (18), 7047–7054. 10.1021/es9009376. PubMed DOI
Huckins JN; Petty JD; Booij K Monitors of Organic Chemicals in the Environment: Semipermeable Membrane Devices.; Springer: New York, 2006.
Booij K; van Bommel R; van Aken HM; van Haren H; Brummer GJA; Ridderinkhof H Passive Sampling of Nonpolar Contaminants at Three Deep-Ocean Sites. Environ. Pollut 2014, 195, 101–108. 10.1016/j.envpol.2014.08.013. PubMed DOI
Smedes F. SSP Silicone-, Lipid- and SPMD-Water Partition Coefficients of Seventy Hydrophobic Organic Contaminants and Evaluation of the Water Concentration Calculator for SPMD. Chemosphere 2019, 223, 748–757. 10.1016/j.chemosphere.2019.01.164. PubMed DOI
Booij K; Smedes F; Allan IJ Guidelines for Determining Polymer-Water and Polymer-Polymer Partition Coefficients of Organic Compounds.; ICES Techniques in Marine Environmental Sciences; 61; International Council for the Exploration of the Sea: Copenhagen, 2017; pp 1–32. 10.17895/ices.pub.3285. DOI
Jonker MTO; van der Heijden SA; Kotte M; Smedes F Quantifying the Effects of Temperature and Salinity on Partitioning of Hydrophobic Organic Chemicals to Silicone Rubber Passive Samplers. Environ. Sci. Technol 2015, 49 (11), 6791–6799. 10.1021/acs.est.5b00286. PubMed DOI
Jonker MTO; Muijs B Using Solid Phase Micro Extraction to Determine Salting-out (Setschenow) Constants for Hydrophobic Organic Chemicals. Chemosphere 2010, 80 (3), 223–227. 10.1016/j.chemosphere.2010.04.041. PubMed DOI
Booij K; van Bommel R; Mets A; Dekker R Little Effect of Excessive Biofouling on the Uptake of Organic Contaminants by Semipermeable Membrane Devices. Chemosphere 2006, 65 (11), 2485–2492. 10.1016/j.chemosphere.2006.04.033. PubMed DOI
Harman C; Boyum O; Thomas KV; Grung M Small but Different Effect of Fouling on the Uptake Rates of Semipermeable Membrane Devices and Polar Organic Chemical Integrative Samplers. Environ. Toxicol. Chem 2009, 28 (11), 2324–2332. 10.1897/09-090.1. PubMed DOI
Allan IJ; Jenssen MTS A Case of Anisotropic Exchange of Non-Polar Chemicals with Absorption-Based Passive Samplers in Water. Chemosphere 2019, 224, 455–460. 10.1016/j.chemosphere.2019.02.135. PubMed DOI
Allan IJ; Christensen G; Bæk K; Evenset A Photodegradation of PAHs in Passive Water Samplers. Mar. Pollut. Bull 2016, 105 (1), 249–254. 10.1016/j.marpolbul.2016.02.018. PubMed DOI
Komarova TV; Bartkow ME; Rutishauser S; Carter S; Mueller JF Evaluation and in Situ Assessment of Photodegradation of Polyaromatic Hydrocarbons in Semipermeable Membrane Devices Deployed in Ocean Water. Environ. Pollut 2009, 157 (3), 731–736. 10.1016/j.envpol.2008.11.040. PubMed DOI
Vrana B; Rusina T; Okonski K; Prokeš R; Carlsson P; Kopp R; Smedes F Chasing Equilibrium Passive Sampling of Hydrophobic Organic Compounds in Water. Sci. Total Environ 2019, 664, 424–435. 10.1016/j.scitotenv.2019.01.242. PubMed DOI
Ren S; Li L; Li Y; Wu J; Dou Y Development and Field Application of a Diffusive Gradients in Thin-Films Passive Sampler for Monitoring Three Polycyclic Aromatic Hydrocarbon Derivatives and One Polycyclic Aromatic Hydrocarbon in Waters. Water 2024, 16 (5), 684. 10.3390/w16050684. DOI
Booij K; Kaserzon SL; Mackie R Correspondence on “Calibration of Perfluorinated Alkyl Acid Uptake Rates by a Tube Passive Sampler in Water.”. ACS EST Water 2023, 3 (8), 2805–2806. 10.1021/acsestwater.3c00085. DOI
Harman C; Allan IJ; Vermeirssen ELM Calibration and Use of the Polar Organic Chemical Integrative Sampler - a Critical Review. Environ. Toxicol. Chem 2012, 31 (12), 2724–2738. 10.1002/etc.2011. PubMed DOI
Charriau A; Lissalde S; Poulier G; Mazzella N; Buzier R; Guibaud G Overview of the Chemcatcher PubMed DOI
Glanzmann V; Booij K; Reymond N; Weyermann C; Estoppey N Determining the Mass Transfer Coefficient of the Water Boundary Layer at the Surface of Aquatic Integrative Passive Samplers. Environ. Sci. Technol 2022, 56 (10), 6391–6398. 10.1021/acs.est.1c08088. PubMed DOI
Booij K; Chen S; Trask JR POCIS Calibration for Organic Compound Sampling in Small Headwater Streams. Environ. Toxicol. Chem 2020, 39 (7), 1334–1342. 10.1002/etc.4731. PubMed DOI
Booij K; Maarsen NL; Theeuwen M; van Bommel R A Method to Account for the Effect of Hydrodynamics on Polar Organic Compound Uptake by Passive Samplers. Environ. Toxicol. Chem 2017, 36 (6), 1517–1524. 10.1002/etc.3700. PubMed DOI
Noro K; Yabuki Y; Banno A; Tawa Y; Nakamura S Validation of the Application of a Polar Organic Chemical Integrative Sampler (POCIS) in Non-Steady-State Conditions in Aquatic Environments. J. Water Environ. Technol 2019, 17 (6), 432–447. 10.2965/jwet.19-057. DOI
Toteu-Djomte V; Taylor RB; Chen S; Booij K; Chambliss CK Effects of Hydrodynamic Conditions and Temperature on Polar Organic Chemical Integrative Sampling Rates. Environ. Toxicol. Chem 2018, 37 (9), 2331–2339. 10.1002/etc.4225. PubMed DOI
Challis JK; Hanson ML; Wong CS Development and Calibration of an Organic-Diffusive Gradients in Thin Films Aquatic Passive Sampler for a Diverse Suite of Polar Organic Contaminants. Anal. Chem 2016, 88 (21), 10583–10591. 10.1021/acs.analchem.6b02749. PubMed DOI
Chen CE; Zhang H; Ying GG; Jones KC Evidence and Recommendations to Support the Use of a Novel Passive Water Sampler to Quantify Antibiotics in Wastewaters. Environ. Sci. Technol 2013, 47 (23), 13587–13593. 10.1021/es402662g. PubMed DOI
Hodges SD; Wahman DG; Haupert LM; Pham HT; Bozarth MK; Howland MB; Fairey JL Non-Steady-State Fickian Diffusion Models Decrease the Estimated Gel Layer Diffusion Coefficient Uncertainty for Diffusive Gradients in Thin-Films Passive Samplers. Environ. Sci. Technol 2023, 57 (26), 9793–9801. 10.1021/acs.est.3c01861. PubMed DOI PMC
Bird RB; Stewart WE; Lightfoot EN Transport Phenomena., 2nd ed.; John Wiley & Sons: New York. 10.1115/1.1424298, 2002. DOI
Chen W; Li Y; Chen C-E; Sweetman AJ; Zhang H; Jones KC DGT Passive Sampling for Quantitative in Situ Measurements of Compounds from Household and Personal Care Products in Waters. Environ. Sci. Technol 2017, 51 (22), 13274–13281. 10.1021/acs.est.7b03940. PubMed DOI
Guo C; Zhang T; Hou S; Lv J; Zhang Y; Wu F; Hua Z; Meng W; Zhang H; Xu J Investigation and Application of a New Passive Sampling Technique for in Situ Monitoring of Illicit Drugs in Waste Waters and Rivers. Environ. Sci. Technol 2017, 51 (16), 9101–9108. 10.1021/acs.est.7b00731. PubMed DOI
Reymond N; Estoppey N; Weyermann C; Glanzmann V Breaking Barriers in Passive Sampling: The Potential of PTFE Membranes in the Monitoring of Hydrophilic Micropollutants. J. Hazard. Mater 2024, 475, 134853. 10.1016/j.jhazmat.2024.134853. PubMed DOI
Estoppey N; Mathieu J; Gascon Diez E; Sapin E; Delémont O; Esseiva P; de Alencastro LF; Coudret S; Folly P Monitoring of Explosive Residues in Lake-Bottom Water Using Polar Organic Chemical Integrative Sampler (POCIS) and Chemcatcher: Determination of Transfer Kinetics through Polyethersulfone (PES) Membrane Is Crucial. Environ. Pollut 2019, 252, 767–776. 10.1016/j.envpol.2019.04.087. PubMed DOI
Vermeirssen ELM; Dietschweiler C; Escher BI; van der Voet J; Hollender J Transfer Kinetics of Polar Organic Compounds over Polyethersulfone Membranes in the Passive Samplers POCIS and Chemcatcher. Environ. Sci. Technol 2012, 46 (12), 6759–6766. 10.1021/es3007854. PubMed DOI
Endo S; Matsuura Y Characterizing Sorption and Permeation Properties of Membrane Filters Used for Aquatic Integrative Passive Samplers. Environ. Sci. Technol 2018, 52 (4), 2118–2125. 10.1021/acs.est.7b05144. PubMed DOI
Gardiner C; Robuck A; Becanova J; Cantwell M; Kaserzon S; Katz D; Mueller J; Lohmann R Field Validation of a Novel Passive Sampler for Dissolved PFAS in Surface Waters. Environ. Toxicol. Chem 2022, 41 (10), 2375–2385. 10.1002/etc.5431. PubMed DOI PMC
Kaserzon SL; Vijayasarathy S; Bräunig J; Mueller L; Hawker DW; Thomas KV; Mueller JF Calibration and Validation of a Novel Passive Sampling Device for the Time Integrative Monitoring of Per- and Polyfluoroalkyl Substances (PFASs) and Precursors in Contaminated Groundwater. J. Hazard. Mater 2019, 366, 423–431. 10.1016/j.jhazmat.2018.12.010. PubMed DOI
Verhagen R; Kaserzon SL; Tscharke BJ; Shukla P; Clokey J; Vrana B; Thomas KV; Mueller JF Time-Integrative Passive Sampling of Very Hydrophilic Chemicals in Wastewater Influent. Environ. Sci. Technol. Lett 2020, 7 (11), 848–853. 10.1021/acs.estlett.0c00685. DOI
Belles A; Tapie N; Pardon P; Budzinski H Development of the Performance Reference Compound Approach for the Calibration of “Polar Organic Chemical Integrative Sampler” (POCIS). Anal. Bioanal. Chem 2014, 406 (4), 1131–1140. 10.1007/s00216-013-7297-z. PubMed DOI
Hale SE; Canivet B; Rundberget T; Langberg HA; Allan IJ Using Passive Samplers to Track per and Polyfluoroalkyl Substances (PFAS) Emissions from the Paper Industry: Laboratory Calibration and Field Verification. Front. Environ. Sci 2021, 9, 796026. 10.3389/fenvs.2021.796026. DOI
Mijangos L; Ziarrusta H; Prieto A; Zugazua O; Zuloaga O; Olivares M; Usobiaga A; Paschke A; Etxebarria N Evaluation of Polar Organic Chemical Integrative and Hollow Fibre Samplers for the Determination of a Wide Variety of Organic Polar Compounds in Seawater. Talanta 2018, 185, 469–476. 10.1016/j.talanta.2018.03.103. PubMed DOI
Ng S-F; Rouse J; Sanderson D; Eccleston G A Comparative Study of Transmembrane Diffusion and Permeation of Ibuprofen across Synthetic Membranes Using Franz Diffusion Cells. Pharmaceutics 2010, 2 (2), 209–223. 10.3390/pharmaceutics2020209. PubMed DOI PMC
Skodova A; Prokes R; Simek Z; Vrana B In Situ Calibration of Three Passive Samplers for the Monitoring of Steroid Hormones in Wastewater. Talanta 2016, 161, 405–412. 10.1016/j.talanta.2016.08.068. PubMed DOI
Shaw M; Mueller JF Time Integrative Passive Sampling: How Well Do Chemcatchers Integrate Fluctuating Pollutant Concentrations? Environ. Sci. Technol 2009, 43 (5), 1443–1448. 10.1021/es8021446. PubMed DOI
Mutzner L; Vermeirssen ELM; Ort C Passive Samplers in Sewers and Rivers with Highly Fluctuating Micropollutant Concentrations – Better than We Thought. J. Hazard. Mater 2019, 361, 312–320. 10.1016/j.jhazmat.2018.07.040. PubMed DOI
Kaserzon SL; Hawker DW; Kennedy K; Bartkow M; Carter S; Booij K; Mueller JF Characterisation and Comparison of the Uptake of Ionizable and Polar Pesticides, Pharmaceuticals and Personal Care Products by POCIS and Chemcatchers. Environ. Sci. Process. Impacts 2014, 16, 2517–2526. 10.1039/c4em00392f. PubMed DOI
Vermeirssen ELM; Bramaz N; Hollender J; Singer H; Escher BI Passive Sampling Combined with Ecotoxicological and Chemical Analysis of Pharmaceuticals and Biocides - Evaluation of Three Chemcatcher (TM) Configurations. Water Res. 2009, 43 (4), 903–914. 10.1016/j.watres.2008.11.026. PubMed DOI
Fang Z; Li Y; Li Y; Yang D; Zhang H; Jones KC; Gu C; Luo J Development and Applications of Novel DGT Passive Samplers for Measuring 12 Per- and Polyfluoroalkyl Substances in Natural Waters and Wastewaters. Environ. Sci. Technol 2021, 55 (14), 9548–9556. 10.1021/acs.est.0c08092. PubMed DOI
Haftka JJH; Scherpenisse P; Jonker MTO; Hermens JLM Using Polyacrylate-Coated SPME Fibers to Quantify Sorption of Polar and Ionic Organic Contaminants to Dissolved Organic Carbon. Environ. Sci. Technol 2013, 47 (9), 4455–4462. 10.1021/es400236a. PubMed DOI
Huysman S; Vanryckeghem F; De Paepe E; Smedes F; Haughey SA; Elliott CT; Demeestere K; Vanhaecke L Hydrophilic Divinylbenzene for Equilibrium Sorption of Emerging Organic Contaminants in Aquatic Matrices. Environ. Sci. Technol 2019, 53 (18), 10803–10812. 10.1021/acs.est.9b01814. PubMed DOI
Jeong Y; Schäffer A; Smith K Equilibrium Partitioning of Organic Compounds to OASIS HLB PubMed DOI
Kaltenberg EM; Dasu K; Lefkovitz LF; Thorn J; Schumitz D Sampling of Freely Dissolved Per- and Polyfluoroalkyl Substances (PFAS) in Surface Water and Groundwater Using a Newly Developed Passive Sampler. Environ. Pollut 2023, 318, 120940. 10.1016/j.envpol.2022.120940. PubMed DOI
Becanova J; Saleeba ZSSL; Stone A; Robuck AR; Hurt RH; Lohmann R A Graphene-Based Hydrogel Monolith with Tailored Surface Chemistry for PFAS Passive Sampling. Environ. Sci. Nano 2021, 8 (10), 2894–2907. 10.1039/D1EN00517K. PubMed DOI PMC
Ghorbani Gorji S; Hawker DW; Mackie R; Higgins CP; Bowles K; Li Y; Kaserzon S Sorption Affinity and Mechanisms of Per-and Polyfluoroalkyl Substances (PFASs) with Commercial Sorbents: Implications for Passive Sampling. J. Hazard. Mater 2023, 457, 131688. 10.1016/j.jhazmat.2023.131688. PubMed DOI
ITRC. Passive Sampling Technology Update; 2024. https://psu-1.itrcweb.org/ (accessed 2025-06-16).
Medon B; Pautler BG; Sweett A; Roberts J; Risacher FF; D’Agostino LA; Conder J; Gauthier JR; Mabury SA; Patterson A; McIsaac P; Mitzel R; Hakimabadi SG; Pham AL-T A Field-Validated Equilibrium Passive Sampler for the Monitoring of per- and Polyfluoroalkyl Substances (PFAS) in Sediment Pore Water and Surface Water. Environ. Sci. Process. Impacts 2023, 25 (5), 980–995. 10.1039/D2EM00483F. PubMed DOI
Wang J; Guo X; Xue J Biofilm-Developed Microplastics as Vectors of Pollutants in Aquatic Environments. Environ. Sci. Technol 2021, 55 (19), 12780–12790. 10.1021/acs.est.1c04466. PubMed DOI
Dunn M; Becanova J; Snook J; Ruyle B; Lohmann R Calibration of Perfluorinated Alkyl Acid Uptake Rates by a Tube Passive Sampler in Water. ACS EST Water 2023, 3 (2), 332–341. 10.1021/acsestwater.2c00384. DOI
Feng Z; Zhu P; Fan H; Piao S; Xu L; Sun T Effect of Biofilm on Passive Sampling of Dissolved Orthophosphate Using the Diffusive Gradients in Thin Films Technique. Anal. Chem 2016, 88 (13), 6836–6843. 10.1021/acs.analchem.6b01392. PubMed DOI
Schäfer RB; Paschke A; Liess M Aquatic Passive Sampling of a Short-Term Thiacloprid Pulse with the Chemcatcher: Impact of Biofouling and Use of a Diffusion-Limiting Membrane on the Sampling Rate. J. Chromatogr. A 2008, 1203 (1), 1–6. 10.1016/j.chroma.2008.05.098. PubMed DOI
Wang R; Jones KC; Zhang H Monitoring Organic Pollutants in Waters Using the Diffusive Gradients in the Thin Films Technique: Investigations on the Effects of Biofouling and Degradation. Environ. Sci. Technol 2020, 54 (13), 7961–7969. 10.1021/acs.est.0c00224. PubMed DOI
Uher E; Compère C; Combe M; Mazeas F; Gourlay-Francé C In Situ Measurement with Diffusive Gradients in Thin Films: Effect of Biofouling in Freshwater. Environ. Sci. Pollut. Res 2017, 24 (15), 13797–13807. 10.1007/s11356-017-8972-y. DOI
Mackie R; Hawker DW; Ghorbani Gorji S; Booij K; Qu X; Bowles K; Shea S; Higgins CP; Kaserzon S Application of a Microporous Polyethylene Tube Passive Sampler for Monitoring Per- and Polyfluoroalkyl Substances in Wastewater Influent and Effluent. ACS EST Water 2024. 10.1021/acsestwater.4c00125. DOI
Alenazi NA; Hussein MA; Alamry KA; Asiri AM Modified Polyether-Sulfone Membrane: A Mini Review. Des. Monomers Polym 2017, 20 (1), 532–546. 10.1080/15685551.2017.1398208. PubMed DOI PMC
Endo S; Matsuura Y; Vermeirssen ELM Mechanistic Model Describing the Uptake of Chemicals by Aquatic Integrative Samplers: Comparison to Data and Implications for Improved Sampler Configurations. Environ. Sci. Technol 2019, 53 (3), 1482–1489. 10.1021/acs.est.8b06225. PubMed DOI
Schreiner VC; Bakanov N; Kattwinkel M; Könemann S; Kunz S; Vermeirssen ELM; Schäfer RB Sampling Rates for Passive Samplers Exposed to a Field-Relevant Peak of 42 Organic Pesticides. Sci. Total Environ 2020, 740, 140376. 10.1016/j.scitotenv.2020.140376. PubMed DOI