NMR Crystallographic Journey from Light to Heavy Atoms of Mercury(II)-DOTAM Complexes and Extraction of Related Structural Parameters
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41099375
PubMed Central
PMC12570143
DOI
10.1021/acs.inorgchem.5c03503
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Complexes of macrocyclic ligands are routinely used as MRI contrast agents and radionuclide carriers for PET and SPECT diagnostics and radiotherapy. This study explores the structural and electronic environments of two materials containing [Hg(dotam)]2+ cations, using an integrated approach combining single-crystal X-ray diffraction (SC-XRD), multinuclear solid-state magnetic resonance (ssNMR) spectroscopy (13C, 15N, 199Hg), and relativistic density functional theory (DFT) calculations. SC-XRD revealed distinct coordination motifs, including octa- and heptacoordinated [Hg(dotam)]2+ cations. Scalar and spin-orbit relativistic DFT computations accurately reproduced 13C and 15N chemical shifts, with a root-mean-square deviation of ∼0.7 ppm for 13C and ∼4.8 ppm for 15N, highlighting the importance of relativistic heavy atom effects. For 199Hg NMR, relativistic cluster-based methods (ADF/ReSpect) outperformed nonrelativistic approaches. An empirical regression model (χ̅) linked 199Hg shifts to the coordination number (CN) and averaged donor electronegativity (χ̅) (R2 = 0.86), enabling rapid structural inference. The isotropic 199Hg shift correlates with the charge on the Hg atom, influencing the p-type frontier molecular orbitals and their paramagnetic contributions to NMR shielding. This work highlights the potential of 199Hg NMR as a structural descriptor and offers a strategy for NMR crystallography involving heavy elements with possible implications for catalysis, ionic liquids, and Hg-based pharmaceuticals.
CEITEC Central European Institute of Technology Masaryk University Kamenice 753 5 62500 Brno Czechia
Department of Chemistry and Biomolecular Sciences University of Ottawa Ottawa Ontario K1N 6N5 Canada
Department of Chemistry Faculty of Science Masaryk University Kamenice 753 5 62500 Brno Czechia
Zobrazit více v PubMed
Faustini M., Nicole L., Ruiz-Hitzky E., Sanchez C.. History of Organic-Inorganic Hybrid Materials: Prehistory, Art, Science, and Advanced Applications. Adv. Funct. Mater. 2018;28(27):1–30. doi: 10.1002/adfm.201704158. DOI
Katayama S., Nonaka Y., Iwata K., Kubo Y., Yamada N.. Synergistic Effect of Inorganic and Organic Components on Solid Acid/Base Properties of Organosiloxane-Based Inorganic-Organic Hybrid Materials. Adv. Mater. 2005;17(21):2596–2599. doi: 10.1002/adma.200401645. DOI
Parola S., Julián-López B., Carlos L. D., Sanchez C.. Optical Properties of Hybrid Organic-Inorganic Materials and Their Applications. Adv. Funct. Mater. 2016;26(36):6506–6544. doi: 10.1002/adfm.201602730. DOI
Brenner T. M., Egger D. A., Kronik L., Hodes G., Cahen D.. Hybrid Organic - Inorganic Perovskites: Low-Cost Semiconductors with Intriguing Charge-Transport Properties. Nat. Rev. Mater. 2016;1(1):15007. doi: 10.1038/natrevmats.2015.7. DOI
Zhao Q., Stalin S., Zhao C. Z., Archer L. A.. Designing Solid-State Electrolytes for Safe, Energy-Dense Batteries. Nat. Rev. Mater. 2020;5(3):229–252. doi: 10.1038/s41578-019-0165-5. DOI
Wright M., Uddin A.. Organic-Inorganic Hybrid Solar Cells: A Comparative Review. Sol. Energy Mater. Sol. Cells. 2012;107:87–111. doi: 10.1016/j.solmat.2012.07.006. DOI
Gao Y., Ren T., Yang X., Zhu H., Jia D.. Syntheses, Structures, Photoelectricity and Photocatalysis of 2-D and 3-D Bromoargentate Frameworks with Organic Linkers. Inorg. Chem. Commun. 2024;159:111804. doi: 10.1016/j.inoche.2023.111804. DOI
Mir S. H., Nagahara L. A., Thundat T., Mokarian-Tabari P., Furukawa H., Khosla A.. ReviewOrganic-Inorganic Hybrid Functional Materials: An Integrated Platform for Applied Technologies. J. Electrochem. Soc. 2018;165(8):B3137–B3156. doi: 10.1149/2.0191808jes. DOI
Kalita S., Kashyap N., Bora D. B., Das S., Borah R.. Investigation of N,N′-Disulfopiperazinium Chlorometallates of Fe(III), Ni(II) and Co(II) as Hybrid Catalysts for the Synthesis of 1,2-Dihydroquinazoline Derivatives. Chem. Select. 2023;8(18):e202204533. doi: 10.1002/slct.202204533. DOI
Goodman E. D., Zhou C., Cargnello M.. Design of Organic/Inorganic Hybrid Catalysts for Energy and Environmental Applications. ACS Cent. Sci. 2020;6(11):1916–1937. doi: 10.1021/acscentsci.0c01046. PubMed DOI PMC
Hermann P., Kotek J., Kubíček V., Lukeš I.. Gadolinium(III) Complexes as MRI Contrast Agents: Ligand Design and Properties of the Complexes. Dalton Trans. 2008;(23):3027–3047. doi: 10.1039/b719704g. PubMed DOI
Wahsner J., Gale E. M., Rodríguez-Rodríguez A., Caravan P.. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem. Rev. 2019;119(2):957–1057. doi: 10.1021/acs.chemrev.8b00363. PubMed DOI PMC
Harnden A. C., Parker D., Rogers N. J.. Employing Paramagnetic Shift for Responsive MRI Probes. Coord. Chem. Rev. 2019;383:30–42. doi: 10.1016/j.ccr.2018.12.012. DOI
Joss D., Häussinger D.. Design and Applications of Lanthanide Chelating Tags for Pseudocontact Shift NMR Spectroscopy with Biomacromolecules. Prog. Nucl. Magn. Reson. Spectrosc. 2019;114–115:284–312. doi: 10.1016/j.pnmrs.2019.08.002. PubMed DOI
Miao Q., Nitsche C., Orton H., Overhand M., Otting G., Ubbink M.. Paramagnetic Chemical Probes for Studying Biological Macromolecules. Chem. Rev. 2022;122(10):9571–9642. doi: 10.1021/acs.chemrev.1c00708. PubMed DOI PMC
Parker D., Fradgley J. D., Wong K. L.. The Design of Responsive Luminescent Lanthanide Probes and Sensors. Chem. Soc. Rev. 2021;50(14):8193–8213. doi: 10.1039/D1CS00310K. PubMed DOI
Boros E., Packard A. B.. Radioactive Transition Metals for Imaging and Therapy. Chem. Rev. 2019;119(2):870–901. doi: 10.1021/acs.chemrev.8b00281. PubMed DOI
Kostelnik T. I., Orvig C.. Radioactive Main Group and Rare Earth Metals for Imaging and Therapy. Chem. Rev. 2019;119(2):902–956. doi: 10.1021/acs.chemrev.8b00294. PubMed DOI
Shiraishi Y., Sumiya S., Kohno Y., Hirai T.. A Rhodamine-Cyclen Conjugate as a Highly Sensitive and Selective Fluorescent Chemosensor for Hg(II) J. Org. Chem. 2008;73(21):8571–8574. doi: 10.1021/jo8012447. PubMed DOI
Li M., Lu H. Y., Liu R. L., Chen J. D., Chen C. F.. Turn-on Fluorescent Sensor for Selective Detection of Zn2+, Cd2+, and Hg2+ in Water. J. Org. Chem. 2012;77(7):3670–3673. doi: 10.1021/jo3002744. PubMed DOI
Bao G., Zha S., Liu Z., Fung Y. H., Chan C. F., Li H., Chu P. H., Jin D., Tanner P. A., Wong K. L.. Reversible and Sensitive Hg2+ Detection by a Cell-Permeable Ytterbium Complex. Inorg. Chem. 2018;57(1):120–128. doi: 10.1021/acs.inorgchem.7b02243. PubMed DOI
Yoo S., Kim S., Eom M. S., Kang S., Lim S. H., Han M. S.. Development of a Highly Sensitive Colorimetric Thymidine Triphosphate Chemosensor Using Gold Nanoparticles and the p-Xylyl-Bis(Hg2+-Cyclen) Complex: Improved Selectivity by Metal Ion Tuning. Tetrahedron Lett. 2016;57(40):4484–4487. doi: 10.1016/j.tetlet.2016.08.075. DOI
Walther M., Preusche S., Bartel S., Wunderlich G., Freudenberg R., Steinbach J., Pietzsch H. J.. Theranostic Mercury: 197(m)Hg with High Specific Activity for Imaging and Therapy. Appl. Radiat. Isot. 2015;97:177–181. doi: 10.1016/j.apradiso.2015.01.001. PubMed DOI
Randhawa P., Carbo-Bague I., Davey P. R. W. J., Chen S., Merkens H., Uribe C. F., Zhang C., Tosato M., Bénard F., Radchenko V., Ramogida C. F.. Exploration of Commercial Cyclen-Based Chelators for Mercury-197m/g Incorporation into Theranostic Radiopharmaceuticals. Front. Chem. 2024;12:1292566. doi: 10.3389/fchem.2024.1292566. PubMed DOI PMC
Tosato M., Randhawa P., Asti M., Hemmingsen L. B. S., O’Shea C. A., Thaveenrasingam P., Sauer S. P. A., Chen S., Graiff C., Menegazzo I., Baron M., Radchenko V., Ramogida C. F., Di Marco V.. Capturing Mercury-197m/g for Auger Electron Therapy and Cancer Theranostic with Sulfur-Containing Cyclen-Based Macrocycles. Inorg. Chem. 2024;63(30):14241–14255. doi: 10.1021/acs.inorgchem.4c02418. PubMed DOI
Hancock R. D., Reibenspies J. H., Maumela H.. Structural Effects of the Lone Pair on Lead(II), and Parallels with the Coordination Geometry of Mercury(II). Does the Lone Pair on Lead(II) Form H-Bonds? Structures of the Lead(II) and Mercury(II) Complexes of the Pendant-Donor Macrocycle DOTAM (1,4,7,10-Tetrakis(Carbamoylmethyl)-1,4,7,10-Tetraazacyclododecane) Inorg. Chem. 2004;43(9):2981–2987. doi: 10.1021/ic030277a. PubMed DOI
Linden A., James B. D., Liesegang J., Gonis N.. Polynuclear Chloromercurate(II) Systems in Their Chloropyridinium Salts. Acta Crystallogr. 1999;B55(3):396–409. doi: 10.1107/S010876819801550X. PubMed DOI
Harchani A., Samolova E., Dušek M., Haddad A.. Three New Chloromercurate Compounds: Synthesis, Crystal Structure, Electronic Characteristics, Reactivity, Polarity, Flexibility and Thermodynamic Properties. Polyhedron. 2019;173:114118. doi: 10.1016/j.poly.2019.114118. DOI
House D. A., Robinson W. T., Mckee V.. Chloromercury (II) Anions. Coord. Chem. Rev. 1994;135-136:533–586. doi: 10.1016/0010-8545(94)80077-4. DOI
Dhanabal T., Amirthaganesan G., Dhandapani M.. Synthesis, Spectral and Thermal Characterization of Bis(Diethylammonium) Tetrachloromercurate(II)-An Nonlinear Optical Material. Optik. 2013;124(24):6877–6881. doi: 10.1016/j.ijleo.2013.05.151. DOI
Mallick B., Metlen A., Nieuwenhuyzen M., Rogers R. D., Mudring A. V.. Mercuric Ionic Liquids: [Cnmim][HgX3], Where n = 3, 4 and X = Cl, Br. Inorg. Chem. 2012;51(1):193–200. doi: 10.1021/ic201415d. PubMed DOI
Metlen A., Mallick B., Murphy R. W., Mudring A. V., Rogers R. D.. Phosphonium Chloromercurate Room Temperature Ionic Liquids of Variable Composition. Inorg. Chem. 2013;52(24):13997–14009. doi: 10.1021/ic401676r. PubMed DOI
Jin L., Sun S. W., Wu D. H., Zhang Y.. Synthesis, Structure and Dielectric Property of poly[(Cyanomethyltriethylammonium) bis(μ2-Chloro)-bis(μ3-Chloro)-tri(μ2-Bromo)Trimercury(II)] and [Cyanomethyltriethylammonium] [bis(μ2-Chloro)-bis(Dichloromercury(II))] Inorg. Chem. Commun. 2013;35:226–230. doi: 10.1016/j.inoche.2013.06.041. DOI
Xu L., Gao J. X., Chen X. G., Hua X. N., Wu D. H., Liao W. Q.. Unprecedented Dielectric Bistable Switching in a Binuclear HgII Based Hybrid Compound. Eur. J. Inorg. Chem. 2019;2019(6):800–807. doi: 10.1002/ejic.201801293. DOI
Draper N. D., Batchelor R. J., Aguiar P. M., Kroeker S., Leznoff D. B.. Factors Affecting the Solid-State Structure and Dimensionality of Mercury Cyanide/Chloride Double Salts, and NMR Characterization of Coordination Geometries. Inorg. Chem. 2004;43(21):6557–6567. doi: 10.1021/ic049792e. PubMed DOI
Angeloski A., Rawal A., Bhadbhade M., Hook J. M., Schurko R. W., McDonagh A. M.. An Unusual Mercury(II) Diisopropyldithiocarbamate Coordination Polymer. Cryst. Growth Des. 2019;19(2):1125–1133. doi: 10.1021/acs.cgd.8b01619. DOI
Wu G., Wasylishen R. E.. Anisotropic Nuclear Spin Interactions in K2Hg(CN)4: A Multinuclear Solid-State NMR Study. J. Phys. Chem. 1993;97(30):7863–7869. doi: 10.1021/j100132a012. DOI
Taylor R. E., Carver C. T., Larsen R. E., Dmitrenko O., Bai S., Dybowski C.. Revisiting HgCl2: A Solution- and Solid-State 199Hg NMR and ZORA-DFT Computational Study. J. Mol. Struct. 2009;930(1–3):99–109. doi: 10.1016/j.molstruc.2009.04.045. DOI
Taylor R. E., Bai S., Dybowski C.. A Solid-State 199Hg NMR Study of Mercury Halides. J. Mol. Struct. 2011;987(1–3):193–198. doi: 10.1016/j.molstruc.2010.12.013. DOI
Alkan F., Dybowski C.. Calculation of Chemical-Shift Tensors of Heavy Nuclei: A DFT/ZORA Investigation of 199Hg Chemical-Shift Tensors in Solids, and the Effects of Cluster Size and Electronic-State Approximations. Phys. Chem. Chem. Phys. 2014;16(27):14298–14308. doi: 10.1039/C4CP01682C. PubMed DOI
Butkiewicz H., Chodkiewicz M., Madsen A. Ø., Hoser A. A.. Advancing Dynamic Quantum Crystallography: Enhanced Models for Accurate Structures and Thermodynamic Properties. IUCrJ. 2025;12(1):123–136. doi: 10.1107/S2052252524011862. PubMed DOI PMC
Bryce, D. L. Modern NMR Crystallography: Concepts and Applications; Royal Society of Chemistry, 2025. 10.1039/9781837673179. DOI
Baias M., Dumez J. N., Svensson P. H., Schantz S., Day G. M., Emsley L.. De Novo Determination of the Crystal Structure of a Large Drug Molecule by Crystal Structure Prediction-Based Powder NMR Crystallography. J. Am. Chem. Soc. 2013;135(46):17501–17507. doi: 10.1021/ja4088874. PubMed DOI
Brus J., Czernek J., Hruby M., Svec P., Kobera L., Abbrent S., Urbanova M.. Efficient Strategy for Determining the Atomic-Resolution Structure of Micro- and Nanocrystalline Solids within Polymeric Microbeads: Domain-Edited NMR Crystallography. Macromolecules. 2018;51(14):5364–5374. doi: 10.1021/acs.macromol.8b00392. DOI
Harris K. D. M.. NMR Crystallography as a Vital Tool in Assisting Crystal Structure Determination from Powder XRD Data. Crystals. 2022;12(9):1277. doi: 10.3390/cryst12091277. DOI
Hodgkinson P.. NMR Crystallography of Molecular Organics. Prog. Nucl. Magn. Reson. Spectrosc. 2020;118–119:10–53. doi: 10.1016/j.pnmrs.2020.03.001. PubMed DOI
Rehman Z., Franks W. T., Nguyen B., Schmidt H. F., Scrivens G., Brown S. P.. Discovering the Solid-State Secrets of Lorlatinib by NMR Crystallography: To Hydrogen Bond or Not to Hydrogen Bond. J. Pharm. Sci. 2023;112(7):1915–1928. doi: 10.1016/j.xphs.2023.02.022. PubMed DOI
Brouwer D. H., Van Huizen J.. NMR Crystallography of Zeolites: How Far Can We Go without Diffraction Data? Magn. Reson. Chem. 2019;57(5):167–175. doi: 10.1002/mrc.4748. PubMed DOI
Peach A. A., Fleischer C. H. III, Levin K., Holmes S. T., Sanchez J. E., Schurko R. W.. Quadrupolar NMR Crystallography Guided Crystal Prediction (QNMRX-CSP) CrystEngComm. 2024;26(35):4782–4803. doi: 10.1039/D3CE01306E. DOI
Clark S. J., Segall M. D., Pickard C. J., Hasnip P. J., Probert M. I. J., Refson K., Payne M. C.. First Principles Methods Using CASTEP. Z. Kristallogr. 2005;220(5–6):567–570. doi: 10.1524/zkri.220.5.567.65075. DOI
te Velde G., Bickelhaupt F. M., Baerends E. J., Fonseca Guerra C., van Gisbergen S. J. A., Snijders J. G., Ziegler T.. Chemistry with ADF. J. Comput. Chem. 2001;22(9):931–967. doi: 10.1002/jcc.1056. DOI
Repisky M., Komorovsky S., Kadek M., Konecny L., Ekström U., Malkin E., Kaupp M., Ruud K., Malkina O. L., Malkin V. G.. ReSpect: Relativistic Spectroscopy DFT Program Package. J. Chem. Phys. 2020;152(18):184101. doi: 10.1063/5.0005094. PubMed DOI
Pyykko P.. Relativistic Effects in Structural Chemistry. Chem. Rev. 1988;88(3):563–594. doi: 10.1021/cr00085a006. DOI
Autschbach J.. Perspective: Relativistic Effects. J. Chem. Phys. 2012;136(15):150902. doi: 10.1063/1.3702628. PubMed DOI
Orendt A. M., Facelli J. C.. Solid-State Effects on NMR Chemical Shifts. Annu. Rep. NMR Spectrosc. 2007;62:115–178. doi: 10.1016/S0066-4103(07)62003-1. DOI
Zwanziger J. W., Farrant A. R., Werner-Zwanziger U.. Relativistic Effects on the Magnetic Shielding in Solids: First-Principles Computation in a Plane Wave Code. J. Magn. Reson. 2025;374:107861. doi: 10.1016/j.jmr.2025.107861. PubMed DOI
Gordon C. P., Raynaud C., Andersen R. A., Copéret C., Eisenstein O.. Carbon-13 NMR Chemical Shift: A Descriptor for Electronic Structure and Reactivity of Organometallic Compounds. Acc. Chem. Res. 2019;52(8):2278–2289. doi: 10.1021/acs.accounts.9b00225. PubMed DOI
Reif B., Ashbrook S. E., Emsley L., Hong M.. Solid-State NMR Spectroscopy. Nat. Rev. Methods Primers. 2021;1(1):2. doi: 10.1038/s43586-020-00002-1. PubMed DOI PMC
Harris R. K., Ghi P. Y., Hammond R. B., Ma C. Y., Roberts K. J.. Refinement of Hydrogen Atomic Position in a Hydrogen Bond Using a Combination of Solid-State NMR and Computation. Chem. Commun. 2003;(22):2834–2835. doi: 10.1039/b309302f. PubMed DOI
Hofstetter A., Emsley L.. Positional Variance in NMR Crystallography. J. Am. Chem. Soc. 2017;139(7):2573–2576. doi: 10.1021/jacs.6b12705. PubMed DOI
Vícha J., Novotný J., Komorovsky S., Straka M., Kaupp M., Marek R.. Relativistic Heavy-Neighbor-Atom Effects on NMR Shifts: Concepts and Trends across the Periodic Table. Chem. Rev. 2020;120(15):7065–7103. doi: 10.1021/acs.chemrev.9b00785. PubMed DOI
Novotný J., Vícha J., Bora P. L., Repisky M., Straka M., Komorovsky S., Marek R.. Linking the Character of the Metal-Ligand Bond to the Ligand NMR Shielding in Transition-Metal Complexes: NMR Contributions from Spin-Orbit Coupling. J. Chem. Theory Comput. 2017;13(8):3586–3601. doi: 10.1021/acs.jctc.7b00444. PubMed DOI
Zee D. Z., Singer C. P., O’Halloran T. V.. Chemical-Shift Standards for 199Hg NMR Spectroscopy, 25 Years Later. Inorg. Chem. 2022;61(35):13657–13661. doi: 10.1021/acs.inorgchem.2c02183. PubMed DOI PMC
Eichele K., Kroeker S., Wu G., Wasylishen R. E.. Set-up Samples for 199Hg Cross-Polarization Magic-Angle Spinning Nuclear Magnetic Resonance Spectroscopy. Solid State Nucl. Magn. Reson. 1995;4(5):295–300. doi: 10.1016/0926-2040(95)00015-I. PubMed DOI
Harris R. K., Becker E. D., Cabral De Menezes S. M., Granger P., Hoffman R. E., Zilm K. W.. Further Conventions for NMR Shielding and Chemical Shifts (IUPAC Recommendations 2008) Pure Appl. Chem. 2008;80(1):59–84. doi: 10.1351/pac200880010059. DOI
Massiot D., Farnan I., Gautier N., Trumeau D., Trokiner A., Coutures J. P.. 71Ga and 69Ga Nuclear Magnetic Resonance Study of β-Ga2O3: Resolution of Four- and Six-Fold Coordinated Ga Sites in Static Conditions. Solid State Nucl. Magn. Reson. 1995;4(4):241–248. doi: 10.1016/0926-2040(95)00002-8. PubMed DOI
O’Dell L. A., Rossini A. J., Schurko R. W.. Acquisition of Ultra-Wideline NMR Spectra from Quadrupolar Nuclei by Frequency Stepped WURST-QCPMG. Chem. Phys. Lett. 2009;468(4–6):330–335. doi: 10.1016/j.cplett.2008.12.044. DOI
Schurko R. W.. Ultra-Wideline Solid-State NMR Spectroscopy. Acc. Chem. Res. 2013;46(9):1985–1995. doi: 10.1021/ar400045t. PubMed DOI
Harris K. J., Lupulescu A., Lucier B. E. G., Frydman L., Schurko R. W.. Broadband Adiabatic Inversion Pulses for Cross Polarization in Wideline Solid-State NMR Spectroscopy. J. Magn. Reson. 2012;224:38–47. doi: 10.1016/j.jmr.2012.08.015. PubMed DOI PMC
Mahun A., Abbrent S., Czernek J., Rohlicek J., Macková H., Ning W., Konefał R., Brus J., Kobera L.. Reconstructing Reliable Powder Patterns from Spikelets (Q)CPMG NMR Spectra: Simplification of UWNMR Crystallography Analysis. Molecules. 2021;26(19):6051. doi: 10.3390/molecules26196051. PubMed DOI PMC
Baerends E. J., Aguirre N. F., Austin N. D., Autschbach J., Bickelhaupt F. M., Bulo R., Cappelli C., van Duin A. C. T., Egidi F., Fonseca Guerra C., Förster A., Franchini M., Goumans T. P. M., Heine T., Hellström M., Jacob C. R., Jensen L., Krykunov M., van Lenthe E., Michalak A., Mitoraj M. M., Neugebauer J., Nicu V. P., Philipsen P., Ramanantoanina H., Rüger R., Schreckenbach G., Stener M., Swart M., Thijssen J. M., Trnka T., Visscher L., Yakovlev A., van Gisbergen S.. The Amsterdam Modeling Suite. J. Chem. Phys. 2025;162:162501. doi: 10.1063/5.0258496. PubMed DOI
Sojka M., Chyba J., Paul S. S., Wawrocka K., Hönigova K., Cuyacot B. J. R., Castro A. C., Vaculovič T., Marek J., Repisky M., Masařik M., Novotny J., Marek R.. Supramolecular Coronation of Platinum(II) Complexes by Macrocycles: Structure, Relativistic DFT Calculations, and Biological Effects. Inorg. Chem. 2021;60(23):17911–17925. doi: 10.1021/acs.inorgchem.1c02467. PubMed DOI
Walkley B., Provis J. L.. Solid-State Nuclear Magnetic Resonance Spectroscopy of Cements. Mater. Today Adv. 2019;1:100007. doi: 10.1016/j.mtadv.2019.100007. PubMed DOI
Xu Z., Stebbins J. F.. 6Li Nuclear Magnetic Resonance Chemical Shifts, Coordination Number and Relaxation in Crystalline and Glassy Silicates. Solid State Nucl. Magn. Reson. 1995;5(1):103–112. doi: 10.1016/0926-2040(95)00026-M. PubMed DOI
MacKenzie K. J. D.. Solid State Multinuclear NMR: A Versatile Tool for Studying the Reactivity of Solid Systems. Solid State Ionics. 2004;172(1–4):383–388. doi: 10.1016/j.ssi.2004.03.020. DOI
Tasic L., Abraham R. J., Rittner R.. Substituent Effects on 1H and 13C NMR Chemical Shifts in α-Monosubstituted Ethyl Acetates: Principal Component Analysis and 1H Chemical Shift Calculations. Magn. Reson. Chem. 2002;40(7):449–454. doi: 10.1002/mrc.1046. DOI
Steinberg A., Karni M., Avnir D.. Continuous Symmetry Analysis of NMR Chemical Shielding Anisotropy. Chem. Eur. J. 2006;12(33):8534–8538. doi: 10.1002/chem.200600331. PubMed DOI
Klaus E., Sebald A.. Molecular Symmetry and Shielding Tensor Properties-Some Illustrative Examples. Magn. Reson. Chem. 1994;32(11):679–690. doi: 10.1002/mrc.1260321108. DOI
Barannikov R., Kočí E., Bezdička P., Kobera L., Mahun A., Rohlíček J., Plocek J., Švarcová S.. Long-Chain Mercury Carboxylates Relevant to Saponification in Oil and Tempera Paintings: XRPD and ssNMR Complementary Study of Their Crystal Structures. Dalton Trans. 2022;51(10):4019–4032. doi: 10.1039/D1DT04160F. PubMed DOI
Bowmaker G. A., Harris R. K., Apperley D. C.. Solid-State 199Hg MAS NMR and Vibrational Spectroscopic Studies of Dimercury(I) Compounds. Inorg. Chem. 1999;38(22):4956–4962. doi: 10.1021/ic9905648. PubMed DOI
Bowmaker G. A., Harris R. K., Oh S.-W.. Solid-State NMR Spectroscopy of Mercury Compounds. Coord. Chem. Rev. 1997;167:49–94. doi: 10.1016/S0010-8545(97)90141-7. DOI
Bowmaker G. A., Churakov A. V., Harris R. K., Howard J. A. K., Apperley D. C.. Solid-State 199Hg MAS NMR Studies of Mercury(II) Thiocyanate Complexes and Related Compounds. Crystal Structure of Hg(SeCN)2 . Inorg. Chem. 1998;37(8):1734–1743. doi: 10.1021/ic9700112. DOI
Wright J. G., Natan M. J., MacDonnel F. M., Ralston D. M., O’Halloran T. V.. Mercury(II)-Thiolate Chemistry and the Mechanism of the Heavy Metal Biosensor MerR. Prog. Inorg. Chem.: Bioinorg. Chem. 1990;38:323–412. doi: 10.1002/9780470166390.ch6. DOI
Natan M. J., Millikan C. F., Wright J. G., O’Halloran T. V.. Solid-State 199Hg Nuclear Magnetic Resonance as a Probe of Coordination Number and Geometry in Hg(II) Complexes. J. Am. Chem. Soc. 1990;112(8):3255–3257. doi: 10.1021/ja00164a080. DOI
Bowmaker G. A., Dance I. G., Harris R. K., Henderson W., Laban I., Scudder M. L., Oh S.-W.. Crystallographic, Vibrational and Nuclear Magnetic Resonance Spectroscopic Characterization of the [(PhS)2Hg(μ-SPh)2Hg(SPh)2]2‑ Ion. J. Chem. Soc., Dalton Trans. 1996;(11):2381–2388. doi: 10.1039/DT9960002381. DOI
Santos R. A., Gruff E. S., Koch S. A., Harbison G. S.. Solid-State 199Hg and 113Cd NMR Studies of Mercury- and Cadmium-Thiolate Complexes. Spectroscopic Models for [Hg(SCys) n ] Centers in the Bacterial Mercury Resistance. J. Am. Chem. Soc. 1991;113(2):469–475. doi: 10.1021/ja00002a014. DOI
Han M., Peersen O. B., Bryson J. W., O’Halloran T. V., Smith S. O.. Enhanced Cross Polarization in Magic Angle Spinning NMR of Metal Complexes. Inorg. Chem. 1995;34(5):1187–1192. doi: 10.1021/ic00109a028. DOI
Aime S., Barge A., Bruce J. I., Botta M., Howard J. A. K., Moloney J. M., Parker D., De Sousa A. S., Woods M.. NMR, Relaxometric, and Structural Studies of the Hydration and Exchange Dynamics of Cationic Lanthanide Complexes of Macrocyclic Tetraamide Ligands. J. Am. Chem. Soc. 1999;121(24):5762–5771. doi: 10.1021/ja990225d. DOI
Sheldrick G. M.. SHELXT - Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. 2015;A71(1):3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC
Lübben J., Wandtke C. M., Hübschle C. B., Ruf M., Sheldrick G. M., Dittrich B.. Aspherical Scattering Factors for SHELXL - Model, Implementation and Application. Acta Crystallogr. 2019;A75(1):50–62. doi: 10.1107/S2053273318013840. PubMed DOI PMC
Kresse G., Joubert D.. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B. 1999;59(3):1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Segall M. D., Lindan P. J. D., Probert M. J., Pickard C. J., Hasnip P. J., Clark S. J., Payne M. C.. First-Principles Simulation: Ideas, Illustrations and the CASTEP Code. J. Phys.: Condens. Matter. 2002;14(11):2717–2744. doi: 10.1088/0953-8984/14/11/301. DOI
Perdew J. P., Burke K., Ernzerhof M.. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77(18):3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Yates J. R., Pickard C. J., Payne M. C., Mauri F.. Relativistic Nuclear Magnetic Resonance Chemical Shifts of Heavy Nuclei with Pseudopotentials and the Zeroth-Order Regular Approximation. J. Chem. Phys. 2003;118(13):5746–5753. doi: 10.1063/1.1541625. DOI
Monkhorst H. J., Pack J. D.. Special Points for Brillouin-Zone Integrations. Phys. Rev. B. 1976;13(12):5188–5192. doi: 10.1103/PhysRevB.13.5188. DOI
Yates J. R., Pickard C. J., Mauri F.. Calculation of NMR Chemical Shifts for Extended Systems Using Ultrasoft Pseudopotentials. Phys. Rev. B. 2007;76(2):024401. doi: 10.1103/PhysRevB.76.024401. DOI
Pickard C. J., Mauri F.. All-Electron Magnetic Response with Pseudopotentials: NMR Chemical Shifts. Phys. Rev. B. 2001;63(24):245101. doi: 10.1103/PhysRevB.63.245101. DOI
Schreckenbach G., Ziegler T.. Calculation of NMR Shielding Tensors Using Gauge-Including Atomic Orbitals and Modern Density Functional Theory. J. Phys. Chem. 1995;99(2):606–611. doi: 10.1021/j100002a024. DOI
Autschbach J., Zurek E.. Relativistic Density-Functional Computations of the Chemical Shift of 129Xe in Xe@C60 . J. Phys. Chem. A. 2003;107(24):4967–4972. doi: 10.1021/jp0346559. DOI
Wolff S. K., Ziegler T., Van Lenthe E., Baerends E. J.. Density Functional Calculations of Nuclear Magnetic Shieldings Using the Zeroth-Order Regular Approximation (ZORA) for Relativistic Effects: ZORA Nuclear Magnetic Resonance. J. Chem. Phys. 1999;110(16):7689–7698. doi: 10.1063/1.478680. DOI
Autschbach J.. The Role of the Exchange-Correlation Response Kernel and Scaling Corrections in Relativistic Density Functional Nuclear Magnetic Shielding Calculations with the Zeroth-Order Regular Approximation. Mol. Phys. 2013;111(16–17):2544–2554. doi: 10.1080/00268976.2013.796415. DOI
Schreckenbach G., Ziegler T.. The Calculation of NMR Shielding Tensors Based on Density Functional Theory and the Frozen-Core Approximation. Int. J. Quantum Chem. 1996;60(3):753–766. doi: 10.1002/(SICI)1097-461X(1996)60:3<753::AID-QUA4>3.0.CO;2-W. DOI
Schreckenbach G., Ziegler T.. Calculation of NMR Shielding Tensors Based on Density Functional Theory and a Scalar Relativistic Pauli-Type Hamiltonian. The Application to Transition Metal Complexes. Int. J. Quantum Chem. 1997;61(6):899–918. doi: 10.1002/(SICI)1097-461X(1997)61:6<899::AID-QUA3>3.0.CO;2-R. DOI
Wolff S. K., Ziegler T.. Calculation of DFT-GIAO NMR Shifts with the Inclusion of Spin-Orbit Coupling. J. Chem. Phys. 1998;109(3):895–905. doi: 10.1063/1.476630. DOI
Seabold, S. ; Perktold, J. . Statsmodels: Econometric and Statistical Modeling with Python. 9th Python in Science Conference, 2010, pp 92–96. 10.25080/majora-92bf1922-011 DOI
Pedregosa F., Varoquaux Gaël Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay E. ´.. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011;12:2825–2830.