• This record comes from PubMed

Reconstructing Reliable Powder Patterns from Spikelets (Q)CPMG NMR Spectra: Simplification of UWNMR Crystallography Analysis

. 2021 Oct 06 ; 26 (19) : . [epub] 20211006

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
GA 19-05259S Czech Science Foundation
52010892 International Visegrad Fund
e-INFRA LM2018140 "e-Infrastruktura CZ
LM2015047 ELIXIR-CZ

Links

PubMed 34641595
PubMed Central PMC8513071
DOI 10.3390/molecules26196051
PII: molecules26196051
Knihovny.cz E-resources

Spikelets NMR spectra are very popular as they enable the shortening of experimental time and give the possibility to obtain required NMR parameters for nuclei with ultrawide NMR patterns. Unfortunately, these resulted ssNMR spectra cannot be fitted directly in common software. For this reason, we developed UWNMRSpectralShape (USS) software which transforms spikelets NMR patterns into single continuous lines. Subsequently, these reconstructed spectral envelopes of the (Q)CPMG spikelets patterns can be loaded into common NMR software and automatically fitted, independently of experimental settings. This allows the quadrupole and chemical shift parameters to be accurately determined. Moreover, it makes fitting of spikelets NMR spectra exact, fast and straightforward.

See more in PubMed

Pake G.E. Nuclear Resonance Absorption in Hydrated Crystals: Fine Structure of the Proton Line. J. Chem. Phys. 1948;16:327–336. doi: 10.1063/1.1746878. DOI

Pound R.V. Nuclear Electric Quadrupole Interactions in Crystals. Phys. Rev. 1950;79:685–702. doi: 10.1103/PhysRev.79.685. DOI

Smith J.A.S. Nuclear quadrupole resonance spectroscopy. General principles. J. Chem. Educ. 1971;48:39–48. doi: 10.1021/ed048p39. DOI

Mehring M. High Resolution NMR Spectroscopy in Solids. Springer; Berlin, Germany: 1976.

Bakhmutov V.I. Solid-State NMR in Materials Science: Principles and Applications. CRC Press; Boca Raton, FL, USA: 2011. p. 191. Paramagnetic Effects in Solid-State NMR.

Samoson A., Lippmaa E., Pines A. High resolution solid-state N.M.R. Averaging of second-order effects by means of a double-rotor. Mol. Phys. 1988;65:1013–1018. doi: 10.1080/00268978800101571. DOI

Mueller K.T., Sun B.Q., Chingas G.C., Zwanziger J.W., Terao T., Pines A. Dynamic-angle spinning of quadrupolar nuclei. J. Magn. Reson. 1990;86:470–487. doi: 10.1016/0022-2364(90)90025-5. PubMed DOI

Gan Z. Satellite transition magic-angle spinning nuclear magnetic resonance spectroscopy of half-integer quadrupolar nuclei. J. Chem. Phys. 2001;114:10845–10853. doi: 10.1063/1.1374958. DOI

Huguenard C., Taulelle F., Knott B., Gan Z. Optimizing STMAS. J. Magn. Reson. 2002;156:131–137. doi: 10.1006/jmre.2002.2548. PubMed DOI

Medek A., Harwood J.S., Frydman L. Multiple-Quantum Magic-Angle Spinning NMR: A New Method for the Study of Quadrupolar Nuclei in Solids. J. Am. Chem. Soc. 1995;117:12779–12787. doi: 10.1021/ja00156a015. DOI

Schurko R.W. Ultra-Wideline Solid-State NMR Spectroscopy. Acc. Chem. Res. 2013;46:1985–1995. doi: 10.1021/ar400045t. PubMed DOI

Kobera L., Southern S.A., Rao G.K., Richeson D.S., Bryce D.L. New Experimental Insight into the Nature of Metal−Metal Bonds in Digallium Compounds: J Coupling between Quadrupolar Nuclei. Chem.—A Eur. J. 2016;22:9565–9573. doi: 10.1002/chem.201600999. PubMed DOI

Kobera L., Southern S.A., Frost J.M., Bryce D.L. Multinuclear solid-state magnetic resonance study of oxo-bridged diniobium and quadruply-bonded dimolybdenum carboxylate clusters. Solid State Nucl. Magn. Reson. 2017;84:20–27. doi: 10.1016/j.ssnmr.2016.12.001. PubMed DOI

Rhodes H.E., Wang P.-K., Stokes H.T., Slichter C.P., Sinfelt J.H. NMR of platinum catalysts. I. Line shapes. Phys. Rev. B. 1982;26:3559–3568. doi: 10.1103/PhysRevB.26.3559. DOI

Bastow T.J., Smith M.E. 91Zr NMR characterisation of phases in transformation toughened zirconia. Solid State Nucl. Magn. Reson. 1992;1:165–174. doi: 10.1016/S0926-2040(10)80001-3. PubMed DOI

Massiot D., Farnan I., Gautier N., Trumeau D., Trokiner A., Coutures J.P. 71Ga and 69Ga nuclear magnetic resonance study of β-Ga2O3: Resolution of four- and six-fold coordinated Ga sites in static conditions. Solid State Nucl. Magn. Reson. 1995;4:241–248. doi: 10.1016/0926-2040(95)00002-8. PubMed DOI

Hahn E.L. Spin Echoes. Phys. Rev. 1950;80:580–594. doi: 10.1103/PhysRev.80.580. DOI

Das T.P., Saha A.K. Electric quadrupole interaction and spin echoes in crystals. Phys. Rev. 1955;98:516–524. doi: 10.1103/PhysRev.98.516. DOI

Solomon I. Multiple Echoes in Solids. Phys. Rev. 1958;110:61–65. doi: 10.1103/PhysRev.110.61. DOI

Carr H.Y., Purcell E.M. Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. Phys. Rev. 1954;94:630–638. doi: 10.1103/PhysRev.94.630. DOI

Meiboom S., Gill D. Modified Spin-Echo Method for Measuring Nuclear Relaxation Times. Rev. Sci. Instrum. 1958;29:688–691. doi: 10.1063/1.1716296. DOI

Shore S.E., Ansermet J.P., Slichter C.P., Sinfelt J.H. Nuclear magnetic resonance study of the bonding and diffusion of CO chemisorbed on Pd. Phys. Rev. Lett. 1987;58:953–956. doi: 10.1103/PhysRevLett.58.953. PubMed DOI

Larsen F.H., Jakobsen H.J., Ellis P.D., Nielsen N.C. Sensitivity-enhanced quadrupolar-echo NMR of half-integer quadrupolar nuclei. Magnitudes and relative orientation of chemical shielding and quadrupolar coupling tensors. J. Phys. Chem. A. 1997;101:8597–8606. doi: 10.1021/jp971547b. DOI

Lipton A.S., Wright T.A., Bowman M.K., Reger D.L., Ellis P.D. Solid-state 67Zn NMR spectroscopy in bioinorganic chemistry. Spectra of four- and six-coordinate zinc pyrazolylborate complexes obtained by management of proton relaxation rates with a paramagnetic dopant. J. Am. Chem. Soc. 2002;124:5850–5860. doi: 10.1021/ja0127133. PubMed DOI

Bhattacharyya R., Frydman L. Quadrupolar nuclear magnetic resonance spectroscopy in solids using frequency-swept echoing pulses. J. Chem. Phys. 2007;127:194503. doi: 10.1063/1.2793783. PubMed DOI

Kupce E., Freeman R. Adiabatic pulses for wideband inversion and broadband decoupling. J. Magn. Reson. Ser. A. 1995;115:273–276. doi: 10.1006/jmra.1995.1179. DOI

O’Dell L.A., Schurko R.W. QCPMG using adiabatic pulses for faster acquisition of ultra-wideline NMR spectra. Chem. Phys. Lett. 2008;464:97–102. doi: 10.1016/j.cplett.2008.08.095. DOI

Tang J.A., O’Dell L.A., Aguiar P.M., Lucier B.E.G., Sakellariou D., Schurko R.W. Application of static microcoils and WURST pulses for solid-state ultra-wideline NMR spectroscopy of quadrupolar nuclei. Chem. Phys. Lett. 2008;466:227–234. doi: 10.1016/j.cplett.2008.10.044. DOI

MacGregor A.W., O’Dell L.A., Schurko R.W. New methods for the acquisition of ultra-wideline solid-state NMR spectra of spin-1/2 nuclides. J. Magn. Reson. 2011;208:103–113. doi: 10.1016/j.jmr.2010.10.011. PubMed DOI

Kobera L., Czernek J., Abbrent S., Mackova H., Pavlovec L., Rohlicek J., Brus J. The Nature of Chemical Bonding in Lewis Adducts as Reflected by 27Al NMR Quadrupolar Coupling Constant: Combined Solid-State NMR and Quantum Chemical Approach. Inorg. Chem. 2018;57:7428–7437. doi: 10.1021/acs.inorgchem.8b01009. PubMed DOI

Hung I., Gan Z. On the practical aspects of recording wideline QCPMG NMR spectra. J. Magn. Reson. 2010;204:256–265. doi: 10.1016/j.jmr.2010.03.001. PubMed DOI

Hamaed H., Ye E., Udachin K., Schurko R.W. Solid-State 137Ba NMR spectroscopy: An experimental and theoretical investigation of 137Ba electric field gradient tensors and their relation to structure and symmetry. J. Phys. Chem. B. 2010;114:6014–6022. doi: 10.1021/jp102026m. PubMed DOI

Bryce D.L., Bultz E.B. Alkaline earth chloride hydrates: Chlorine quadrupolar and chemical shift tensors by solid-state NMR spectroscopy and plane wave pseudopotential calculations. Chem.—A Eur. J. 2007;13:4786–4796. doi: 10.1002/chem.200700056. PubMed DOI

Tang J.A., Masuda J.D., Boyle T.J., Schurko R.W. Ultra-wideline 27Al NMR investigation of three- and five-coordinate aluminum environments. ChemPhysChem. 2006;7:117–130. doi: 10.1002/cphc.200500343. PubMed DOI

Švarcová S., Kočí E., Bezdička P., Garrappa S., Kobera L., Plocek J., Brus J., Šťastný M., Hradil D. Uncovering lead formate crystallization in oil-based paintings. Dalt. Trans. 2020;49:5044–5054. doi: 10.1039/D0DT00327A. PubMed DOI

Power W.P., Wasylishen R.E., Mooibroek S., Pettitt B.A., Danchura W. Simulation of NMR powder line shapes of quadrupolar nuclei with half-integer spin at low-symmetry sites. J. Phys. Chem. 1990;94:591–598. doi: 10.1021/j100365a019. DOI

Slavney A.H., Hu T., Lindenberg A.M., Karunadasa H.I. A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications. J. Am. Chem. Soc. 2016;138:2138–2141. doi: 10.1021/jacs.5b13294. PubMed DOI

Hamaed H., Laschuk M.W., Terskikh V.V., Schurko R.W. Application of solid-state 209Bi NMR to the structural characterization of bismuth-containing materials. J. Am. Chem. Soc. 2009;131:8271–8279. doi: 10.1021/ja901347k. PubMed DOI

Bieroń J., Pyykkö P. Nuclear quadrupole moments of bismuth. Phys. Rev. Lett. 2001;87:133003. doi: 10.1103/PhysRevLett.87.133003. PubMed DOI

Leroy C., Bryce D.L. Recent advances in solid-state nuclear magnetic resonance spectroscopy of exotic nuclei. Prog. Nucl. Magn. Reson. Spectrosc. 2018;109:160–199. doi: 10.1016/j.pnmrs.2018.08.002. PubMed DOI

Ji F., Huang Y., Wang F., Kobera L., Xie F., Klarbring J., Abbrent S., Brus J., Yin C., Simak S.I., et al. Near-Infrared Light-Responsive Cu-Doped Cs2AgBiBr6. Adv. Funct. Mater. 2020;30:2005521. doi: 10.1002/adfm.202005521. DOI

Knapp C.E., Pugh D., McMillan P.F., Parkin I.P., Carmalt C.J. Synthetic and structural studies of donor-functionalized alkoxy derivatives of gallium. Inorg. Chem. 2011;50:9491–9498. doi: 10.1021/ic201167r. PubMed DOI

Massiot D., Fayon F., Capron M., King I., Le Calvé S., Alonso B., Durand J.O., Bujoli B., Gan Z., Hoatson G. Modelling one- and two-dimensional solid-state NMR spectra. Magn. Reson. Chem. 2002;40:70–76. doi: 10.1002/mrc.984. DOI

Kobera L., Havlin J., Abbrent S., Rohlicek J., Streckova M., Sopcak T., Kyselova V., Czernek J., Brus J. Gallium Species Incorporated into MOF Structure: Insight into the Formation of a 3D Polycrystalline Gallium-Imidazole Framework. Inorg. Chem. 2020;59:13933–13941. doi: 10.1021/acs.inorgchem.0c01563. PubMed DOI

Clark S.J., Segall M.D., Pickard C.J., Hasnip P.J., Probert M.I.J., Refson K., Payne M.C. First principles methods using CASTEP. Z. Krist. 2005;220:567–570. doi: 10.1524/zkri.220.5.567.65075. DOI

Pickard C.J., Mauri F. All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B—Condens. Matter Mater. Phys. 2001;63:2451011–2451013. doi: 10.1103/PhysRevB.63.245101. DOI

Yates J.R., Pickard C.J., Mauri F. Calculation of NMR chemical shifts for extended systems using ultrasoft pseudopotentials. Phys. Rev. B. 2007;76:24401. doi: 10.1103/PhysRevB.76.024401. DOI

Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI

Yates J.R., Pickard C.J., Payne M.C., Mauri F. Relativistic nuclear magnetic resonance chemical shifts of heavy nuclei with pseudopotentials and the zeroth-order regular approximation. J. Chem. Phys. 2003;118:5746–5753. doi: 10.1063/1.1541625. DOI

BIOVIA Materials Studio Dassault Systèmes, Vélizy-Villacoublay: Paris, France. [(accessed on 29 September 2021)]. Available online: https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-materials-studio/

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...