Reconstructing Reliable Powder Patterns from Spikelets (Q)CPMG NMR Spectra: Simplification of UWNMR Crystallography Analysis
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
GA 19-05259S
Czech Science Foundation
52010892
International Visegrad Fund
e-INFRA LM2018140
"e-Infrastruktura CZ
LM2015047
ELIXIR-CZ
PubMed
34641595
PubMed Central
PMC8513071
DOI
10.3390/molecules26196051
PII: molecules26196051
Knihovny.cz E-resources
- Keywords
- NMR software, UWNMR, spectral envelope, spikelets NMR spectra,
- Publication type
- Journal Article MeSH
Spikelets NMR spectra are very popular as they enable the shortening of experimental time and give the possibility to obtain required NMR parameters for nuclei with ultrawide NMR patterns. Unfortunately, these resulted ssNMR spectra cannot be fitted directly in common software. For this reason, we developed UWNMRSpectralShape (USS) software which transforms spikelets NMR patterns into single continuous lines. Subsequently, these reconstructed spectral envelopes of the (Q)CPMG spikelets patterns can be loaded into common NMR software and automatically fitted, independently of experimental settings. This allows the quadrupole and chemical shift parameters to be accurately determined. Moreover, it makes fitting of spikelets NMR spectra exact, fast and straightforward.
See more in PubMed
Pake G.E. Nuclear Resonance Absorption in Hydrated Crystals: Fine Structure of the Proton Line. J. Chem. Phys. 1948;16:327–336. doi: 10.1063/1.1746878. DOI
Pound R.V. Nuclear Electric Quadrupole Interactions in Crystals. Phys. Rev. 1950;79:685–702. doi: 10.1103/PhysRev.79.685. DOI
Smith J.A.S. Nuclear quadrupole resonance spectroscopy. General principles. J. Chem. Educ. 1971;48:39–48. doi: 10.1021/ed048p39. DOI
Mehring M. High Resolution NMR Spectroscopy in Solids. Springer; Berlin, Germany: 1976.
Bakhmutov V.I. Solid-State NMR in Materials Science: Principles and Applications. CRC Press; Boca Raton, FL, USA: 2011. p. 191. Paramagnetic Effects in Solid-State NMR.
Samoson A., Lippmaa E., Pines A. High resolution solid-state N.M.R. Averaging of second-order effects by means of a double-rotor. Mol. Phys. 1988;65:1013–1018. doi: 10.1080/00268978800101571. DOI
Mueller K.T., Sun B.Q., Chingas G.C., Zwanziger J.W., Terao T., Pines A. Dynamic-angle spinning of quadrupolar nuclei. J. Magn. Reson. 1990;86:470–487. doi: 10.1016/0022-2364(90)90025-5. PubMed DOI
Gan Z. Satellite transition magic-angle spinning nuclear magnetic resonance spectroscopy of half-integer quadrupolar nuclei. J. Chem. Phys. 2001;114:10845–10853. doi: 10.1063/1.1374958. DOI
Huguenard C., Taulelle F., Knott B., Gan Z. Optimizing STMAS. J. Magn. Reson. 2002;156:131–137. doi: 10.1006/jmre.2002.2548. PubMed DOI
Medek A., Harwood J.S., Frydman L. Multiple-Quantum Magic-Angle Spinning NMR: A New Method for the Study of Quadrupolar Nuclei in Solids. J. Am. Chem. Soc. 1995;117:12779–12787. doi: 10.1021/ja00156a015. DOI
Schurko R.W. Ultra-Wideline Solid-State NMR Spectroscopy. Acc. Chem. Res. 2013;46:1985–1995. doi: 10.1021/ar400045t. PubMed DOI
Kobera L., Southern S.A., Rao G.K., Richeson D.S., Bryce D.L. New Experimental Insight into the Nature of Metal−Metal Bonds in Digallium Compounds: J Coupling between Quadrupolar Nuclei. Chem.—A Eur. J. 2016;22:9565–9573. doi: 10.1002/chem.201600999. PubMed DOI
Kobera L., Southern S.A., Frost J.M., Bryce D.L. Multinuclear solid-state magnetic resonance study of oxo-bridged diniobium and quadruply-bonded dimolybdenum carboxylate clusters. Solid State Nucl. Magn. Reson. 2017;84:20–27. doi: 10.1016/j.ssnmr.2016.12.001. PubMed DOI
Rhodes H.E., Wang P.-K., Stokes H.T., Slichter C.P., Sinfelt J.H. NMR of platinum catalysts. I. Line shapes. Phys. Rev. B. 1982;26:3559–3568. doi: 10.1103/PhysRevB.26.3559. DOI
Bastow T.J., Smith M.E. 91Zr NMR characterisation of phases in transformation toughened zirconia. Solid State Nucl. Magn. Reson. 1992;1:165–174. doi: 10.1016/S0926-2040(10)80001-3. PubMed DOI
Massiot D., Farnan I., Gautier N., Trumeau D., Trokiner A., Coutures J.P. 71Ga and 69Ga nuclear magnetic resonance study of β-Ga2O3: Resolution of four- and six-fold coordinated Ga sites in static conditions. Solid State Nucl. Magn. Reson. 1995;4:241–248. doi: 10.1016/0926-2040(95)00002-8. PubMed DOI
Hahn E.L. Spin Echoes. Phys. Rev. 1950;80:580–594. doi: 10.1103/PhysRev.80.580. DOI
Das T.P., Saha A.K. Electric quadrupole interaction and spin echoes in crystals. Phys. Rev. 1955;98:516–524. doi: 10.1103/PhysRev.98.516. DOI
Solomon I. Multiple Echoes in Solids. Phys. Rev. 1958;110:61–65. doi: 10.1103/PhysRev.110.61. DOI
Carr H.Y., Purcell E.M. Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. Phys. Rev. 1954;94:630–638. doi: 10.1103/PhysRev.94.630. DOI
Meiboom S., Gill D. Modified Spin-Echo Method for Measuring Nuclear Relaxation Times. Rev. Sci. Instrum. 1958;29:688–691. doi: 10.1063/1.1716296. DOI
Shore S.E., Ansermet J.P., Slichter C.P., Sinfelt J.H. Nuclear magnetic resonance study of the bonding and diffusion of CO chemisorbed on Pd. Phys. Rev. Lett. 1987;58:953–956. doi: 10.1103/PhysRevLett.58.953. PubMed DOI
Larsen F.H., Jakobsen H.J., Ellis P.D., Nielsen N.C. Sensitivity-enhanced quadrupolar-echo NMR of half-integer quadrupolar nuclei. Magnitudes and relative orientation of chemical shielding and quadrupolar coupling tensors. J. Phys. Chem. A. 1997;101:8597–8606. doi: 10.1021/jp971547b. DOI
Lipton A.S., Wright T.A., Bowman M.K., Reger D.L., Ellis P.D. Solid-state 67Zn NMR spectroscopy in bioinorganic chemistry. Spectra of four- and six-coordinate zinc pyrazolylborate complexes obtained by management of proton relaxation rates with a paramagnetic dopant. J. Am. Chem. Soc. 2002;124:5850–5860. doi: 10.1021/ja0127133. PubMed DOI
Bhattacharyya R., Frydman L. Quadrupolar nuclear magnetic resonance spectroscopy in solids using frequency-swept echoing pulses. J. Chem. Phys. 2007;127:194503. doi: 10.1063/1.2793783. PubMed DOI
Kupce E., Freeman R. Adiabatic pulses for wideband inversion and broadband decoupling. J. Magn. Reson. Ser. A. 1995;115:273–276. doi: 10.1006/jmra.1995.1179. DOI
O’Dell L.A., Schurko R.W. QCPMG using adiabatic pulses for faster acquisition of ultra-wideline NMR spectra. Chem. Phys. Lett. 2008;464:97–102. doi: 10.1016/j.cplett.2008.08.095. DOI
Tang J.A., O’Dell L.A., Aguiar P.M., Lucier B.E.G., Sakellariou D., Schurko R.W. Application of static microcoils and WURST pulses for solid-state ultra-wideline NMR spectroscopy of quadrupolar nuclei. Chem. Phys. Lett. 2008;466:227–234. doi: 10.1016/j.cplett.2008.10.044. DOI
MacGregor A.W., O’Dell L.A., Schurko R.W. New methods for the acquisition of ultra-wideline solid-state NMR spectra of spin-1/2 nuclides. J. Magn. Reson. 2011;208:103–113. doi: 10.1016/j.jmr.2010.10.011. PubMed DOI
Kobera L., Czernek J., Abbrent S., Mackova H., Pavlovec L., Rohlicek J., Brus J. The Nature of Chemical Bonding in Lewis Adducts as Reflected by 27Al NMR Quadrupolar Coupling Constant: Combined Solid-State NMR and Quantum Chemical Approach. Inorg. Chem. 2018;57:7428–7437. doi: 10.1021/acs.inorgchem.8b01009. PubMed DOI
Hung I., Gan Z. On the practical aspects of recording wideline QCPMG NMR spectra. J. Magn. Reson. 2010;204:256–265. doi: 10.1016/j.jmr.2010.03.001. PubMed DOI
Hamaed H., Ye E., Udachin K., Schurko R.W. Solid-State 137Ba NMR spectroscopy: An experimental and theoretical investigation of 137Ba electric field gradient tensors and their relation to structure and symmetry. J. Phys. Chem. B. 2010;114:6014–6022. doi: 10.1021/jp102026m. PubMed DOI
Bryce D.L., Bultz E.B. Alkaline earth chloride hydrates: Chlorine quadrupolar and chemical shift tensors by solid-state NMR spectroscopy and plane wave pseudopotential calculations. Chem.—A Eur. J. 2007;13:4786–4796. doi: 10.1002/chem.200700056. PubMed DOI
Tang J.A., Masuda J.D., Boyle T.J., Schurko R.W. Ultra-wideline 27Al NMR investigation of three- and five-coordinate aluminum environments. ChemPhysChem. 2006;7:117–130. doi: 10.1002/cphc.200500343. PubMed DOI
Švarcová S., Kočí E., Bezdička P., Garrappa S., Kobera L., Plocek J., Brus J., Šťastný M., Hradil D. Uncovering lead formate crystallization in oil-based paintings. Dalt. Trans. 2020;49:5044–5054. doi: 10.1039/D0DT00327A. PubMed DOI
Power W.P., Wasylishen R.E., Mooibroek S., Pettitt B.A., Danchura W. Simulation of NMR powder line shapes of quadrupolar nuclei with half-integer spin at low-symmetry sites. J. Phys. Chem. 1990;94:591–598. doi: 10.1021/j100365a019. DOI
Slavney A.H., Hu T., Lindenberg A.M., Karunadasa H.I. A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications. J. Am. Chem. Soc. 2016;138:2138–2141. doi: 10.1021/jacs.5b13294. PubMed DOI
Hamaed H., Laschuk M.W., Terskikh V.V., Schurko R.W. Application of solid-state 209Bi NMR to the structural characterization of bismuth-containing materials. J. Am. Chem. Soc. 2009;131:8271–8279. doi: 10.1021/ja901347k. PubMed DOI
Bieroń J., Pyykkö P. Nuclear quadrupole moments of bismuth. Phys. Rev. Lett. 2001;87:133003. doi: 10.1103/PhysRevLett.87.133003. PubMed DOI
Leroy C., Bryce D.L. Recent advances in solid-state nuclear magnetic resonance spectroscopy of exotic nuclei. Prog. Nucl. Magn. Reson. Spectrosc. 2018;109:160–199. doi: 10.1016/j.pnmrs.2018.08.002. PubMed DOI
Ji F., Huang Y., Wang F., Kobera L., Xie F., Klarbring J., Abbrent S., Brus J., Yin C., Simak S.I., et al. Near-Infrared Light-Responsive Cu-Doped Cs2AgBiBr6. Adv. Funct. Mater. 2020;30:2005521. doi: 10.1002/adfm.202005521. DOI
Knapp C.E., Pugh D., McMillan P.F., Parkin I.P., Carmalt C.J. Synthetic and structural studies of donor-functionalized alkoxy derivatives of gallium. Inorg. Chem. 2011;50:9491–9498. doi: 10.1021/ic201167r. PubMed DOI
Massiot D., Fayon F., Capron M., King I., Le Calvé S., Alonso B., Durand J.O., Bujoli B., Gan Z., Hoatson G. Modelling one- and two-dimensional solid-state NMR spectra. Magn. Reson. Chem. 2002;40:70–76. doi: 10.1002/mrc.984. DOI
Kobera L., Havlin J., Abbrent S., Rohlicek J., Streckova M., Sopcak T., Kyselova V., Czernek J., Brus J. Gallium Species Incorporated into MOF Structure: Insight into the Formation of a 3D Polycrystalline Gallium-Imidazole Framework. Inorg. Chem. 2020;59:13933–13941. doi: 10.1021/acs.inorgchem.0c01563. PubMed DOI
Clark S.J., Segall M.D., Pickard C.J., Hasnip P.J., Probert M.I.J., Refson K., Payne M.C. First principles methods using CASTEP. Z. Krist. 2005;220:567–570. doi: 10.1524/zkri.220.5.567.65075. DOI
Pickard C.J., Mauri F. All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys. Rev. B—Condens. Matter Mater. Phys. 2001;63:2451011–2451013. doi: 10.1103/PhysRevB.63.245101. DOI
Yates J.R., Pickard C.J., Mauri F. Calculation of NMR chemical shifts for extended systems using ultrasoft pseudopotentials. Phys. Rev. B. 2007;76:24401. doi: 10.1103/PhysRevB.76.024401. DOI
Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Yates J.R., Pickard C.J., Payne M.C., Mauri F. Relativistic nuclear magnetic resonance chemical shifts of heavy nuclei with pseudopotentials and the zeroth-order regular approximation. J. Chem. Phys. 2003;118:5746–5753. doi: 10.1063/1.1541625. DOI
BIOVIA Materials Studio Dassault Systèmes, Vélizy-Villacoublay: Paris, France. [(accessed on 29 September 2021)]. Available online: https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-materials-studio/