Periprosthetic inflammation: from the cellular level to clinical implications

. 2025 Nov ; 9 (11) : ziaf154. [epub] 20250918

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid41104375

Periprosthetic inflammation is a crucial factor contributing to aseptic loosening, the leading cause of implant failures. Metallic debris, including nanoparticles, sub-micron particles, and ions, plays a central role in triggering inflammatory responses around orthopedic implants. Exposure to the debris activates macrophages via toll-like receptors and nucleotide-binding and oligomerization domain-like receptors, which in turn leads to the production of pro-inflammatory cytokines. This signaling cascade subsequently drives osteoclast activation, resulting in periprosthetic bone loss and, ultimately, implant loosening. Recent research has focused on strategies to prevent aseptic loosening by targeting the inflammation induced by metallic particles/ions. Pharmacological interventions aimed at modulating macrophage activation and inhibiting specific inflammatory pathways have shown promise in reducing osteoclast activity and excessive bone resorption. This review provides a comprehensive overview of the processes involved in the pathogenesis of periprosthetic inflammation, beginning with the release of metallic debris and its recognition by immune cells, followed by the inflammatory reactions that lead to osteoclastogenesis and bone loss. A detailed understanding of these molecular mechanisms is essential for the development of targeted approaches to prevent aseptic loosening, improve long-term patient outcomes, and alleviate the economic burden on healthcare systems.

Zobrazit více v PubMed

Gademan  MGJ, Hofstede  SN, Vliet Vlieland  TPM, Nelissen  RGHH, Marang-van de Mheen  PJ. Indication criteria for total hip or knee arthroplasty in osteoarthritis: a state-of-the-science overview. BMC Musculoskelet Disord. 2016;17(1):463. 10.1186/s12891-016-1325-z PubMed DOI PMC

Singh  JA, Yu  S, Chen  L, Cleveland  JD. Rates of total joint replacement in the United States: future projections to 2020–2040 using the National Inpatient Sample. J Rheumatol. 2019;46(9):1134–1140. 10.3899/jrheum.170990 PubMed DOI

Kiradzhiyska  DD, Mantcheva  RD. Overview of biocompatible materials and their use in medicine. Folia Med (Plovdiv). 2019;61(1):34–40. 10.2478/folmed-2018-0038 PubMed DOI

Szczęsny  G, Kopec  M, Politis  DJ, Kowalewski  ZL, Łazarski  A, Szolc  T. A review on biomaterials for orthopaedic surgery and traumatology: from past to present. Materials.  2022;15(10):3622. 10.3390/ma15103622 PubMed DOI PMC

Hauer  G, Rasic  L, Klim  S, Leitner  L, Leithner  A, Sadoghi  P. Septic complications are on the rise and aseptic loosening has decreased in total joint arthroplasty: an updated complication based analysis using worldwide arthroplasty registers. Arch Orthop Trauma Surg. 2024;144(12):5199–5204. 10.1007/s00402-024-05379-2 PubMed DOI PMC

López-Ortega  A, Arana  JL, Bayón  R. Tribocorrosion of passive materials: a review on test procedures and standards. Int J Corros. 2018;2018(1):1–24. 10.1155/2018/7345346 DOI

Hutchings  I, Gee  M, Santner  E. Friction and Wear. In: Czichos  H, Saito  T, Smith  L, eds. Springer Handbook of Materials Measurement Methods. Springer; 2006:685–710.

Sato  N. Basics of corrosion chemistry. In: Sharma  SK, ed. Green Corrosion Chemistry and Engineering. 1st ed. Wiley; 2011:1–32.

Gilbert  JL, Mehta  M, Pinder  B. Fretting crevice corrosion of stainless steel stem–CoCr femoral head connections: comparisons of materials, initial moisture, and offset length. J Biomed Mater Res B Appl Biomater. 2009;88B(1):162–173. 10.1002/jbm.b.31164 DOI

Adachi  K, Hutchings  IM. Wear-mode mapping for the micro-scale abrasion test. Wear.  2003;255(1-6):23–29. 10.1016/S0043-1648(03)00073-5 DOI

Ritchie  F, Jana  B, Zekos  I, Stack  M. On the construction methodology of microabrasion-corrosion maps using theoretical approaches. J Bio- and Tribo-Corros. 2024;10(1):18. 10.1007/s40735-024-00821-9 DOI

Virtanen  S, Milošev  I, Gomez-Barrena  E, Trebše  R, Salo  J, Konttinen  YT. Special modes of corrosion under physiological and simulated physiological conditions. Acta Biomater. 2008;4(3):468–476. 10.1016/j.actbio.2007.12.003 PubMed DOI

Herbster  M, Rosemann  P, Michael  O, et al.  Microstructure-dependent crevice corrosion damage of implant materials CoCr28Mo6, TiAl6V4 and REX 734 under severe inflammatory conditions. J Biomed Mater Res B Appl Biomater. 2022;110(7):1687–1704. 10.1002/jbm.b.35030 PubMed DOI

Reclaru  L, Lerf  R, Eschler  P, Blatter  A, Meyer  JM. Pitting, crevice and galvanic corrosion of REX stainless-steel/CoCr orthopedic implant material. Biomaterials.  2002;23(16):3479–3485. 10.1016/S0142-9612(02)00055-8 PubMed DOI

Serhan  H, Slivka  M, Albert  T, Kwak  SD. Is galvanic corrosion between titanium alloy and stainless steel spinal implants a clinical concern?  Spine J. 2004;4(4):379–387. 10.1016/j.spinee.2003.12.004 PubMed DOI

Adya  N, Alam  M, Ravindranath  T, Mubeen  A, Saluja  B. Corrosion in titanium dental implants: literature review. J Indian Prosthodont Soc. 2005;5(3):126. 10.4103/0972-4052.17104 DOI

Brown  C, Fisher  J, Ingham  E. Biological effects of clinically relevant wear particles from metal-on-metal hip prostheses. Proc Inst Mech Eng H. 2006;220(2):355–369. 10.1243/095441105X63291 PubMed DOI

Doorn  PF, Campbell  PA, Worrall  J, Benya  PD, McKellop  HA, Amstutz  HC. Metal wear particle characterization from metal on metal total hip replacements: transmission electron microscopy study of periprosthetic tissues and isolated particles. J Biomed Mater Res. 1998;42(1):103–111. 10.1002/(SICI)1097-4636(199810)42:1<103::AID-JBM13>3.0.CO;2-M PubMed DOI

Firkins  PJ, Tipper  JL, Saadatzadeh  MR, et al.  Quantitative analysis of wear and wear debris from metal-on-metal hip prostheses tested in a physiological hip joint simulator. Biomed Mater Eng. 2001;11(2):143–157. PubMed

Leslie  IJ, Williams  S, Isaac  G, Ingham  E, Fisher  J. High cup angle and microseparation increase the wear of hip surface replacements. Clin Orthop Relat Res. 2009;467(9):2259–2265. 10.1007/s11999-009-0830-x PubMed DOI PMC

Wu  X, Cai  C, Gil  J, et al.  Characteristics of particles and debris released after implantoplasty: a comparative study. Materials (Basel). 2022;15(2):602. 10.3390/ma15020602 PubMed DOI PMC

Hallab  NJ, Jacobs  JJ. 7.8 Implant debris: clinical data and relevance. In: Ducheyne  P, ed. Comprehensive Biomaterials II. Elsevier; 2017:118–132.

Fisher  J, Hajjar  MA, Williams  S, Tipper  J, Ingham  E, Jennings  L. Simulation and measurement of wear in metal-on-metal bearings in vitro- understanding the reasons for increased wear. Orthopaedics Trauma. 2012;26(4):253–258. 10.1016/j.mporth.2012.05.005 PubMed DOI PMC

Madl  AK, Liong  M, Kovochich  M, Finley  BL, Paustenbach  DJ, Oberdörster  G. Toxicology of wear particles of cobalt-chromium alloy metal-on-metal hip implants part I: physicochemical properties in patient and simulator studies. Nanomedicine. 2015;11(5):1201–1215. 10.1016/j.nano.2014.12.005 PubMed DOI

Gallo  J, Goodman  SB, Konttinen  YT, Wimmer  MA, Holinka  M. Osteolysis around total knee arthroplasty: a review of pathogenetic mechanisms. Acta Biomater. 2013;9(9):8046–8058. 10.1016/j.actbio.2013.05.005 PubMed DOI PMC

Magone  K, Luckenbill  D, Goswami  T. Metal ions as inflammatory initiators of osteolysis. Arch Orthop Trauma Surg. 2015;135(5):683–695. 10.1007/s00402-015-2196-8 PubMed DOI

Moyano  DF, Liu  Y, Peer  D, Rotello  VM. Modulation of immune response using engineered nanoparticle surfaces. Small.  2016;12(1):76–82. 10.1002/smll.201502273 PubMed DOI PMC

Duan  T, Du  Y, Xing  C, Wang  HY, Wang  RF. Toll-like receptor signaling and its role in cell-mediated immunity. Front Immunol. 2022;13(1):812774. 10.3389/fimmu.2022.812774 PubMed DOI PMC

Wicherska-Pawłowska  K, Wróbel  T, Rybka  J. Toll-like receptors (TLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs) in innate immunity. TLRs, NLRs, and RLRs ligands as immunotherapeutic agents for hematopoietic diseases. Int J Mol Sci. 2021;22(24):13397. 10.3390/ijms222413397 PubMed DOI PMC

Kawai  T, Akira  S. TLR signaling. Cell Death Differ. 2006;13(5):816–825. 10.1038/sj.cdd.4401850 PubMed DOI

Ozato  K, Tsujimura  H, Tamura  T. Toll-like receptor signaling and regulation of cytokine gene expression in the immune system. BioTechniques.  2002;33(sup4):6. 10.2144/Oct0208 DOI

Bzowska  M, Jura  N, Lassak  A, Black  RA, Bereta  J. Tumour necrosis factor-α stimulates expression of TNF-α converting enzyme in endothelial cells. Eur J Biochem. 2004;271(13):2808–2820. 10.1111/j.1432-1033.2004.04215.x PubMed DOI

Hall  KC, Blobel  CP. Interleukin-1 stimulates ADAM17 through a mechanism independent of its cytoplasmic domain or phosphorylation at threonine 735. PLoS One. 2012;7(2):e31600. 10.1371/journal.pone.0031600 PubMed DOI PMC

Wawro  K, Wawro  M, Strzelecka  M, Czarnek  M, Bereta  J. The role of NF-κB and Elk-1 in the regulation of mouse ADAM17 expression. Biol Open. 2019;8(2):bio039420. 10.1242/bio.039420 PubMed DOI PMC

Potnis  PA, Dutta  DK, Wood  SC. Toll-like receptor 4 signaling pathway mediates proinflammatory immune response to cobalt-alloy particles. Cell Immunol. 2013;282(1):53–65. 10.1016/j.cellimm.2013.04.003 PubMed DOI

Greenfield  EM, Beidelschies  MA, Tatro  JM, Goldberg  VM, Hise  AG. Bacterial pathogen-associated molecular patterns stimulate biological activity of orthopaedic wear particles by activating cognate toll-like receptors. J Biol Chem. 2010;285(42):32378–32384. 10.1074/jbc.M110.136895 PubMed DOI PMC

Tao  X, Wan  X, Wu  D, Song  E, Song  Y. A tandem activation of NLRP3 inflammasome induced by copper oxide nanoparticles and dissolved copper ion in J774A.1 macrophage. J Hazard Mater. 2021;411(1):125134. 10.1016/j.jhazmat.2021.125134 PubMed DOI

Lawrence  H, Deehan  DJ, Holland  JP, et al.  Cobalt ions recruit inflammatory cells PubMed DOI PMC

Samelko  L, Landgraeber  S, McAllister  K, Jacobs  J, Hallab  NJ. Cobalt alloy implant debris induces inflammation and bone loss primarily through danger signaling, not TLR4 activation: implications for DAMP-ening implant related inflammation. PLoS One. 2016;11(7):e0160141. 10.1371/journal.pone.0160141 PubMed DOI PMC

Hao  HN, Zheng  B, Nasser  S, et al.  The roles of monocytic heat shock protein 60 and toll-like receptors in the regional inflammation response to wear debris particles. J Biomed Mater Res A. 2010;92A(4):1373–1381. 10.1002/jbm.a.32474 DOI

Pearl  JI, Ma  T, Irani  AR, et al.  Role of the toll-like receptor pathway in the recognition of orthopedic implant wear-debris particles. Biomaterials.  2011;32(24):5535–5542. 10.1016/j.biomaterials.2011.04.046 PubMed DOI PMC

Ting  JPY, Lovering  RC, Alnemri  ES, et al.  The NLR gene family: a standard nomenclature. Immunity.  2008;28(3):285–287. 10.1016/j.immuni.2008.02.005 PubMed DOI PMC

Ohto  U. Activation and regulation mechanisms of NOD-like receptors based on structural biology. Front Immunol. 2022;13(1):953530. 10.3389/fimmu.2022.953530 PubMed DOI PMC

Platnich  JM, Muruve  DA. NOD-like receptors and inflammasomes: a review of their canonical and non-canonical signaling pathways. Arch Biochem Biophys. 2019;670(1):4–14. 10.1016/j.abb.2019.02.008 PubMed DOI

Xiao  TS. Innate immunity and inflammation. Cell Mol Immunol. 2017;14(1):1–3. 10.1038/cmi.2016.45 PubMed DOI PMC

Wang  L, Sharif  H, Vora  SM, Zheng  Y, Wu  H. Structures and functions of the inflammasome engine. J Allergy Clin Immunol. 2021;147(6):2021–2029. 10.1016/j.jaci.2021.04.018 PubMed DOI PMC

Barnett  KC, Li  S, Liang  K, Ting  JPY. A 360° view of the inflammasome: mechanisms of activation, cell death, and diseases. Cell.  2023;186(11):2288–2312. 10.1016/j.cell.2023.04.025 PubMed DOI PMC

Yao  J, Sterling  K, Wang  Z, Zhang  Y, Song  W. The role of inflammasomes in human diseases and their potential as therapeutic targets. Sig Transduct Target Ther. 2024;9(1):1–30. 10.1038/s41392-023-01687-y DOI

Martinon  F, Burns  K, Tschopp  J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–426. 10.1016/s1097-2765(02)00599-3 PubMed DOI

Ahmed  M, Kurungottu  P, Swetha  K, et al.  Role of NLRP3 inflammasome in nanoparticle adjuvant-mediated immune response. Biomater Sci. 2024;13(9):2164–2178. 10.1039/D4BM00439F DOI

Zhan  X, Li  Q, Xu  G, Xiao  X, Bai  Z. The mechanism of NLRP3 inflammasome activation and its pharmacological inhibitors. Front Immunol. 2023;13(1):1109938. 10.3389/fimmu.2022.1109938 PubMed DOI PMC

McKee  CM, Coll  RC. NLRP3 inflammasome priming: a riddle wrapped in a mystery inside an enigma. J Leukoc Biol. 2020;108(3):937–952. 10.1002/JLB.3MR0720-513R PubMed DOI

Juliana  C, Fernandes-Alnemri  T, Kang  S, Farias  A, Qin  F, Alnemri  ES. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation*. J Biol Chem. 2012;287(43):36617–36622. 10.1074/jbc.M112.407130 PubMed DOI PMC

Jämsen  E, Pajarinen  J, Kouri  VP, et al.  Tumor necrosis factor primes and metal particles activate the NLRP3 inflammasome in human primary macrophages. Acta Biomater. 2020;108(1):347–357. 10.1016/j.actbio.2020.03.017 PubMed DOI PMC

Baron  L, Gombault  A, Fanny  M, et al.  The NLRP3 inflammasome is activated by nanoparticles through ATP, ADP and adenosine. Cell Death Dis. 2015;6(2):e1629–e1629. 10.1038/cddis.2014.576 PubMed DOI PMC

Liu  L, Sha  R, Yang  L, et al.  Impact of morphology on iron oxide nanoparticles-induced inflammasome activation in macrophages. ACS Appl Mater Interfaces. 2018;10(48):41197–41206. 10.1021/acsami.8b17474 PubMed DOI

Huang  W, Zhang  Z, Qiu  Y, et al.  NLRP3 inflammasome activation in response to metals. Front Immunol. 2023;14(1):1055788. 10.3389/fimmu.2023.1055788 PubMed DOI PMC

Carrillo-Gálvez  AB, Zurita  F, Guerra-Valverde  JA, et al.  NLRP3 and AIM2 inflammasomes expression is modified by LPS and titanium ions increasing the release of active IL-1β in alveolar bone-derived MSCs. Stem Cells Transl Med. 2024;13(8):826–841. 10.1093/stcltm/szae042 PubMed DOI PMC

Li  X, Tang  L, Thu  YM, Chen  D. Titanium ions play a synergistic role in the activation of NLRP3 inflammasome in Jurkat T cells. Inflammation.  2020;43(4):1269–1278. 10.1007/s10753-020-01206-z PubMed DOI

Dalal  A, Pawar  V, McAllister  K, Weaver  C, Hallab  NJ. Orthopedic implant cobalt-alloy particles produce greater toxicity and inflammatory cytokines than titanium alloy and zirconium alloy-based particles in vitro, in human osteoblasts, fibroblasts, and macrophages. J Biomed Mater Res A. 2012;100A(8):2147–2158. 10.1002/jbm.a.34122 DOI

Nyga  A, Hart  A, Tetley  TD. Importance of the HIF pathway in cobalt nanoparticle-induced cytotoxicity and inflammation in human macrophages. Nanotoxicology.  2015;9(7):905–917. 10.3109/17435390.2014.991430 PubMed DOI

Zhang  L, Haddouti  EM, Beckert  H, et al.  Investigation of cytotoxicity, oxidative stress, and inflammatory responses of tantalum nanoparticles in THP-1-derived macrophages. Mediat Inflamm. 2020;2020(1):1–14. 10.1155/2020/3824593 DOI

Mao  X, Pan  X, Peng  X, Cheng  T, Zhang  X. Inhibition of titanium particle-induced inflammation by the proteasome inhibitor bortezomib in murine macrophage-like RAW 264.7 cells. Inflammation.  2012;35(4):1411–1418. 10.1007/s10753-012-9454-5 PubMed DOI

Yadav  J, Samelko  L, Gilvar  P, McAllister  K, Hallab  NJ. Osteoclasts lose innate inflammatory reactivity to metal and polymer implant debris compared to monocytes/macrophages. Open Orthop J. 2013;7(1):605–613. 10.2174/1874325001307010605 PubMed DOI PMC

Pettersson  M, Kelk  P, Belibasakis  GN, Bylund  D, Molin Thorén  M, Johansson  A. Titanium ions form particles that activate and execute interleukin-1β release from lipopolysaccharide-primed macrophages. J Periodontal Res. 2017;52(1):21–32. 10.1111/jre.12364 PubMed DOI PMC

Caicedo  MS, Desai  R, McAllister  K, Reddy  A, Jacobs  JJ, Hallab  NJ. Soluble and particulate Co-Cr-Mo alloy implant metals activate the inflammasome danger signaling pathway in human macrophages: a novel mechanism for implant debris reactivity. J Orthop Res. 2009;27(7):847–854. 10.1002/jor.20826 PubMed DOI

Caicedo  MS, Pennekamp  PH, McAllister  K, Jacobs  JJ, Hallab  NJ. Soluble ions more than particulate cobalt-alloy implant debris induce monocyte costimulatory molecule expression and release of proinflammatory cytokines critical to metal-induced lymphocyte reactivity. J Biomed Mater Res A. 2010;93A(4):1312–1321. 10.1002/jbm.a.32627 DOI

Eger  M, Hiram-Bab  S, Liron  T, et al.  Mechanism and prevention of titanium particle-induced inflammation and osteolysis. Front Immunol. 2018;9(1):02963. 10.3389/fimmu.2018.02963 DOI

Vallés  G, González-Melendi  P, González-Carrasco  JL, et al.  Differential inflammatory macrophage response to rutile and titanium particles. Biomaterials.  2006;27(30):5199–5211. 10.1016/j.biomaterials.2006.05.045 PubMed DOI

Daniels  A, Barnes  FH, Charlebois  SJ, Smith  RA. Macrophage cytokine response to particles and lipopolysaccharide in vitro. J Biomed Mater Res. 2000;49(4):469–478. 10.1002/(SICI)1097-4636(20000315)49:4<469::AID-JBM5>3.0.CO;2-A PubMed DOI

Kaufman  AM, Alabre  CI, Rubash  HE, Shanbhag  AS. Human macrophage response to UHMWPE, TiAlV, CoCr, and alumina particles: analysis of multiple cytokines using protein arrays. J Biomed Mater Res A. 2008;84A(2):464–474. 10.1002/jbm.a.31467 DOI

Lacey  DC, De Kok  B, Clanchy  FI, et al.  Low dose metal particles can induce monocyte/macrophage survival. J Orthop Res. 2009;27(11):1481–1486. 10.1002/jor.20914 PubMed DOI

Pettersson  M, Almlin  S, Romanos  GE, Johansson  A. Ti ions induce IL-1β release by activation of the NLRP3 inflammasome in a human macrophage cell line. Inflammation.  2022;45(5):2027–2037. 10.1007/s10753-022-01672-7 PubMed DOI PMC

VanOs  R, Lildhar  LL, Lehoux  EA, Beaulé  PE, Catelas  I. In vitro macrophage response to nanometer-size chromium oxide particles. J Biomed Mater Res B Appl Biomater. 2014;102(1):149–159. 10.1002/jbm.b.32991 PubMed DOI

Yang  C, Wang  W, Zhu  K, et al.  Lithium chloride with immunomodulatory function for regulating titanium nanoparticle-stimulated inflammatory response and accelerating osteogenesis through suppression of MAPK signaling pathway. Int J Nanomedicine. 2019;14(1):7475–7488. 10.2147/IJN.S210834 PubMed DOI PMC

Wang  JY, Wicklund  BH, Gustilo  RB, Tsukayama  DT. Titanium, chromium and cobalt ions modulate the release of bone-associated cytokines by human monocytes/macrophages PubMed DOI

Catelas  I, Petit  A, Zukor  DJ, Antoniou  J, Huk  OL. TNF-alpha secretion and macrophage mortality induced by cobalt and chromium ions in vitro-qualitative analysis of apoptosis. Biomaterials.  2003;24(3):383–391. 10.1016/s0142-9612(02)00351-4 PubMed DOI

Agins  HJ, Alcock  NW, Bansal  M, et al.  Metallic wear in failed titanium-alloy total hip replacements. A histological and quantitative analysis. J Bone Joint Surg Am. 1988;70(3):347.. PubMed

Lohmann  CH, Meyer  H, Nuechtern  JV, et al.  Periprosthetic tissue metal content but not serum metal content predicts the type of tissue response in failed small-diameter metal-on-metal total hip arthroplasties. J Bone Joint Surg Am. 2013;95(17):1561–1568. 10.2106/JBJS.L.01273 PubMed DOI

Willert  HG, Buchhorn  GH, Fayyazi  A, et al.  Metal-on-metal bearings and hypersensitivity in patients with artificial hip joints. A clinical and histomorphological study. J Bone Joint Surg Am. 2005;87(1):28–36. 10.2106/JBJS.A.02039pp DOI

Huber  M, Reinisch  G, Zenz  P, Zweymüller  K, Lintner  F. Postmortem study of femoral osteolysis associated with metal-on-metal articulation in total hip replacement: an analysis of nine cases. J Bone Joint Surg Am. 2010;92(8):1720–1731. 10.2106/JBJS.I.00695 PubMed DOI

Kurtz  PW, Aslani  S, Kurtz  MA, et al.  Cobalt-chromium-molybdenum femoral knee implant damage correlates with elevated periprosthetic metal concentrations. J Arthroplast. 2025;40(7):S315–S323. 10.1016/j.arth.2025.02.075 DOI

Shao  H, Shen  J, Wang  M, et al.  Icariin protects against titanium particle-induced osteolysis and inflammatory response in a mouse calvarial model. Biomaterials.  2015;60(1):92–99. 10.1016/j.biomaterials.2015.04.048 PubMed DOI

Yu  X, Wu  Q, Ren  Z, et al.  Kaempferol attenuates wear particle-induced inflammatory osteolysis via JNK and p38-MAPK signaling pathways. J Ethnopharmacol. 2024;318(1):117019. 10.1016/j.jep.2023.117019 PubMed DOI

Christiansen  RJ, Münch  HJ, Bonefeld  CM, et al.  Cytokine profile in patients with aseptic loosening of total hip replacements and its relation to metal release and metal allergy. J Clin Med. 2019;8(8):1259. 10.3390/jcm8081259 PubMed DOI PMC

Navratilova  P, Emmer  J, Tomas  T, et al.  Plastic response of macrophages to metal ions and nanoparticles in time mimicking metal implant body environment. Environ Sci Pollut Res. 2024;31(3):4111–4129. 10.1007/s11356-023-31430-7 DOI

Tobeiha  M, Moghadasian  MH, Amin  N, Jafarnejad  S. RANKL/RANK/OPG pathway: a mechanism involved in exercise-induced bone remodeling. Biomed Res Int. 2020;2020(1):6910312. 10.1155/2020/6910312 PubMed DOI PMC

Izawa  T, Ishimaru  N, Moriyama  K, Kohashi  M, Arakaki  R, Hayashi  Y. Crosstalk between RANKL and Fas signaling in dendritic cells controls immune tolerance. Blood.  2007;110(1):242–250. 10.1182/blood-2006-11-059980 PubMed DOI

Theill  LE, Boyle  WJ, Penninger  JM. RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol. 2002;20(1):795. 10.1146/annurev.immunol.20.100301.064753 PubMed DOI

Mueller  CG, Hess  E. Emerging functions of RANKL in lymphoid tissues. Front Immunol. 2012;3(1):261. 10.3389/fimmu.2012.00261 PubMed DOI PMC

Anderson  DM, Maraskovsky  E, Billingsley  WL, et al.  A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature.  1997;390(6656):175–179. 10.1038/36593 PubMed DOI

Xu  J, Yu  L, Liu  F, Wan  L, Deng  Z. The effect of cytokines on osteoblasts and osteoclasts in bone remodeling in osteoporosis: a review. Front Immunol. 2023;14(1):1222129. 10.3389/fimmu.2023.1222129 PubMed DOI PMC

Zupan  J, Jeras  M, Marc  J. Osteoimmunology and the influence of pro-inflammatory cytokines on osteoclasts. Biochem Med. 2013;23(1):43–63. 10.11613/BM.2013.007 DOI

Geng  T, Chen  X, Zheng  M, et al.  Effects of strontium ranelate on wear particle-induced aseptic loosening in female ovariectomized mice. Mol Med Rep. 2018;18(2):1849–1857. 10.3892/mmr.2018.9133 PubMed DOI

Zhou  C, Wang  Y, Meng  J, et al.  Additive effect of parathyroid hormone and zoledronate acid on prevention particle wears-induced implant loosening by promoting periprosthetic bone architecture and strength in an ovariectomized rat model. Front Endocrinol. 2022;13(1):871380. 10.3389/fendo.2022.871380 DOI

Hu  B, Wu  H, Shi  Z, et al.  Effects of sequential treatment with intermittent parathyroid hormone and zoledronic acid on particle-induced implant loosening: evidence from a rat model. J Orthop Res. 2019;37(7):1489–1497. 10.1002/jor.24217 PubMed DOI

Staats  K, Sosa  BR, Kuyl  EV, et al.  Intermittent parathyroid hormone increases stability and improves osseointegration of initially unstable implants. Bone Joint Res. 2022;11(5):260–269. 10.1302/2046-3758.115.BJR-2021-0489.R1 PubMed DOI PMC

Bi  F, Shi  Z, Zhou  C, Liu  A, Shen  Y, Yan  S. Intermittent Administration of Parathyroid Hormone [1–34] prevents particle-induced periprosthetic osteolysis in a rat model. PLoS One. 2015;10(10):e0139793. 10.1371/journal.pone.0139793 PubMed DOI PMC

Zhang  L, Jia  TH, Chong  AC, et al.  Cell-based osteoprotegerin therapy for debris-induced aseptic prosthetic loosening on a murine model. Gene Ther. 2010;17(10):1262–1269. 10.1038/gt.2010.64 PubMed DOI PMC

Guangtao  F, Zhenkang  W, Zhantao  D, et al.  Icariin alleviates wear particle-induced periprosthetic osteolysis via down-regulation of the estrogen receptor α-mediated NF-κB signaling pathway in macrophages. Front Pharmacol. 2021;12(1):746391. 10.3389/fphar.2021.746391 PubMed DOI PMC

Yu  X, Yang  B, Chen  B, et al.  Inhibitory effects of formononetin on CoCrMo particle-induced osteoclast activation and bone loss through downregulating NF-κB and MAPK signaling. Cell Signal. 2023;106(1):110651. 10.1016/j.cellsig.2023.110651 PubMed DOI

Shi  J, Gu  Y, Wang  Y, et al.  Inhibitory effect of acetyl-11-keto-β-boswellic acid on titanium particle-induced bone loss by abrogating osteoclast formation and downregulating the ERK signaling pathway. Int Immunopharmacol. 2021;94(1):107459. 10.1016/j.intimp.2021.107459 PubMed DOI

Xu  Q, Chen  G, Xu  H, et al.  Celastrol attenuates RANKL-induced osteoclastogenesis in vitro and reduces titanium particle-induced osteolysis and ovariectomy-induced bone loss in vivo. Front Pharmacol. 2021;12(1):682541. 10.3389/fphar.2021.682541 PubMed DOI PMC

Li  N, Li  X, Zheng  K, et al.  Inhibition of Sirtuin 3 prevents titanium particle-induced bone resorption and osteoclastsogenesis via suppressing ERK and JNK signaling. Int J Biol Sci. 2021;17(5):1382–1394. 10.7150/ijbs.53992 PubMed DOI PMC

Jiao  Z, Chai  H, Wang  S, Sun  C, Huang  Q, Xu  W. SOST gene suppression stimulates osteocyte Wnt/β-catenin signaling to prevent bone resorption and attenuates particle-induced osteolysis. J Mol Med. 2023;101(5):607–620. 10.1007/s00109-023-02319-2 PubMed DOI PMC

Wang  B, Guo  H, Geng  T, et al.  The effect of strontium ranelate on titanium particle-induced periprosthetic osteolysis regulated by WNT/β-catenin signaling in vivo and in vitro. Biosci Rep. 2021;41(1):BSR202030003. 10.1042/BSR20203003 DOI

Pajarinen  J, Lin  T, Nabeshima  A, et al.  Interleukin-4 repairs wear particle induced osteolysis by modulating macrophage polarization and bone turnover. J Biomed Mater Res A. 2021;109(8):1512–1520. 10.1002/jbm.a.37142 PubMed DOI PMC

Ren  W, Zhang  R, Hawkins  M, Shi  T, Markel  DC. Efficacy of periprosthetic erythromycin delivery for wear debris-induced inflammation and osteolysis. Inflamm Res. 2010;59(12):1091–1097. 10.1007/s00011-010-0229-x PubMed DOI

Zhang  L, Zhang  L, You  H, et al.  Inhibition of osteoclastogenesis by histone deacetylase inhibitor Quisinostat protects mice against titanium particle-induced bone loss. Eur J Pharmacol. 2021;904(1):174176. 10.1016/j.ejphar.2021.174176 PubMed DOI

Liao  S, Feng  W, Liu  Y, et al.  Inhibitory effects of biochanin A on titanium particle-induced osteoclast activation and inflammatory bone resorption via NF-κB and MAPK pathways. J Cell Physiol. 2021;236(2):1432–1444. 10.1002/jcp.29948 PubMed DOI

Veronesi  F, Fini  M, Sartori  M, Parrilli  A, Martini  L, Tschon  M. Pulsed electromagnetic fields and platelet rich plasma alone and combined for the treatment of wear-mediated periprosthetic osteolysis: an PubMed DOI

Childs  LM, Goater  JJ, O’Keefe  RJ, Schwarz  EM. Efficacy of etanercept for wear debris-induced osteolysis. J Bone Miner Res. 2001;16(2):338–347. 10.1359/jbmr.2001.16.2.338 PubMed DOI

Cheng  T, Zhang  GY, Guo  CJ, Zhang  X. Effects of NF-κB inhibitor on titanium particulate-induced inflammation in a murine model. J Surg Res. 2010;162(2):225–230. 10.1016/j.jss.2009.03.034 PubMed DOI

Zhang  X, Morham  SG, Langenbach  R, et al.  Evidence for a direct role of cyclo-oxygenase 2 in implant wear debris-induced osteolysis. J Bone Miner Res. 2001;16(4):660–670. 10.1359/jbmr.2001.16.4.660 PubMed DOI

Carmody  EE, Schwarz  EM, Puzas  JE, Rosier  RN, O’Keefe  RJ. Viral interleukin-10 gene inhibition of inflammation, osteoclastogenesis, and bone resorption in response to titanium particles. Arthritis Rheum. 2002;46(5):1298–1308. 10.1002/art.10227 PubMed DOI

von Knoch  M, Wedemeyer  C, Pingsmann  A, et al.  The decrease of particle-induced osteolysis after a single dose of bisphosphonate. Biomaterials.  2005;26(14):1803–1808. 10.1016/j.biomaterials.2004.06.010 PubMed DOI

Yamada  C, Ho  A, Akkaoui  J, Garcia  C, Duarte  C, Movila  A. Glycyrrhizin mitigates inflammatory bone loss and promotes expression of senescence-protective sirtuins in an aging mouse model of periprosthetic osteolysis. Biomed Pharmacother. 2021;138(1):111503. 10.1016/j.biopha.2021.111503 PubMed DOI PMC

Lei  K, Wang  Y, Peng  X, Yu  L, Ding  J. Long-term delivery of etanercept mediated via a thermosensitive hydrogel for efficient inhibition of wear debris-induced inflammatory osteolysis. J Polym Sci. 2022;60(20):2875–2888. 10.1002/pol.20220337 DOI

Veigl  D, Niederlová  J, Kryštůfková  O. Periprosthetic osteolysis and its association with RANKL expression. Physiol Res. 2007;56(1):455–462. 10.33549/physiolres.930997 PubMed DOI

Salem  KH, Lindner  N, Tingart  M, Elmoghazy  AD. Severe metallosis-related osteolysis as a cause of failure after total knee replacement. J Clin Orthop Trauma. 2020;11(1):165–170. 10.1016/j.jcot.2019.04.010 PubMed DOI PMC

Vasconcelos  DP, Águas  AP, Barbosa  MA, Pelegrín  P, Barbosa  JN. The inflammasome in host response to biomaterials: bridging inflammation and tissue regeneration. Acta Biomater. 2019;83(1):1–12. 10.1016/j.actbio.2018.09.056 PubMed DOI

Feng  X, Gu  J, Zhou  Y. Primary total hip arthroplasty failure: aseptic loosening remains the most common cause of revision. Am J Transl Res. 2022;14(10):7080–7089. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9641425/ PubMed PMC

Yin  S, Zhang  D, Du  H, Du  H, Yin  Z, Qiu  Y. Is there any difference in survivorship of total hip arthroplasty with different bearing surfaces? A systematic review and network meta-analysis. Int J Clin Exp Med. 2015;8(11):21871–21885. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4724003/ PubMed PMC

Higuchi  Y, Seki  T, Takegami  Y, Komatsu  D, Morita  D, Ishiguro  N. Same survival but higher rate of osteolysis for metal-on-metal Ultamet versus ceramic-on-ceramic in patients undergoing primary total hip arthroplasty after 8 years of follow-up. Orthop Traumatol Surg Res. 2018;104(8):1155–1161. 10.1016/j.otsr.2018.08.005 PubMed DOI

Shang  Z, Tanzer  M, Badi  HA, Hart  A. Ceramic-on-ceramic total hip arthroplasty: I can hear you. Arthroplasty Today. 2023;23(1):101203. 10.1016/j.artd.2023.101203 PubMed DOI PMC

McCarthy  CJ, Mahon  J, Sheridan  GA, Welch-Phillips  A, O’Byrne  JM, Kenny  PJ. Third and fourth generation ceramic-on-ceramic total hip arthroplasty at a minimum of ten years. J Clin Orthop Trauma. 2022;31(1):101942. 10.1016/j.jcot.2022.101942 PubMed DOI PMC

Vallés  G, Pérez  C, Boré  A, Martín-Saavedra  F, Saldaña  L, Vilaboa  N. Simvastatin prevents the induction of interleukin-6 gene expression by titanium particles in human osteoblastic cells. Acta Biomater. 2013;9(1):4916–4925. 10.1016/j.actbio.2012.08.027 PubMed DOI

Anjum  SA, Kirby  J, Deehan  D, Tyson-Capper  A. Can simvastatin reduce the inflammatory response to orthopaedic biomaterials?  Orthop Proc. 2023;105-B(SUPP_7):88. 10.1302/1358-992X.2023.7.088 DOI

Lübbeke  A, Garavaglia  G, Rothman  KJ, et al.  Statins may reduce femoral osteolysis in patients with total hip arthroplasty. J Orthop Res. 2013;31(5):814–820. 10.1002/jor.22262 PubMed DOI

Im  GI, Kwon  BC, Lee  KB. The effect of COX-2 inhibitors on periprosthetic osteolysis. Biomaterials.  2004;25(2):269–275. 10.1016/S0142-9612(03)00523-4 PubMed DOI

Ren  W, Blasier  R, Peng  X, Shi  T, Wooley  PH, Markel  D. Effect of oral erythromycin therapy in patients with aseptic loosening of joint prostheses. Bone.  2009;44(4):671–677. 10.1016/j.bone.2008.12.015 PubMed DOI

McClung  MR. Denosumab for the treatment of osteoporosis. Osteoporos Sarcopenia. 2017;3(1):8–17. 10.1016/j.afos.2017.01.002 PubMed DOI PMC

Xu  J, Li  H, Qu  Y, et al.  Denosumab might prevent periprosthetic bone loss after total hip and knee arthroplasties: a review. Arthroplasty.  2021;3(1):13. 10.1186/s42836-021-00068-6 PubMed DOI PMC

Tang  Y, Jin  Z, Lu  Y, et al.  Comparing the efficacy of antiosteoporotic drugs in preventing periprosthetic bone loss following total hip arthroplasty: a systematic review and Bayesian network meta-analysis. Orthop Surg. 2024;16(10):2344–2354. 10.1111/os.14165 PubMed DOI PMC

Hatano  M, Koizumi  Y, Yamamoto  N, et al.  Anti-osteoporotic drug efficacy for periprosthetic bone loss after total hip arthroplasty: a systematic review and network meta-analysis. J Orthop Sci. 2025;30(1):126–135. 10.1016/j.jos.2024.01.011 PubMed DOI

Ganapathy  N, Gokulnathan  S, Balan  N, Maheswaran  T, Venkatesan.  Bisphosphonates: an update. J Pharm Bioallied Sci. 2012;4(6):410. 10.4103/0975-7406.100309 DOI

Millett  PJ, Allen  MJ, Bostrom  MPG. Effects of alendronate on particle-induced osteolysis in a rat model. J Bone Joint Surg Am. 2002;84(2):236–249. 10.2106/00004623-200202000-00011 PubMed DOI

Pegios  VF, Kenanidis  E, Tsotsolis  S, Potoupnis  M, Tsiridis  E. Bisphosphonates’ use and risk of aseptic loosening following total hip arthroplasty: a systematic review. EFORT Open Rev. 2023;8(11):798–808. 10.1530/EOR-22-0121 PubMed DOI PMC

Gong  L, Zhang  YY, Yang  N, Qian  HJ, Zhang  LK, Tan  MS. Raloxifene prevents early periprosthetic bone loss for postmenopausal women after uncemented total hip arthroplasty: a randomized placebo-controlled clinical trial. Orthop Surg. 2020;12(4):1074–1083. 10.1111/os.12696 PubMed DOI PMC

Hu  S, Xue  Y, He  J, et al.  Irisin recouples osteogenesis and osteoclastogenesis to protect wear-particle-induced osteolysis by suppressing oxidative stress and RANKL production. Biomater Sci. 2021;9(17):5791–5801. 10.1039/D1BM00563D PubMed DOI

Osagie-Clouard  L, Sanghani  A, Coathup  M, Briggs  T, Bostrom  M, Blunn  G. Parathyroid hormone 1-34 and skeletal anabolic action: the use of parathyroid hormone in bone formation. Bone Joint Res. 2017;6(1):14–21. 10.1302/2046-3758.61.BJR-2016-0085.R1 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...