Ultrafast Spin Dynamics in 2D Fully Compensated Ferrimagnets: A Time-Dependent Ab Initio Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41105548
PubMed Central
PMC12581156
DOI
10.1021/acs.jpclett.5c02874
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Fully compensated ferrimagnets (CFiMs) represent a novel class of magnetic materials that combine zero net magnetization with strong spin polarization, offering considerable potential for spintronic applications. Here, we employ real-time time-dependent density functional theory (rt-TDDFT) to investigate ultrafast laser-induced spin dynamics in a two-dimensional (2D) Janus NiICl bilayer. The broken inversion symmetry gives rise to an asymmetric interlayer demagnetization process, leading to a transient net magnetization in this system within 50 fs. This phenomenon is attributed to the asymmetric charge accumulation and interlayered optically induced spin transfer (OISTR) between the two Ni magnetic sublattices, facilitated by the intrinsic structural and electronic asymmetry of the Janus configurations. The asymmetric interlayer interaction effectively leads to a transient ferrimagnetic state. Our work reveals the microscopic mechanism of the ultrafast spin dynamics of 2D CFiMs induced by lasers in ultrafast spintronics.
Institute for Advanced Study Chengdu University Chengdu 610106 China
School of Electronic Engineering Xi'an University of Posts and Telecommunications Xi'an 710121 China
School of Science Constructor University Bremen 28759 Germany
Zobrazit více v PubMed
Žutić I., Fabian J., Das Sarma S.. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004;76:323–410. doi: 10.1103/RevModPhys.76.323. DOI
Gong C., Li L., Li Z., Ji H., Stern A., Xia Y., Cao T., Bao W., Wang C., Wang Y., Qiu Z. Q., Cava R. J., Louie S. G., Xia J., Zhang X.. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature. 2017;546:265–269. doi: 10.1038/nature22060. PubMed DOI
Huang B., Clark G., Navarro-Moratalla E., Klein D. R., Cheng R., Seyler K. L., Zhong D., Schmidgall E., McGuire M. A., Cobden D. H., Yao W., Xiao D., Jarillo-Herrero P., Xu X.. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature. 2017;546:270–273. doi: 10.1038/nature22391. PubMed DOI
Wolf S. A., Awschalom D. D., Buhrman R. A., Daughton J. M., von Molnár S., Roukes M. L., Chtchelkanova A. Y., Treger D. M.. Spintronics: a spin-based electronics vision for the future. Science. 2001;294:1488–1495. doi: 10.1126/science.1065389. PubMed DOI
Němec P., Fiebig M., Kampfrath T., Kimel A. V.. Antiferromagnetic opto-spintronics. Nat. Phys. 2018;14:229–241. doi: 10.1038/s41567-018-0051-x. DOI
Fukami S., Lorenz V. O., Gomonay O.. Antiferromagnetic spintronics. J. Appl. Phys. 2020;128:070401. doi: 10.1063/5.0023614. DOI
Šmejkal L., Sinova J., Jungwirth T.. Emerging Research Landscape of Altermagnetism. Physical Review X. 2022;12:040501. doi: 10.1103/PhysRevX.12.040501. DOI
Zhou X., Feng W., Zhang R.-W., Šmejkal L., Sinova J., Mokrousov Y., Yao Y.. Crystal Thermal Transport in Altermagnetic RuO2 . Phys. Rev. Lett. 2024;132:056701. doi: 10.1103/PhysRevLett.132.056701. PubMed DOI
Bai L., Feng W., Liu S., Šmejkal L., Mokrousov Y., Yao Y.. Altermagnetism: Exploring New Frontiers in Magnetism and Spintronics. Adv. Funct. Mater. 2024;34:2409327. doi: 10.1002/adfm.202409327. DOI
Mazin I.. Editorial: Altermagnetism---A New Punch Line of Fundamental Magnetism. Physical Review X. 2022;12:040002. doi: 10.1103/PhysRevX.12.040002. DOI
Liu Y., Guo S.-D., Li Y., Liu C.-C.. Two-Dimensional Fully Compensated Ferrimagnetism. Phys. Rev. Lett. 2025;134:116703. doi: 10.1103/PhysRevLett.134.116703. PubMed DOI
van Leuken H., de Groot R. A.. Half-Metallic Antiferromagnets. Phys. Rev. Lett. 1995;74:1171–1173. doi: 10.1103/PhysRevLett.74.1171. PubMed DOI
Akai H., Ogura M.. Half-Metallic Diluted Antiferromagnetic Semiconductors. Phys. Rev. Lett. 2006;97:026401. doi: 10.1103/PhysRevLett.97.026401. PubMed DOI
Wang P., Wu D., Zhang K., Wu X.. Two-Dimensional Quaternary Transition Metal Sulfide CrMoA2S6 (A = C, Si, or Ge): A Bipolar Antiferromagnetic Semiconductor with a High Néel Temperature. J. Phys. Chem. Lett. 2022;13:3850–3856. doi: 10.1021/acs.jpclett.2c00836. PubMed DOI
Siegrist F., Gessner J. A., Ossiander M., Denker C., Chang Y.-P., Schröder M. C., Guggenmos A., Cui Y., Walowski J., Martens U., Dewhurst J. K., Kleineberg U., Münzenberg M., Sharma S., Schultze M.. Light-wave dynamic control of magnetism. Nature. 2019;571:240–244. doi: 10.1038/s41586-019-1333-x. PubMed DOI
Kimel A., Zvezdin A., Sharma S., Shallcross S., De Sousa N., García-Martín A., Salvan G., Hamrle J., Stejskal O., McCord J.. et al. The 2022 magneto-optics roadmap. J. Phys. D. 2022;55:463003. doi: 10.1088/1361-6463/ac8da0. DOI
Matsukura F., Tokura Y., Ohno H.. Control of magnetism by electric fields. Nat. Nanotechnol. 2015;10:209–220. doi: 10.1038/nnano.2015.22. PubMed DOI
Lei N., Devolder T., Agnus G., Aubert P., Daniel L., Kim J.-V., Zhao W., Trypiniotis T., Cowburn R. P., Chappert C., Ravelosona D., Lecoeur P.. Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures. Nat. Commun. 2013;4:1378. doi: 10.1038/ncomms2386. PubMed DOI PMC
Li D., Li S., Zhong C., He J.. Tuning magnetism at the two-dimensional limit: a theoretical perspective. Nanoscale. 2021;13:19812–19827. doi: 10.1039/D1NR06835K. PubMed DOI
Shokeen V., Sanchez Piaia M., Bigot J. Y., Müller T., Elliott P., Dewhurst J. K., Sharma S., Gross E. K. U.. Spin Flips versus Spin Transport in Nonthermal Electrons Excited by Ultrashort Optical Pulses in Transition Metals. Phys. Rev. Lett. 2017;119:107203. doi: 10.1103/PhysRevLett.119.107203. PubMed DOI
Chen J., Bovensiepen U., Eschenlohr A., Müller T., Elliott P., Gross E. K. U., Dewhurst J. K., Sharma S.. Competing Spin Transfer and Dissipation at Co/Cu(001) Interfaces on Femtosecond Timescales. Phys. Rev. Lett. 2019;122:067202. doi: 10.1103/PhysRevLett.122.067202. PubMed DOI
Hofherr M., Häuser S., Dewhurst J. K., Tengdin P., Sakshath S., Nembach H. T., Weber S. T., Shaw J. M., Silva T. J., Kapteyn H. C., Cinchetti M., Rethfeld B., Murnane M. M., Steil D., Stadtmüller B., Sharma S., Aeschlimann M., Mathias S.. Ultrafast optically induced spin transfer in ferromagnetic alloys. Sci. Adv. 2020;6:eaay8717. doi: 10.1126/sciadv.aay8717. PubMed DOI PMC
Scheid P., Sharma S., Malinowski G., Mangin S., Lebègue S.. Ab initio study of helicity-dependent light-induced demagnetization: from the optical regime to the extreme ultraviolet regime. Nano Lett. 2021;21:1943–1947. doi: 10.1021/acs.nanolett.0c04166. PubMed DOI
Dewhurst J. K., Elliott P., Shallcross S., Gross E. K. U., Sharma S.. Laser-induced intersite spin transfer. Nano Lett. 2018;18:1842–1848. doi: 10.1021/acs.nanolett.7b05118. PubMed DOI
He J., Li S., Frauenheim T., Zhou Z.. Ultrafast Laser Pulse Induced Transient Ferrimagnetic State and Spin Relaxation Dynamics in Two-Dimensional Antiferromagnets. Nano Lett. 2023;23:8348–8354. doi: 10.1021/acs.nanolett.3c02727. PubMed DOI PMC
Li S., Zhou L., Frauenheim T., He J.. Light-Controlled Ultrafast Magnetic State Transition in Antiferromagnetic–Ferromagnetic van der Waals Heterostructures. J. Phys. Chem. Lett. 2022;13:6223–6229. doi: 10.1021/acs.jpclett.2c01476. PubMed DOI
He J., Li S., Bandyopadhyay A., Frauenheim T.. Unravelling Photoinduced Interlayer Spin Transfer Dynamics in Two-Dimensional Nonmagnetic-Ferromagnetic van der Waals Heterostructures. Nano Lett. 2021;21:3237–3244. doi: 10.1021/acs.nanolett.1c00520. PubMed DOI
Zhou Z., Li M., Frauenheim T., He J.. Controlling Ultrafast Magnetization Dynamics via Coherent Phonon Excitation in a Ferromagnet Monolayer. Nano Lett. 2024;24:12062–12069. doi: 10.1021/acs.nanolett.4c02325. PubMed DOI PMC
Hui D., Alqattan H., Zhang S., Pervak V., Chowdhury E., Hassan M. T.. Ultrafast optical switching and data encoding on synthesized light fields. Sci. Adv. 2023;9:eadf1015. doi: 10.1126/sciadv.adf1015. PubMed DOI PMC
Wu N., Zhang S., Chen D., Wang Y., Meng S.. Three-stage ultrafast demagnetization dynamics in a monolayer ferromagnet. Nat. Commun. 2024;15:2804. doi: 10.1038/s41467-024-47128-4. PubMed DOI PMC
Beaurepaire E., Merle J. C., Daunois A., Bigot J. Y.. Ultrafast Spin Dynamics in Ferromagnetic Nickel. Phys. Rev. Lett. 1996;76:4250–4253. doi: 10.1103/PhysRevLett.76.4250. PubMed DOI
Thiele J.-U., Buess M., Back C. H.. Spin dynamics of the antiferromagnetic-to-ferromagnetic phase transition in FeRh on a sub-picosecond time scale. Appl. Phys. Lett. 2004;85:2857–2859. doi: 10.1063/1.1799244. DOI
Gorkan T., Das J., Kapeghian J., Akram M., Barth J. V., Tongay S., Akturk E., Erten O., Botana A. S.. Skyrmion formation in Ni-based Janus dihalide monolayers: Interplay between magnetic frustration and Dzyaloshinskii-Moriya interaction. Phys. Rev. Mater. 2023;7:054006. doi: 10.1103/PhysRevMaterials.7.054006. DOI
Guo S.-D., Zhu Y.-T., Qin K., Ang Y.-S.. Large out-of-plane piezoelectric response in ferromagnetic monolayer NiClI. Appl. Phys. Lett. 2022;120:232403. doi: 10.1063/5.0095917. DOI
Kresse G., Hafner J.. Ab initio. Phys. Rev. B. 1993;47:558–561. doi: 10.1103/PhysRevB.47.558. PubMed DOI
Kresse G., Joubert D.. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 1999;59:1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Perdew J. P., Burke K., Ernzerhof M.. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Dudarev S. L., Botton G. A., Savrasov S. Y., Humphreys C. J., Sutton A. P.. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B. 1998;57:1505–1509. doi: 10.1103/PhysRevB.57.1505. DOI
Dewhurst, J. K. ; Sharma, S. ; et al. The ELK code. http://elk.sourceforge.net, January 14, 2018.
Von Barth U., Hedin L.. A local exchange-correlation potential for the spin polarized case. i. J. Phys. C: Solid State Phys. 1972;5:1629. doi: 10.1088/0022-3719/5/13/012. DOI