Local Strain Tuning in Cu Nanoparticles through Glucose-Mediated Synthesis

. 2025 Oct 14 ; 10 (40) : 46624-46633. [epub] 20251003

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41114187

Cu nanoparticles are widely used in different fields. Controlling the Cu oxidation state and the local strain is fundamental for optimizing its efficiency in processes, such as catalytic reactions. In this work, Cu nanoparticles were synthesized by using glucose as a reducing agent. Different synthesis conditions led to nanoparticles with a tunable local strain and Cu(0)/Cu2O ratio. The amounts of Cu(0) and Cu2O are directly related to the local strain in the nanoparticles. The lower amount of Cu(0) gives a longer Cu-Cu distance, and the lower amount of Cu2O is associated with longer Cu-O distances. It can be attributed to the creation of interfacial strain at the Cu(0)/Cu2O boundaries, as demonstrated by molecular dynamics simulations. Furthermore, the Cu(0) phase is stable at least up to two years in the air due to the presence of gluconate at the surface. This study shows that interfacial strain can be manipulated without the addition of other elements through a facile route.

Zobrazit více v PubMed

Kwon Y.-T., Yune S., Song Y., Yeo W., Choa Y.. Green Manufacturing of Highly Conductive Cu2O and Cu Nanoparticles for Photonic-Sintered Printed Electronics. ACS Appl. Electron. Mater. 2019;1:2069–2075. doi: 10.1021/acsaelm.9b00444. DOI

Gawande M. B., Goswami A., Felpin F., Asefa T., Huang X., Silva R., Zou X., Zboril R., Varma R. S.. Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem. Rev. 2016;116:3722–3811. doi: 10.1021/acs.chemrev.5b00482. PubMed DOI

Zhang J., Liu J., Peng Q., Wang X., Li Y.. Interferometric study on the adsorption-dependent refractive index of silicalite thin films grown on optical fibers. Chem. Mater. 2006;18:4. doi: 10.1021/cm0525353. DOI

Pacioni N. L., Filippenko V., Presseaua N., Scaiano J. C.. Oxidation of copper nanoparticles in water: mechanistic insights revealed by oxygen uptake and spectroscopic methods. Dalton Trans. 2013;42:5832. doi: 10.1039/c3dt32836h. PubMed DOI

Lei Q., Huang L., Yin J., Davaasuren B., Yuan Y., Dong X., Wu Z., Wang X., Xi K., Yao Y., Lu X., Han Y.. Structural evolution and strain generation of derived-Cu catalysts during CO2 electroreduction. Nat. Commun. 2022;13:4857. doi: 10.1038/s41467-022-32601-9. PubMed DOI PMC

Liu F., Wu C., Yang O.. Strain and Ligand Effects on CO2 Reduction Reactions over Cu–Metal Heterostructure Catalysts. J. Phys. Chem. C. 2017;121:22139. doi: 10.1021/acs.jpcc.7b07081. DOI

Huang C., Sasaki K., Raja D. S., Hsieh C., Wu Y., Su J., Cheng C., Cheng P., Lin S., Choi Y., Lu S.. Twinning enhances efficiencies of metallic catalysts toward electrolytic water splitting. Adv. Energy Mater. 2021;11:2170181. doi: 10.1002/aenm.202101827. DOI

Visibile A., Wang R. B., Vertova A., Rondinini S., Minguzzi A., Ahlberg E., Busch M.. Influence of Strain on the Band Gap of Cu2O. Chem. Mater. 2019;31:4787. doi: 10.1021/acs.chemmater.9b01122. DOI

Li J., Xu K., Liu F., Li Y., Hu Y., Chen X., Wang H., Xu W., Ni Y., Ding G., Zhao T., Yu M., Xie W., Cheng F.. Hollow Hierarchical Cu2O-Derived Electrocatalysts Steering CO2 Reduction to Multi-Carbon Chemicals at Low Overpotentials. Adv. Mater. 2023;35:2301127. doi: 10.1002/adma.202301127. PubMed DOI

Sneed B. T., Young A. P., Tsung C.. Building up strain in colloidal metal nanoparticle catalysts. Nanoscale. 2015;7:12248. doi: 10.1039/C5NR02529J. PubMed DOI

Çetinel A.. Characterization of octahedral Cu2O nanostructures grown on porous silicon by electrochemical deposition. Mater. Chem. Phys. 2022;277:125532. doi: 10.1016/j.matchemphys.2021.125532. DOI

Liu X., Sun X., Zhou X., Wang Y., Liu G., Yang W.. Surfactant-free CuxPty nano-alloys with controllable atomic ratios and their enhanced electrocatalytic activity. Environ. Res. 2025;267:120662. doi: 10.1016/j.envres.2024.120662. PubMed DOI

Hu F., Zou Y., Wang L., Wen Y., Xiong Y.. Photostable Cu2O photoelectrodes fabricated by facile Zn-doping electrodeposition. Int. J. Hydrogen Energy. 2016;41:15172. doi: 10.1016/j.ijhydene.2016.06.262. DOI

Granata G., Yamaoka T., Pagnanelli F., Fuwa A.. Study of the synthesis of copper nanoparticles: the role of capping and kinetic towards control of particle size and stability. J. Nanopart. Res. 2016;18:133. doi: 10.1007/s11051-016-3438-6. DOI

Ahmed A., Gajbhiye N. S., Joshi A. G.. Low cost, surfactant-less, one pot synthesis of Cu2O nano-octahedra at room temperature. J. Solid State Chem. 2011;184:2209. doi: 10.1016/j.jssc.2011.05.058. DOI

Liu Y., Chu Y., Zhuo Y., Dong L., Li L., Li M.. Controlled synthesis of various hollow Cu nano/microstructures via a novel reduction route. Adv. Funct. Mater. 2007;17:933. doi: 10.1002/adfm.200600333. DOI

Liang Z. H., Zhu Y.. Synthesis of uniformly sized Cu2O crystals with star-like and flower-like morphologies. Mater. Lett. 2005;59:2423. doi: 10.1016/j.matlet.2005.02.086. DOI

Lee Y., Huh Y.. Preferential evolution of Prussian blue’s morphology from cube to hexapod. Bull. Korean Chem. Soc. 2012;33(3):1078.

Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts; John Wiley & Sons, 2004.

Wei X., Wei Z., Zhang L., Liu Y., He D.. Highly water-soluble nanocrystal powders of magnetite and maghemite coated with gluconic acid: Preparation, structure characterization, and surface coordination. J. Colloid Interface Sci. 2011;354:76. doi: 10.1016/j.jcis.2010.10.049. PubMed DOI

Zhu Y., Pang S., Zhang Y.. Observations on the unique phase transitions of inorganics relevant due to gluconic acid in particles. Atmos. Environ. 2022;288:119313. doi: 10.1016/j.atmosenv.2022.119313. DOI

Faverge T., Gilles B., Bonnefont A., Maillard F., Coutanceau C., Chatenet M.. In Situ Investigation of d-Glucose Oxidation into Value-Added Products on Au, Pt, and Pd under Alkaline Conditions: A Comparative Study. ACS Catal. 2023;13:2657. doi: 10.1021/acscatal.2c05871. DOI

Mensah J. B., Delidovich I., Hausoul P. J. C., Weisgerber L., Schrader W., Palkovits R.. Mechanistic Studies of the Cu­(OH)+-Catalyzed Isomerization of Glucose into Fructose in Water. ChemSusChem. 2018;11:2579. doi: 10.1002/cssc.201800483. PubMed DOI

Huo Z., Fang Y., Ren D., Zhang S., Yao G., Zeng X., Jin F.. Selective conversion of glucose into lactic acid with transition metal ions in diluted aqueous NaOH solution. ACS Sustainable Chem. Eng. 2014;2:2765. doi: 10.1021/sc500507b. DOI

Andreeva G. G., Trusov S. R.. Liquid-phase catalytic oxidation of carbohydrates by oxygen: glucose oxidation in alkaline solutions in the presence of copper (II) complexes. Pharm. Chem. J. 1995;29:557. doi: 10.1007/BF02219014. DOI

Markina N. E., Pozharov M. V., Markin A. V.. Synthesis of copper (I) oxide particles with variable color: demonstrating size-dependent optical properties for high school students. J. Chem. Educ. 2016;93:704. doi: 10.1021/acs.jchemed.5b00563. DOI

Mayes H. B., Tian J., Nolte M. W., Shanks B. H., Beckham G. T., Gnanakaran S., Broadbelt L. J.. Sodium ion interactions with aqueous glucose: insights from quantum mechanics, molecular dynamics, and experiment. J. Phys. Chem. B. 2013;118:1990. doi: 10.1021/jp409481f. PubMed DOI

Silva A. M., Silva E. C., Silva C. O.. A theoretical study of glucose mutarotation in aqueous solution. Carbohydr. Res. 2006;341:1029. doi: 10.1016/j.carres.2006.02.035. PubMed DOI

Yei L. H. E., Beden B., Lamy C.. Electrocatalytic oxidation of glucose at platinum in alkaline medium: on the role of temperature. J. Electroanal. Chem. Interface Electrochem. 1988;246:349. doi: 10.1016/0022-0728(88)80171-2. DOI

Nanos C. G., Konidari C. N., Karayannis M. I.. Potentiometric study of the nucleation of Cu2O after its formation from fehling solutions and reducing sugars. Electroanalysis. 1991;3:577. doi: 10.1002/elan.1140030620. DOI

Wang Y., Zhou K.. Effect of OH– on morphology of Cu2O particles prepared through reduction of Cu­(II) by glucose. J. Cent. South Univ. 2012;19:2125. doi: 10.1007/s11771-012-1254-4. DOI

Andal V., Buvaneswari G.. Effect of reducing agents in the conversion of Cu2O nanocolloid to Cu nanocolloid. Eng. Sci. Technol. Int. J. 2017;20:340. doi: 10.1016/j.jestch.2016.09.003. DOI

Matte L. P., Kilian A. S., Luza L., Alves M. C. M., Morais J., Baptista D. L., Dupont J., Bernardi F.. Influence of the CeO2 Support on the Reduction Properties of Cu/CeO2 and Ni/CeO2 Nanoparticles. J. Phys. Chem. C. 2015;119:26459. doi: 10.1021/acs.jpcc.5b07654. DOI

Dabera G. D. M. R., Walker M., Sanchez A. M., Pereira H. J., Beanland R., Hatton R. A.. Retarding oxidation of copper nanoparticles without electrical isolation and the size dependence of work function. Nat. Commun. 2017;8:1894. doi: 10.1038/s41467-017-01735-6. PubMed DOI PMC

Rasera F., Thill A. S., Matte L. P., Giroto G. Z., Casara H. V., Della Mea G. B., Balzaretti N. M., Poletto F., Brito C., Bernardi F.. Slowing Sintering to Increase the Lifetime of Cu Nanoparticles on Metal Oxide Supports. ACS Appl. Nano Mater. 2023;6:6435. doi: 10.1021/acsanm.3c01092. DOI

Vasquez R. P.. CuO by XPS. Surf. Sci. Spectra. 1998;5:262. doi: 10.1116/1.1247882. DOI

Nikesh V. V., Mandale A. B., Patil K. R., Mahamuni S.. X-ray photoelectron spectroscopic investigations of Cu2O nanoparticles. Mater. Res. Bull. 2005;40:694. doi: 10.1016/j.materresbull.2004.12.008. DOI

Figueiredo W. T., Della Mea G. B., Segala M., Baptista D. L., Escudero C., Pérez-Dieste V., Bernardi F.. Understanding the Strong Metal–Support Interaction (SMSI) Effect in CuxNi1–x/CeO2 (0 < x < 1) Nanoparticles for Enhanced Catalysis. ACS Appl. Nano Mater. 2019;2:2559. doi: 10.1021/acsanm.9b00569. DOI

Tahir D., Tougaard S.. Electronic and optical properties of Cu, CuO and Cu2O studied by electron spectroscopy. J. Phys.:Condens. Matter. 2012;24:175002. doi: 10.1088/0953-8984/24/17/175002. PubMed DOI

Bonetto F., Silva C., Ferreira E. H. Martins., Candia A., Passeggi M. C. G. Jr., Montoro S., Vidal R.. Formation of graphitic films on Cu (111) via electron beam induced deposition. Vacuum. 2021;183:109824. doi: 10.1016/j.vacuum.2020.109824. DOI

Benndorf C., Caus H., Egert B., Seidel H., Thieme F.. Identification of Cu (I) and Cu (II) oxides by electron spectroscopic methods: AES, ELS and UPS investigations. J. Electron Spectrosc. Relat. Phenom. 1980;19:77. doi: 10.1016/0368-2048(80)80035-1. DOI

Zhu S.-C., Chen Z., Liu Z., Hou Y.. Thermodynamics and Catalytic Activity of the Reduced Cu on a Cu2O Surface from Machine Learning Atomic Simulation. ACS Mater. Lett. 2024;6:3690. doi: 10.1021/acsmaterialslett.4c00852. DOI

Wu D., Sun X., Yang J. C., Zhou G.. Intermittent oxidation kinetics and metal/oxide interfacial undulation. Phys. Rev. B. 2024;110:085402. doi: 10.1103/PhysRevB.110.085402. DOI

Han S. Z., Choi E., Lim S. H., Ahn J. H., Yun J.. Enhancing bonding strength between Cu and Cu2O through crystallographic orientation variation. J. Alloys Compd. 2024;1003:175672. doi: 10.1016/j.jallcom.2024.175672. DOI

LaGrow A. P., Ward M. R., Lloyd D. C., Gai P. L., Boyes E. D.. In situ visualization of site-dependent reaction kinetics in shape-controlled nanoparticles: Corners vs edges. J. Phys. Chem. A. 2016;139:14746. doi: 10.1021/acs.jpcc.9b00464. DOI

Chang X., Wang T., Zhao Z., Yang P., Greeley J., Mu R., Zhang G., Gong Z., Luo Z., Chen J., Cui Y., Ozin G. A., Gong J.. Tuning Cu/Cu2O Interfaces for the Reduction of Carbon Dioxide to Methanol in Aqueous Solutions. Angew. Chem., Int. Ed. 2018;57:15415. doi: 10.1002/anie.201805256. PubMed DOI

Li H. B., Wang W., Xie X., Cheng Y., Zhang Z., Dong H., Zheng R., Wang W., Lu F., Liu H.. Electronic Structure and Ferromagnetism Modulation in Cu/Cu2O Interface: Impact of Interfacial Cu Vacancy and Its Diffusion. Sci. Rep. 2015;5:15191. doi: 10.1038/srep15191. PubMed DOI PMC

Koningsberger, D. C. ; Prins, R. . X-ray absorption: principles, applications, techniques of EXAFS, SEXAFS and XANES. 1987.

Newville M.. IFEFFIT: interactive XAFS analysis and FEFF fitting. Synchrotron Radiat. 2001;8:322. doi: 10.1107/S0909049500016964. PubMed DOI

Ravel B., Newville M.. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Synchrotron Radiat. 2005;12:537. doi: 10.1107/S0909049505012719. PubMed DOI

Thompson A. P., Aktulga H. M., Berger R., Bolintineanu D. S., Brown W. M., Crozier P. S., in ’t Veld P. J., Kohlmeyer A., Moore S. G., Nguyen T. D., Shan R., Stevens M. J., Tranchida J., Trott C., Tucker. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022;271:108171. doi: 10.1016/j.cpc.2021.108171. DOI

Van Duin A. C., Dasgupta S., Lorant F., Goddard W. A.. ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A. 2001;105:9396. doi: 10.1021/jp004368u. DOI

Roshan K. A., Talkhoncheh M. K., Sengul M. Y., Miller D. J., Duin A. C. T. V.. Optimization of ReaxFF reactive force field parameters for Cu/Si/O systems via neural network inversion with application to copper oxide interaction with silicon. J. Phys. Chem. C. 2023;127:41. doi: 10.1021/acs.jpcc.3c03079. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...