A New Method for Testing Thermodynamic Consistency of Vapor-Liquid Equilibrium Data
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41114192
PubMed Central
PMC12529394
DOI
10.1021/acsomega.5c04650
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Tests of thermodynamic consistency are essential tools for evaluating VLE data quality. However, there is a lack of software that offers the most commonly used testing procedures in a single application. Furthermore, currently used tests are very general and serve well to quantify experimental error but do not reveal much about its cause. In this work, a new test is proposed, called the "gamma offset test". It is designed to have a focused, limited scopeto detect inconsistency between the binary VLE data set and the corresponding vapor pressure models. The proposed testing procedure was applied to a collection of VLE data sets obtained from the literature, and the results were compared with the tests of Fredenslund and Redlich-Kister. A criterion of consistency to formally accept or reject the data was fine-tuned so that the test provides meaningful results. It was shown that this new test can be a valuable complement to the traditionally used procedures for most binary systems. Moreover, the advantages of the new test were demonstrated in systems where existing procedures are difficult to apply. The new test can be used either to assess experimental setup accuracy or to help diagnose the cause of a known experimental error. This test is part of a newly developed open-source software package called "VLizard, a VLE wizard", which also offers other well-known testing procedures. With its graphical interface, it aims to fill the gap as an easily accessible tool for both academic and industrial VLE research.
Zobrazit více v PubMed
Renon H., Prausnitz J. M.. Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 1968;14:135–144. doi: 10.1002/aic.690140124. DOI
Abrams D. S., Prausnitz J. M.. Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J. 1975;21:116–128. doi: 10.1002/aic.690210115. DOI
Redlich O., Kister A.. Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 1948;40:345–348. doi: 10.1021/ie50458a036. DOI
Herington E.. A thermodynamic test for the internal consistency of experimental data on volatility ratios. Nature. 1947;160:610–611. doi: 10.1038/160610b0. PubMed DOI
Fredenslund, A. Vapor-liquid equilibria using UNIFAC: A group-contribution method; Elsevier, 1977.
Van Ness H. C.. Thermodynamics in the treatment of vapor/liquid equilibrium (VLE) data. Pure Appl. Chem. 1995;67:859–872. doi: 10.1351/pac199567060859. DOI
Kojima K., Moon H. M., Ochi K.. Thermodynamic consistency test of vapor-liquid equilibrium data: Methanol–water, benzene–cyclohexane and ethyl methyl ketone–water - Fluid Phase Equilib. 1990;56:269–284. doi: 10.1016/0378-3812(90)85108-M. DOI
Kang J. W., Diky V., Chirico R. D., Magee J. W., Muzny C. D., Abdulagatov I., Kazakov A. F., Frenkel M.. Quality Assessment Algorithm for Vapor–Liquid Equilibrium Data. J. Chem. Eng. Data. 2010;55:3631–3640. doi: 10.1021/je1002169. DOI
Wisniak J., Ortega J., Fernández L.. A fresh look at the thermodynamic consistency of vapour-liquid equilibria data. J. Chem. Thermodyn. 2017;105:385–395. doi: 10.1016/j.jct.2016.10.038. DOI
McDermott C., Ellis S.. A multicomponent consistency test. Chem. Eng. Sci. 1965;20:293–296. doi: 10.1016/0009-2509(65)85018-7. DOI
Fernández L. J., Ortega J., Wisniak J.. A rigorous method to evaluate the consistency of experimental data in phase equilibria. Application to VLE and VLLE. AIChE J. 2017;63:5125–5148. doi: 10.1002/aic.15876. DOI
Fernández L., Ortega J., Wisniak J.. New computational tool to evaluate experimental VLE and VLLE data of multicomponent systems. Comput. Chem. Eng. 2017;106:437–463. doi: 10.1016/j.compchemeng.2017.07.003. DOI
Fernández L., Ortega J., Wisniak J.. Assessment of liquid–liquid equilibrium data by solving the Gibbs-Duhem equation. AIChE J. 2022;68:e17630. doi: 10.1002/aic.17630. DOI
Aspentech. Aspen Plus V14.5. 2024; https://www.aspentech.com/en/products/engineering/aspen-plus.
Smith B. D., Muthu O., Dewan A., Gierlach M.. Evaluation of Binary PTxy Vapor-Liquid Equilibrium Data for C6 Hydrocarbons. Benzene+Cyclohexane. J. Phys. Chem. Ref. Data. 1982;11:1099–1126. doi: 10.1063/1.555673. DOI
Van Ness, H. C. ; Abbott, M. M. . Perry’s Chemical Engineers’ Handbook. Section 4: Thermodynamics; McGraw-Hill: New York, 2008.
Antoine C.. Tensions des vapeurs; nouvelle relation entre les tensions et les températures. C. R. Hebd. Seances Acad. Sci. 1888;107:681–684.
Wagner W.. New vapour pressure measurements for argon and nitrogen and a new method for establishing rational vapour pressure equations. Cryogenics. 1973;13:470–482. doi: 10.1016/0011-2275(73)90003-9. DOI
Hietala, J. ; Vuori, A. ; Johnsson, P. ; Pollari, I. ; Reutemann, W. ; Kieczka, H. . Ullmann’s Encyclopedia of Industrial Chemistry; John Wiley & Sons, Ltd, 2016; pp. 1–22.
Le Berre, C. ; Serp, P. ; Kalck, P. ; Torrence, G. P. . Ullmann’s Encyclopedia of Industrial Chemistry; John Wiley & Sons, Ltd, 2014; pp. 1–34.
Zbytovský, J. VLizard. 2024; https://zenodo.org/doi/10.5281/zenodo.13357210.
Harris C. R.. et al. Array programming with NumPy. Nature. 2020;585:357–362. doi: 10.1038/s41586-020-2649-2. PubMed DOI PMC
Virtanen P.. et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nat. Methods. 2020;17:261–272. doi: 10.1038/s41592-019-0686-2. PubMed DOI PMC
Hunter J. D.. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007;9:90–95. doi: 10.1109/MCSE.2007.55. DOI
Branch M. A., Coleman T. F., Li Y.. A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. SIAM J. Sci. Comput. 1999;21:1–23. doi: 10.1137/S1064827595289108. DOI
Boggs P. T., Rogers J. E.. Orthogonal distance regression. Contemp. Math. 1990;112:183–194. doi: 10.1090/conm/112/1087109. DOI
Moré, J. J. , The Levenberg-Marquardt algorithm: implementation and theory In Numerical analysis: Lecture Notes in Mathematics Springer; 2006, 105–116.
Dierckx, P. Curve and surface fitting with splines; Oxford University Press, 1995.
Piessens, R. ; de Doncker-Kapenga, E. ; Überhuber, C. W. ; Kahaner, D. K. . Quadpack: A subroutine package for automatic integration; Springer Science & Business Media, 2012; Vol. 1.
Moré, J. J. ; Garbow, B. S. ; Hillstrom, K. E. . User guide for MINPACK-1. Argonne National Laboratory; 1980.
Kurihara K., Nakamichi M., Kojima K.. Isobaric vapor-liquid equilibria for methanol+ ethanol+ water and the three constituent binary systems. J. Chem. Eng. Data. 1993;38:446–449. doi: 10.1021/je00011a031. DOI
Bredig G., Bayer R. II.. Vapor pressure of the ternary system methanol-methyl acetate-ethyl acetate. Z. Phys. Chem. Stoechiom. Verwandtschaftsl. 1927;130:15–28.
Yang C., Sun F., Ma S., Yin X., Zeng H.. Organic Salt Effect on Vapor–Liquid Equilibrium of the Methanol+ Water System at Subatmospheric Pressure. J. Chem. Eng. Data. 2012;57:2696–2701. doi: 10.1021/je300613v. DOI
Verhoeye L., De Schepper H.. The vapour-liquid equilibria of the binary, ternary and quaternary systems formed by acetone, methanol, propan-2-ol, and water. J. Appl. Chem. Biotechnol. 1973;23:607–619. doi: 10.1002/jctb.5020230807. DOI
Voutsas E. C., Pamouktsis C., Argyris D., Pappa G. D.. Measurements and thermodynamic modeling of the ethanol–water system with emphasis to the azeotropic region. Fluid Phase Equilib. 2011;308:135–141. doi: 10.1016/j.fluid.2011.06.009. DOI
Paul R.. Study of liquid-vapor equilibrium in improved equilibrium still. J. Chem. Eng. Data. 1976;21:165–169. doi: 10.1021/je60069a013. DOI
Kamihama N., Matsuda H., Kurihara K., Tochigi K., Oba S.. Isobaric vapor–liquid equilibria for ethanol+ water+ ethylene glycol and its constituent three binary systems. J. Chem. Eng. Data. 2012;57:339–344. doi: 10.1021/je2008704. DOI
Wisniak J., Magen E., Shachar M., Zeroni I., Reich R., Segura H.. Phase equilibria in the systems hexane+ heptane and methyl 1, 1-dimethylethyl ether+ hexane+ heptane. J. Chem. Eng. Data. 1997;42:458–462. doi: 10.1021/je960344y. DOI
Jan D.-S., Shiau H.-Y., Tsai F.-N.. Vapor-liquid equilibria of n-hexane+ cyclohexane+ n-heptane and the three constituent binary systems at 101.0 kPa. J. Chem. Eng. Data. 1994;39:438–440. doi: 10.1021/je00015a007. DOI
Li H., Han M., Gao X., Li X.. Isobaric vapor–liquid equilibrium for binary system of cinnamaldehyde+ benzaldehyde at 10, 20 and 30 kPa. Fluid Phase Equilib. 2014;364:62–66. doi: 10.1016/j.fluid.2013.12.002. DOI
Rollet A., Elkaim G., Toledano P., Senez M.. Les Equilibres Liquide-Vapeur Du Systeme Binaire Benzenetoluene. C. R. Hebd. Seances Acad. Sci. 1956;242:2560–2563.
Heertjes P.. Determination of Vapor-Liquid Equilibria of Binary Mixtures. Chem. Process Eng. 1960;41:385–387.
Michishita T., Arai Y., Saito S.. Vapor-liquid equilibria of hydrocarbons at atmospheric pressure. Kagaku Kogaku. 1971;35:111–116. doi: 10.1252/kakoronbunshu1953.35.111. DOI
Steinhauser H. H., White R. R.. Vapor-liquid equilibria data for ternary mixtures: methyl ethyl keton-n-heptane-toluene system. Ind. Eng. Chem. 1949;41:2912–2920. doi: 10.1021/ie50480a062. DOI
Garner F., Hall R.. Vapor-Liquid Equilibria of C7-Hydrocarbon-furfural Systems I. Binary and Ternary Data for the System Methylcyclohexane-furfural. J. Inst. Pet. 1955;41:1–18.
Vilcu R., Cenuse Z.. Thermodynamic excess functions in liquid-vapor equilibriqin n-heptane-toluene system. Rev. Roum. Chim. 1972;17:367–377.
Katayama H., Watanabe I.. Isobaric vapor-liquid equilibriums of the n-heptane-toluene system at subatmospheric pressures. J. Chem. Eng. Data. 1980;25:107–110. doi: 10.1021/je60085a010. DOI
Sieg L.. Vapor-liquid equilibria in binary systems of hydrocarbons of various types. Chem. Ing. Tech. 1950;22:322–326. doi: 10.1002/cite.330221503. DOI
Sommer T., Zapletal M., Trejbal J.. Measurements and Correlation of Isobaric Vapor-Liquid Equilibria for the Binary Systems of Cyclohexanol + Cyclohexyl Formate and Cyclopentanol + Cyclopentyl Formate under Various Pressures. J. Chem. Eng. Data. 2020;65:2291–2299. doi: 10.1021/acs.jced.9b00746. DOI
Li T., Wang Q., Liu B., Hu D., Zhang Y., Muhammad F., Yalikun N.. Vapor-Liquid Equilibrium Experiment and Process Simulation Study of Tetrahydrofuran-Methanol Azeotrope Separation from Wastewater Using Ionic Liquid Mixed Solvent. Ind. Eng. Chem. Res. 2025;64:1225–1240. doi: 10.1021/acs.iecr.4c03553. DOI
Li Q., Liu P., Cao L., Wen F., Zhang S., Wang B.. Vapor-liquid equilibrium for tetrahydrofuran+methanol+tetrafluoroborate-based ionic liquids at 101.3 kPa. Fluid Phase Equilib. 2013;360:439–444. doi: 10.1016/j.fluid.2013.09.060. DOI
Wang S., Wei J., Xie H., Chen X., Liang J. Z., Wei X., Huang J., Wang L.. Vapor-Liquid Equilibrium of Monoterpene-Sesquiterpene System Containing Resin Acid. Ind. Eng. Chem. Res. 2024;63:4605–4618. doi: 10.1021/acs.iecr.3c04175. DOI
Farelo F., And F. S., Serrano L.. Isobaric vapor liquid equilibrium in binary mixtures of α-pinene, limonene and 1, 8-cineole. Can. J. Chem. Eng. 1991;69:794–799. doi: 10.1002/cjce.5450690323. DOI
Copp J., Everett D.. Thermodynamics of binary mixtures containing amines. Discuss. Faraday Soc. 1953;15:174–188. doi: 10.1039/df9531500174. DOI
Frangieh M., Bougrine A., Tenu R., Dhenain A., Counioux J., Goutaudier C.. Evolution of the liquid–vapor equilibrium properties of several unsymmetrical amines: determination of their binary isobaric diagrams and applications to the distillation. J. Chem. Eng. Data. 2013;58:576–582. doi: 10.1021/je3009649. DOI
Conti J., Othmer D. F., Gilmont R.. Composition of Vapors from Boiling Binary Solutions. Systems Containing Formic Acid, Acetic Acid, Water, and Chloroform. J. Chem. Eng. Data. 1960;5:301–307. doi: 10.1021/je60007a019. DOI
Plewes A., Pei D., Code R.. Some thermodynamic properties of the system formic acid-water. Can. J. Chem. Eng. 1959;37:121–125. doi: 10.1002/cjce.5450370308. DOI
Zhong X., Huang Y.. Determination and Relating of VLE of Acetic acid-Methanoic Acid-Water System. Chem. Eng. 1983;5:64–72.
Sommer T., Trejbal J., Kopecký D.. Isobaric and Isothermal Vapor-Liquid Equilibria for the Binary System of Water + Formic Acid at 99.41 kPa, 388.15 K, and 398.15 K. J. Chem. Eng. Data. 2016;61:3398–3405. doi: 10.1021/acs.jced.6b00139. DOI
Ping L., Peng Y., Mao J.. Vapor-Liquid Equilibria of Acetic Acid-Water-N-Methylpyrrolidone System at 26.67 kPa. J. Chem. Eng. Chin. Univ. 2011;25:554–558.
Luo J., Wu S., Sun Y.. Vapor-Liquid Equilibrium of Acetic Acid-Water System Under Magnetic Field. Tianjin Daxue Xuebao. 2007;40:1300.
Vercher E., Vázquez M. I., Martínez-Andreu A.. Isobaric vapor- liquid equilibria for water+ acetic acid+ lithium acetate. J. Chem. Eng. Data. 2001;46:1584–1588. doi: 10.1021/je010106p. DOI
Lim J. S., Ho Q. N., Park J.-Y., Lee B. G.. Measurement of Vapor- Liquid Equilibria for the Binary Mixture of Propane (R-290)+ Isobutane (R-600a) J. Chem. Eng. Data. 2004;49:192–198. doi: 10.1021/je030106k. DOI
Hipkin H.. Experimental vapor-liquid equilibrium data for propane-isobutane. AIChE J. 1966;12:484–487. doi: 10.1002/aic.690120317. DOI
Hirata M., Suda S., Hakuta T., Nagahama K.. Light hydrocarbon vapor-liquid equilibria. Mem. Fac. Technol., Tokyo Metrop. Univ. 1969;19:103–122.
Baba-Ahmed A., Guilbot P., Richon D.. New equipment using a static analytic method for the study of vapour–liquid equilibria at temperatures down to 77 K. Fluid Phase Equilib. 1999;166:225–236. doi: 10.1016/S0378-3812(99)00294-0. DOI
Wilson, G. M. ; Silverberg, P. M. ; Zellner, M. G. . Argon-oxygen-nitrogen three-component system experimental vapor-liquid equilibrium data DTIC; 1964. 192–208
Falleiro R. M. M., Meirelles A. J., Krähenbühl M. A.. Experimental determination of the (vapor+ liquid) equilibrium data of binary mixtures of fatty acids by differential scanning calorimetry. J. Chem. Thermodyn. 2010;42:70–77. doi: 10.1016/j.jct.2009.07.008. DOI
Ortega J., Espiau F., Dieppa R.. Measurement and correlation of isobaric vapour–liquid equilibrium data and excess properties of ethyl methanoate with alkanes (hexane to decane) Fluid Phase Equilib. 2004;215:175–186. doi: 10.1016/j.fluid.2003.08.003. DOI
Dyga M., Keller A., Hasse H.. Vapor-Liquid Equilibria and Chemical Equilibria in the System (Formaldehyde + Water + Isoprenol) Ind. Eng. Chem. Res. 2021;60:4471–4483. doi: 10.1021/acs.iecr.1c00168. DOI