Expanded diversity of pedinophytes provides a window into the evolution of the genetic code in organelles
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41124226
PubMed Central
PMC12574857
DOI
10.1371/journal.pgen.1011901
PII: PGENETICS-D-25-00732
Knihovny.cz E-zdroje
- MeSH
- Chlorophyta * genetika klasifikace MeSH
- Dinoflagellata * genetika klasifikace MeSH
- fylogeneze MeSH
- genetický kód * genetika MeSH
- kodon genetika MeSH
- mitochondrie genetika MeSH
- molekulární evoluce * MeSH
- organely * genetika MeSH
- plastidy genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kodon MeSH
Mitochondria and plastids of various lineages exhibit genetic code alterations. However, the knowledge of the diversity and occurrence, mechanistic underpinnings, and evolutionary origins of codon reassignments in organelles remains incomplete. To address this gap, we focused on organelles of the neglected green algal class Pedinophyceae, as well as pedinophyte-derived secondary plastids of green-coloured dinoflagellates (peDinoflagellates). We isolated and characterized a novel pedinophyte, herein formally described as Oistococcus okinawensis gen. et sp. nov., and phenotypically documented the previously sequenced but morphologically uncharacterized strain YPF-701, herein described as Akinorimonas japonica gen. et sp. nov. Based on phylogenetic analyses, both new taxa were classified into the expanded family Resultomonadaceae. We sequenced the organellar genomes of O. okinawensis, and utilizing existing raw (meta)genomic data we assembled organellar genome sequences from other previously unexplored pedinophyte lineages. Bioinformatic analyses of the expanded set of pedinophyte organellar genomes painted a complex picture of their genetic code landscape. Concerning mitochondria, the stop-to-Trp reassignment of the UGA codon turned out to have evolved multiple times in pedinophytes, and the Arg-to-Ala reassignment of AGA/AGG codons was shown to be apomorphic for the whole order Marsupiomonadales. The latter has additionally converted UUA and UUG into termination codons, relying on specific mutations in the mtRF1a protein. All pedinophyte mitochondria seem to decode AUA as methionine rather than the standard isoleucine, and an analogous reassignment seems to be evolving also in plastids of two separate pedinophyte lineages. Finally, apart from the previously reported Ile-to-Met AUA reassignment, peDinoflagellate plastids have switched the meaning of the AGA/AGG codons from arginine to another amino acid (most likely alanine), and have modified their pRF2 protein to mediate translation termination at UUA/UCA codons. Pedinophyte(-derived) organelles present a broad spectrum of codon reassignments and provide important insights into the emergence and mechanisms of non-standard codon translation.
Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czech Republic
Department of Hematooncology Faculty of Medicine University of Ostrava Ostrava Czech Republic
Zobrazit více v PubMed
Moestrup Ø. Further studies of presumedly primitive green algae, including the description of Pedinophyceae class. nov. and DOI
Marin B. Nested in the Chlorellales or independent class? Phylogeny and classification of the Pedinophyceae (Viridiplantae) revealed by molecular phylogenetic analyses of complete nuclear and plastid-encoded rRNA operons. Protist. 2012;163(5):778–805. doi: 10.1016/j.protis.2011.11.004 PubMed DOI
Wang L, Lin X, Goes JI, Lin S. Phylogenetic analyses of three genes of PubMed DOI
Manigandan V, Muthukumar C, Shah C, Logesh N, Sivadas SK, Ramu K, et al. Phylogenetic affiliation of PubMed DOI
Kamikawa R, Tanifuji G, Kawachi M, Miyashita H, Hashimoto T, Inagaki Y. Plastid genome-based phylogeny pinpointed the origin of the green-colored plastid in the dinoflagellate PubMed DOI PMC
Jackson C, Knoll AH, Chan CX, Verbruggen H. Plastid phylogenomics with broad taxon sampling further elucidates the distinct evolutionary origins and timing of secondary green plastids. Sci Rep. 2018;8(1):1523. doi: 10.1038/s41598-017-18805-w PubMed DOI PMC
Matsuo E, Morita K, Nakayama T, Yazaki E, Sarai C, Takahashi K, et al. Comparative plastid genomics of green-colored dinoflagellates unveils parallel genome compaction and RNA editing. Front Plant Sci. 2022;13:918543. doi: 10.3389/fpls.2022.918543 PubMed DOI PMC
Sarai C, Tanifuji G, Nakayama T, Kamikawa R, Takahashi K, Yazaki E, et al. Dinoflagellates with relic endosymbiont nuclei as models for elucidating organellogenesis. Proc Natl Acad Sci U S A. 2020;117(10):5364–75. doi: 10.1073/pnas.1911884117 PubMed DOI PMC
Shrestha B, Romero MF, Villada JC, Plastid MAG Consortium, Crysten BC, Schulz F. Global metagenomics reveals plastid diversity and unexplored algal lineages. bioRxiv. 2025. doi: 10.1101/2025.03.28.644651 DOI
Repetti SI, Iha C, Uthanumallian K, Jackson CJ, Chen Y, Chan CX, et al. Nuclear genome of a pedinophyte pinpoints genomic innovation and streamlining in the green algae. New Phytol. 2022;233(5):2144–54. doi: 10.1111/nph.17926 PubMed DOI
Turmel M, Otis C, Lemieux C. The chloroplast genomes of the green algae PubMed DOI
Lemieux C, Otis C, Turmel M. Chloroplast phylogenomic analysis resolves deep-level relationships within the green algal class Trebouxiophyceae. BMC Evol Biol. 2014;14:211. doi: 10.1186/s12862-014-0211-2 PubMed DOI PMC
Fang L, Leliaert F, Novis PM, Zhang Z, Zhu H, Liu G, et al. Improving phylogenetic inference of core Chlorophyta using chloroplast sequences with strong phylogenetic signals and heterogeneous models. Mol Phylogenet Evol. 2018;127:248–55. doi: 10.1016/j.ympev.2018.06.006 PubMed DOI
One Thousand Plant Transcriptomes Initiative. One thousand plant transcriptomes and the phylogenomics of green plants. Nature. 2019;574:679–85. doi: 10.1038/s41586-019-1693-2 PubMed DOI PMC
Li X, Hou Z, Xu C, Shi X, Yang L, Lewis LA, et al. Large phylogenomic data sets reveal deep relationships and trait evolution in chlorophyte green algae. Genome Biol Evol. 2021;13(7):evab101. doi: 10.1093/gbe/evab101 PubMed DOI PMC
Yang Z, Ma X, Wang Q, Tian X, Sun J, Zhang Z, et al. Phylotranscriptomics unveil a Paleoproterozoic-Mesoproterozoic origin and deep relationships of the Viridiplantae. Nat Commun. 2023;14(1):5542. doi: 10.1038/s41467-023-41137-5 PubMed DOI PMC
Turmel M, Lemieux C, Burger G, Lang BF, Otis C, Plante I, et al. The complete mitochondrial DNA sequences of PubMed DOI PMC
Turmel M, Otis C, Lemieux C. Complete mitogenome of the chlorophyte green alga PubMed DOI PMC
Matsumoto T, Ishikawa SA, Hashimoto T, Inagaki Y. A deviant genetic code in the green alga-derived plastid in the dinoflagellate PubMed DOI
Turmel M, Otis C, Lemieux C. Dynamic evolution of the chloroplast genome in the green algal classes Pedinophyceae and Trebouxiophyceae. Genome Biol Evol. 2015;7(7):2062–82. doi: 10.1093/gbe/evv130 PubMed DOI PMC
Turmel M, Lemieux C. Evolution of the plastid genome in green algae. In: Chaw S-M, Jansen RK, editors. Advances in botanical research. Academic Press; 2018. p. 157–93. doi: 10.1016/bs.abr.2017.11.010 DOI
Vischer W. Über einen pilzähnlichen, autotrophen Mikroorganismus,
Daugbjerg N, Moestrup Ø, Arctander P. Phylogeny of genera of Prasinophyceae and Pedinophyceae (Chlorophyta) deduced from molecular analysis of the DOI
McKenna V, Archibald JM, Beinart R, Dawson MN, Hentschel U, Keeling PJ, et al. The Aquatic Symbiosis Genomics Project: probing the evolution of symbiosis across the Tree of Life. Wellcome Open Res. 2024;6:254. doi: 10.12688/wellcomeopenres.17222.2 PubMed DOI PMC
Milyutina IA, Belevich TA, Ilyash LV, Troitsky AV. Insight into picophytoplankton diversity of the subarctic White Sea-The first recording of Pedinophyceae in environmental DNA. MicrobiologyOpen. 2019;8(10):e892. doi: 10.1002/mbo3.892 PubMed DOI PMC
Guiry MD, Guiry GM, AlgaeBase. World-Wide Electronic Publication, University of Galway; 2025. [cited 2025 Jan 30]. Available from: https://www.algaebase.org
Barcytė D, Hodač L, Eliáš M. Freshwater ‘microcroissants’ shed light on a novel higher-level clade within the Trebouxiophyceae and reveal the genus DOI
Jacob Y, Sharkady SM, Bhardwaj K, Sanda A, Williams KP. Function of the SmpB tail in transfer-messenger RNA translation revealed by a nucleus-encoded form. J Biol Chem. 2005;280(7):5503–9. doi: 10.1074/jbc.M409277200 PubMed DOI
Rogalski M, Karcher D, Bock R. Superwobbling facilitates translation with reduced tRNA sets. Nat Struct Mol Biol. 2008;15(2):192–8. doi: 10.1038/nsmb.1370 PubMed DOI
Alkatib S, Fleischmann TT, Scharff LB, Bock R. Evolutionary constraints on the plastid tRNA set decoding methionine and isoleucine. Nucleic Acids Res. 2012;40(14):6713–24. doi: 10.1093/nar/gks350 PubMed DOI PMC
Miyauchi K, Kimura S, Akiyama N, Inoue K, Ishiguro K, Vu T-S, et al. A tRNA modification with aminovaleramide facilitates AUA decoding in protein synthesis. Nat Chem Biol. 2025;21(4):522–31. doi: 10.1038/s41589-024-01726-x PubMed DOI PMC
Žihala D, Eliáš M. Evolution and unprecedented variants of the mitochondrial genetic code in a lineage of green algae. Genome Biol Evol. 2019;11(10):2992–3007. doi: 10.1093/gbe/evz210 PubMed DOI PMC
Žihala D, Salamonová J, Eliáš M. Evolution of the genetic code in the mitochondria of Labyrinthulea (Stramenopiles). Mol Phylogenet Evol. 2020;152:106908. doi: 10.1016/j.ympev.2020.106908 PubMed DOI
Giegé R, Eriani G. The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Res. 2023;51(4):1528–70. doi: 10.1093/nar/gkad007 PubMed DOI PMC
Youngman EM, McDonald ME, Green R. Peptide release on the ribosome: mechanism and implications for translational control. Annu Rev Microbiol. 2008;62:353–73. doi: 10.1146/annurev.micro.61.080706.093323 PubMed DOI
Duarte I, Nabuurs SB, Magno R, Huynen M. Evolution and diversification of the organellar release factor family. Mol Biol Evol. 2012;29(11):3497–512. doi: 10.1093/molbev/mss157 PubMed DOI PMC
Noutahi E, Calderon V, Blanchette M, El-Mabrouk N, Lang BF. Rapid genetic code evolution in green algal mitochondrial genomes. Mol Biol Evol. 2019;36(4):766–83. doi: 10.1093/molbev/msz016 PubMed DOI PMC
Turmel M, Otis C, Lemieux C. A deviant genetic code in the reduced mitochondrial genome of the picoplanktonic green alga PubMed DOI
Crépeault O, Otis C, Pombert J-F, Turmel M, Lemieux C. Comparative plastome and mitogenome analyses indicate that the marine prasinophyte green algae PubMed DOI
Kayama M, Chen J-F, Nakada T, Nishimura Y, Shikanai T, Azuma T, et al. A non-photosynthetic green alga illuminates the reductive evolution of plastid electron transport systems. BMC Biol. 2020;18(1):126. doi: 10.1186/s12915-020-00853-w PubMed DOI PMC
Turmel M, Vincent AT, Otis C, Lemieux C. The complete plastome of the coccoid green alga DOI
Fang J, Liu B, Liu G, Verbruggen H, Zhu H. Six newly sequenced chloroplast genomes from Trentepohliales: the inflated genomes, alternative genetic code and dynamic evolution. Front Plant Sci. 2021;12:780054. doi: 10.3389/fpls.2021.780054 PubMed DOI PMC
Del Cortona A, Leliaert F, Bogaert KA, Turmel M, Boedeker C, Janouškovec J, et al. The plastid genome in Cladophorales green algae is encoded by hairpin chromosomes. Curr Biol. 2017;27(24):3771-3782.e6. doi: 10.1016/j.cub.2017.11.004 PubMed DOI
Turmel M, Lopes Dos Santos A, Otis C, Sergerie R, Lemieux C. Tracing the evolution of the plastome and mitogenome in the chloropicophyceae uncovered convergent tRNA Gene losses and a variant plastid genetic code. Genome Biol Evol. 2019;11(4):1275–92. doi: 10.1093/gbe/evz074 PubMed DOI PMC
Ceriotti LF, Roulet ME, Sanchez-Puerta MV. Plastomes in the holoparasitic family Balanophoraceae: extremely high AT content, severe gene content reduction, and two independent genetic code changes. Mol Phylogenet Evol. 2021;162:107208. doi: 10.1016/j.ympev.2021.107208 PubMed DOI
Berrissou C, Cognat V, Koechler S, Bergdoll M, Duchêne A-M, Drouard L. Extensive import of nucleus-encoded tRNAs into chloroplasts of the photosynthetic lycophyte, PubMed DOI PMC
Yokobori S, Suzuki T, Watanabe K. Genetic code variations in mitochondria: tRNA as a major determinant of genetic code plasticity. J Mol Evol. 2001;53(4–5):314–26. doi: 10.1007/s002390010221 PubMed DOI
Ohira T, Suzuki T, Miyauchi K, Suzuki T, Yokobori S-I, Yamagishi A, et al. Decoding mechanism of non-universal genetic codes in PubMed DOI PMC
Spruyt N, Delarbre C, Gachelin G, Laudet V. Complete sequence of the amphioxus ( PubMed DOI PMC
Kondow A, Suzuki T, Yokobori S, Ueda T, Watanabe K. An extra tRNAGly(U*CU) found in ascidian mitochondria responsible for decoding non-universal codons AGA/AGG as glycine. Nucleic Acids Res. 1999;27(12):2554–9. doi: 10.1093/nar/27.12.2554 PubMed DOI PMC
Krüger A, Remes C, Shiriaev DI, Liu Y, Spåhr H, Wibom R, et al. Human mitochondria require mtRF1 for translation termination at non-canonical stop codons. Nat Commun. 2023;14(1):30. doi: 10.1038/s41467-022-35684-6 PubMed DOI PMC
Saurer M, Leibundgut M, Nadimpalli HP, Scaiola A, Schönhut T, Lee RG, et al. Molecular basis of translation termination at noncanonical stop codons in human mitochondria. Science. 2023;380(6644):531–6. doi: 10.1126/science.adf9890 PubMed DOI
Sengupta S, Yang X, Higgs PG. The mechanisms of codon reassignments in mitochondrial genetic codes. J Mol Evol. 2007;64(6):662–88. doi: 10.1007/s00239-006-0284-7 PubMed DOI PMC
Janouškovec J, Tikhonenkov DV, Burki F, Howe AT, Rohwer FL, Mylnikov AP, et al. A new lineage of eukaryotes illuminates early mitochondrial genome reduction. Curr Biol. 2017;27(23):3717-3724.e5. doi: 10.1016/j.cub.2017.10.051 PubMed DOI
Nishimura Y, Shiratori T, Ishida K-I, Hashimoto T, Ohkuma M, Inagaki Y. Horizontally-acquired genetic elements in the mitochondrial genome of a centrohelid PubMed DOI PMC
Wideman JG, Monier A, Rodríguez-Martínez R, Leonard G, Cook E, Poirier C, et al. Unexpected mitochondrial genome diversity revealed by targeted single-cell genomics of heterotrophic flagellated protists. Nat Microbiol. 2020;5(1):154–65. doi: 10.1038/s41564-019-0605-4 PubMed DOI
Pánek T, Tice AK, Corre P, Hrubá P, Žihala D, Kamikawa R, et al. An expanded phylogenomic analysis of Heterolobosea reveals the deep relationships, non-canonical genetic codes, and cryptic flagellate stages in the group. Mol Phylogenet Evol. 2025;204:108289. doi: 10.1016/j.ympev.2025.108289 PubMed DOI
Turmel M, Otis C, Vincent AT, Lemieux C. The complete mitogenomes of the green algae DOI
Hulatt CJ, Suzuki H, Détain A, Wijffels RH, Leya T, Posewitz MC. The genome of the Arctic snow alga PubMed DOI PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. doi: 10.1093/bioinformatics/btu170 PubMed DOI PMC
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77. doi: 10.1089/cmb.2012.0021 PubMed DOI PMC
Dierckxsens N, Mardulyn P, Smits G. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2017;45(4):e18. doi: 10.1093/nar/gkw955 PubMed DOI PMC
Shiryev SA, Agarwala R. Indexing and searching petabase-scale nucleotide resources. Nat Methods. 2024;21(6):994–1002. doi: 10.1038/s41592-024-02280-z PubMed DOI PMC
Li D, Luo R, Liu C-M, Leung C-M, Ting H-F, Sadakane K, et al. MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102:3–11. doi: 10.1016/j.ymeth.2016.02.020 PubMed DOI
Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol. 2017;13(6):e1005595. doi: 10.1371/journal.pcbi.1005595 PubMed DOI PMC
Dutilh BE, Jurgelenaite R, Szklarczyk R, van Hijum SAFT, Harhangi HR, Schmid M, et al. FACIL: fast and accurate genetic code inference and logo. Bioinformatics. 2011;27(14):1929–33. doi: 10.1093/bioinformatics/btr316 PubMed DOI PMC
Shulgina Y, Eddy SR. Codetta: predicting the genetic code from nucleotide sequence. Bioinformatics. 2023;39(1):btac802. doi: 10.1093/bioinformatics/btac802 PubMed DOI PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60. doi: 10.1093/bioinformatics/btp324 PubMed DOI PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. doi: 10.1093/bioinformatics/btp352 PubMed DOI PMC
Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24–6. doi: 10.1038/nbt.1754 PubMed DOI PMC
Lang BF, Beck N, Prince S, Sarrasin M, Rioux P, Burger G. Mitochondrial genome annotation with MFannot: a critical analysis of gene identification and gene model prediction. Front Plant Sci. 2023;14:1222186. doi: 10.3389/fpls.2023.1222186 PubMed DOI PMC
Chan PP, Lin BY, Mak AJ, Lowe TM. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 2021;49(16):9077–96. doi: 10.1093/nar/gkab688 PubMed DOI PMC
Zimmermann L, Stephens A, Nam S-Z, Rau D, Kübler J, Lozajic M, et al. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol. 2018;430(15):2237–43. doi: 10.1016/j.jmb.2017.12.007 PubMed DOI
Greiner S, Lehwark P, Bock R. OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 2019;47(W1):W59–64. doi: 10.1093/nar/gkz238 PubMed DOI PMC
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–80. doi: 10.1093/molbev/mst010 PubMed DOI PMC
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37(5):1530–4. doi: 10.1093/molbev/msaa015 PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14(6):587–9. doi: 10.1038/nmeth.4285 PubMed DOI PMC
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25(15):1972–3. doi: 10.1093/bioinformatics/btp348 PubMed DOI PMC
Kück P, Longo GC. FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front Zool. 2014;11(1):81. doi: 10.1186/s12983-014-0081-x PubMed DOI PMC
Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021;49(W1):W293–6. doi: 10.1093/nar/gkab301 PubMed DOI PMC
Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23(2):254–67. doi: 10.1093/molbev/msj030 PubMed DOI
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52. doi: 10.1038/nbt.1883 PubMed DOI PMC
Almagro Armenteros JJ, Salvatore M, Emanuelsson O, Winther O, von Heijne G, Elofsson A, et al. Detecting sequence signals in targeting peptides using deep learning. Life Sci Alliance. 2019;2(5):e201900429. doi: 10.26508/lsa.201900429 PubMed DOI PMC
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305(3):567–80. doi: 10.1006/jmbi.2000.4315 PubMed DOI