Micro-mirror aided mid-infrared plasmonic beam combiner monolithically integrated with quantum cascade lasers and detectors
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41142102
PubMed Central
PMC12552871
DOI
10.1515/nanoph-2024-0688
PII: nanoph-2024-0688
Knihovny.cz E-zdroje
- Klíčová slova
- mid-infrared, monolithic integration, photonic integrated circuit, plasmonics, quantum cascade detector, quantum cascade laser,
- Publikační typ
- časopisecké články MeSH
The development of novel mid-infrared (MIR) devices and systems is crucial for addressing applications in biomedical analysis, chemical reaction-monitoring, or high-bitrate free-space telecommunication. Combining multiple functional elements on one chip into complex miniaturized photonic integrated circuits (PICs), is the next step in these developments, yet limited by existing material and technology constraints. In this work, we introduce a new concept for realizing fully monolithic MIR-PICs based on low-loss on-chip plasmonic guiding and beam combining. The core of our study demonstrates a monolithic beam combiner by integration of active quantum cascade (QC) devices at ∼8 µm (laser and detector) with tailored passive waveguides based on weakly-coupled Ge/Au plasmonics and on-chip micro-mirror optics. The on-chip gold-coated micro-mirrors enhance the directional control and beam combining capabilities of the plasmon waveguides while minimizing energy dissipation typically associated with tight plasmon confinement. We discuss the MIR-PIC beam combiner design, micro-fabrication, and characterization and compare it to the routing concept of simple plasmonic Ge/Au y-couplers exploiting strong-confinement.
3 5 Lab A Joint Thales Nokia and CEA LETI laboratory Palaiseau France
CEITEC Brno University of Technology Brno Czech Republic
Institute of Chemical Technologies and Analytics TU Wien Wien Austria
Institute of Solid State Electronics and Center for Micro and Nanostructures TU Wien Wien Austria
Zobrazit více v PubMed
Bardeen J., Brattain W. H. The transistor, A semi-conductor triode. Phys. Rev. . 1948;74(2):230. doi: 10.1103/physrev.74.230. DOI
. 2023. https://www.apple.com/newsroom/2023/06/apple-introduces-m2-ultra/
Masharin M. A., et al. Polariton lasing in Mie-resonant perovskite nanocavity. Opto-Electron Adv. . 2024;7(4):230148. doi: 10.29026/oea.2024.230148. DOI
Asghari M., Krishnamoorthy A. V. Energy-efficient communication. Nat. Photonics . 2011;5(5):268. doi: 10.1038/nphoton.2011.68. DOI
Testa F., Bianchi A., Stracca S., Sabella R. Silicon Photonics III – Systems and Applications . Berlin: Springer Nature; 2016. pp. 421–446.
Tuorila H., Viheriälä J., Cherchi M., Aho A. T., Aalto T., Guina M. Low loss GaInNAs/GaAs gain waveguides with U-bend geometry for single-facet coupling in hybrid photonic integration. Appl. Phys. Lett. . 2018;113(4):20240688. doi: 10.1063/1.5042813. DOI
Zhou Z., et al. Prospects and applications of on-chip lasers. eLight . 2023;3(1):20240688. doi: 10.1186/s43593-022-00027-x. PubMed DOI PMC
Thiel H., et al. Time-bin entanglement at telecom wavelengths from a hybrid photonic integrated circuit. Sci. Rep. . 2024;14 doi: 10.1038/s41598-024-60758-4. PubMed DOI PMC
Fabian H., Mäntele W. In Book: Handbook of Vibrational Spectroscopy . Hoboken, NJ: Wiley; 2006.
Hinkov B., et al. Time-resolved spectral characteristics of external-cavity quantum cascade lasers and their application to stand-off detection of explosives. Appl. Phys. B Laser Opt. . 2010;100:253. doi: 10.1007/s00340-009-3863-7. DOI
Tuzson B., Mangold M., Looser H., Manninen A., Emmenegger L. Compact multipass optical cell for laser spectroscopy. Opt. Lett. . 2013;38(3):257. doi: 10.1364/ol.38.000257. PubMed DOI
Patimisco P., Scamarcio G., Tittel F. K., Spagnolo V. Quartz-enhanced photoacoustic spectroscopy: a review. Sensors (Peterb., NH) . 2014;14(4):6165. doi: 10.3390/s140406165. PubMed DOI PMC
Schädle T., Mizaikoff B. Mid-infrared waveguides: a perspective. Appl. Spectrosc. . 2016;70(10):1625. doi: 10.1177/0003702816659668. PubMed DOI
Karioja P., et al. Multi-wavelength mid-IR light source for gas sensing. SPIE. 2017;10110:101100P. doi: 10.1117/12.2249126. DOI
Schwaighofer A., Lendl B. Vibrational Spectroscopy in Protein Research . Cambridge, MA: Academic Press; 2020. pp. 59–88.
Vlk M., et al. Extraordinary evanescent field confinement waveguide sensor for mid-infrared trace gas spectroscopy. Light: Science & Applications . 2021;10:26. doi: 10.1038/s41377-021-00470-4. PubMed DOI PMC
Nie Q., et al. Agile cavity ringdown spectroscopy enabled by moderate optical feedback to a quantum cascade laser. Opto-Electron Adv. . 2024;7(11):240077. doi: 10.29026/oea.2024.240077. DOI
Corrias N., Gabbrielli T., Natale P. D., Consolino L., Cappelli F. Opt. Express . 2022;30(7):10217. PubMed
Didier P., et al. High-capacity free-space optical link in the midinfrared thermal atmospheric windows using unipolar quantum devices. Adv. Photonics . 2022;4(5):20240688. doi: 10.1117/1.ap.4.5.056004. DOI
Dely H., et al. High bitrate data transmission in the 8-14 µm atmospheric window using an external Stark-effect modulator with digital equalization. Opt. Express . 2023;31(5):7259. doi: 10.1364/oe.474209. PubMed DOI
Hinkov B., et al. A mid-infrared lab-on-a-chip for dynamic reaction monitoring. Nat. Commun. . 2022;13:4753. doi: 10.1038/s41467-022-32417-7. PubMed DOI PMC
Pilat F., et al. Beyond Karl Fischer titration: A monolithic quantum cascade sensor for monitoring residual water concentration in solvents. Lab Chip . 2023;23:1816. doi: 10.1039/d2lc00724j. PubMed DOI PMC
Graydon O. Quantum cascade laser turns thirty. Nat. Photon. . 2025;19:132–133. doi: 10.1038/s41566-025-01623-2. DOI
Schwarz B., et al. Watt-level continuous-wave emission from a bifunctional quantum cascade laser/detector. ACS Photonics . 2017;4(5):1225. doi: 10.1021/acsphotonics.7b00133. PubMed DOI PMC
Lu Q., Bai Y., Bandyopadhyay N., Slivken S., Razeghi M. 2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers. Appl. Phys. Lett. . 2011;98:18. doi: 10.1063/1.3588412. DOI
Hinkov B., Bismuto A., Bonetti Y., Beck M., Blaser S., Faist J. Singlemode quantum cascade lasers with power dissipation below 1 W. Electron. Lett. . 2012;48(11):646. doi: 10.1049/el.2012.1204. DOI
Marschick G., et al. High-responsivity operation of quantum cascade detectors at 9 µm. Opt. Express . 2022;30(22):40188. doi: 10.1364/oe.470615. PubMed DOI
Delga A. Mid-infrared Optoelectronics . Cambridge: Woodhead Publishing; 2020. pp. 337–377.
Hinkov B., Fuchs F., Bronner W., Köhler K., Wagner J. Current- and temperature-induced beam steering in 7.8-µm emitting quantum-cascade lasers. IEEE J. Quant. Electron. . 2008;44(11):1124. doi: 10.1109/jqe.2008.2003499. DOI
Heck M. J. Highly integrated optical phased arrays: Photonic integrated circuits for optical beam shaping and beam steering. Nanophotonics . 2017;6(1):93. doi: 10.1515/nanoph-2015-0152. DOI
Guo W., et al. Two-dimensional optical beam steering with InP-based photonic integrated circuits. IEEE J. Sel. Top. Quant. Electron. . 2013;19(4):6100212. doi: 10.1109/jstqe.2013.2238218. DOI
Jung S., et al. Homogeneous photonic integration of mid-infrared quantum cascade lasers with low-loss passive waveguides on an InP platform. Optica . 2019;6(8):1023. doi: 10.1364/optica.6.001023. DOI
Wang R., Täschler P., Wang Z., Gini E., Beck M., Faist J. Monolithic integration of mid-infrared quantum cascade lasers and frequency combs with passive waveguides. ACS Photonics . 2022;9(2):426–431. doi: 10.1021/acsphotonics.1c01767. DOI
Burghart D., et al. Multi-color photonic integrated circuits based on homogeneous integration of quantum cascade lasers. Nat. Commun. . 2025;16:3563. doi: 10.1038/s41467-025-58905-0. PubMed DOI PMC
Zafar H., Pereira M. F. An efficient and compact mid-infrared polarization splitter and rotator based on a bifurcated tapered-bent waveguide. Sci. Rep. . 2025;15:5160. doi: 10.1038/s41598-025-89420-3. PubMed DOI PMC
Chatzianagnostou E., et al. Scaling the sensitivity of integrated plasmo-photonic interferometric sensors. ACS Photonics . 2019;6(7):1664. doi: 10.1021/acsphotonics.8b01683. DOI
Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. . 2008;108(2):462. doi: 10.1021/cr068107d. PubMed DOI
Slavík R., Homola J. Ultrahigh resolution long range surface plasmon-based sensor. Sens. Actuators B: Chem. . 2007;123(1):10. doi: 10.1016/j.snb.2006.08.020. DOI
Schwarz B., et al. Monolithically integrated mid-infrared lab-on-a-chip using plasmonics and quantum cascade structures. Nat. Commun. . 2014;5:4085. doi: 10.1038/ncomms5085. PubMed DOI PMC
David M., et al. Octave-spanning low-loss mid-IR waveguides based on semiconductor-loaded plasmonics. Opt. Express . 2021;29(26):43567. doi: 10.1364/oe.443966. DOI
David M., et al. Advanced mid-infrared plasmonic waveguides for on-chip integrated photonics. Photonics Res. . 2023;11(10):1694. doi: 10.1364/prj.495729. DOI
Krasavin A., Zayats A. Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides. Appl. Phys. Lett. . 2007;90:21. doi: 10.1063/1.2740485. DOI
Zhong Y., Malagari S. D., Hamilton T., Wasserman D. Review of mid-infrared plasmonic materials. J. Nanophotonics . 2015;9(1):093791. doi: 10.1117/1.jnp.9.093791. DOI
Schädle T., Mizaikoff B. Mid-infrared waveguides: a perspective. Appl. Spectrosc. . 2016;70(10):1625. doi: 10.1177/0003702816659668. PubMed DOI
David M., et al. Structure and mid-infrared optical properties of spin-coated polyethylene films developed for integrated photonics applications. Opt. Mater. Express . 2022;12(6):2168. doi: 10.1364/ome.458667. DOI
Hinkov B., David M., Strasser G., Schwarz B., Lendl B. On-chip liquid sensing using mid-IR plasmonics. Front. Photonics . 2023;4:1213434. doi: 10.3389/fphot.2023.1213434. DOI
Cin S. D., et al. An interband cascade laser based heterodyne detector with integrated optical amplifier and local oscillator. Nanophotonics . 2024;13(10):1759. doi: 10.1515/nanoph-2023-0762. PubMed DOI PMC
David M., et al. Surface protection and activation of mid-IR plasmonic waveguides for spectroscopy of liquids. J. Lightwave Technol. . 2023 doi: 10.1109/jlt.2023.3321034. in press . DOI
Gsodam X. . Technische Universität Wien; 2023. Mid-infrared plasmonic waveguide design and characterization for a chip-scale heterodyne receiver. Diploma Thesis.
David M. Plasmonics for mid-infrared photonic integrated circuits. Technische Universität Wien; 2023. Dissertation.
Markey L., Vernoux C., Hammani K., Arocas J., Weeber J.-C., Dereux A. A long-range plasmonic optical waveguide corner mirror chip. Micro Nano Eng. . 2020;7:100049. doi: 10.1016/j.mne.2020.100049. DOI
Berini P., Charbonneau R., Lahoud N., Mattiussi G. Characterization of long-range surface-plasmon-polariton waveguides. J. Appl. Phys. . 2005;98:4. doi: 10.1063/1.2008385. PubMed DOI
Orieux A., Diamanti E. Recent advances on integrated quantum communications. J. Opt. . 2016;18(8):20240688. doi: 10.1088/2040-8978/18/8/083002. DOI
Chen C., Wang J. Optical biosensors: An exhaustive and comprehensive review. Analyst . 2020;145:1605. doi: 10.1039/c9an01998g. PubMed DOI