Beyond Karl Fischer titration: a monolithic quantum cascade sensor for monitoring residual water concentration in solvents

. 2023 Mar 28 ; 23 (7) : 1816-1824. [epub] 20230328

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36800171

Quality control of liquids is an important part of analytical chemistry. The gold standard for measuring residual water in organic solvents and pharmaceutical applications is Karl Fischer titration. It has a high sensitivity, selectivity and accuracy. The downsides are a time-consuming offline analysis, together with the need for toxic reagents producing waste, and it suffers from poor inter-laboratory reproducibility. In this work, we present a high-performance lab-on-a-chip sensor exploiting mid-IR spectroscopy for liquid sensing. It is operating at 6.1 μm wavelength and is suitable for robust and flexible real-time in situ analysis of the residual water concentration in isopropyl alcohol. This is demonstrated in two experiments. A custom-made 60 μL flow cell is employed to measure only minute amounts of analyte in an inline configuration. In a second approach, the whole sensor is immersed into the analyte to demonstrate sensitive and rapid in situ operation on the millisecond time scale. This is confirmed by the ability for time resolved single water-droplet monitoring, while they are mixed into the liquid sample. We obtain a limit of detection between 120 ppm and 150 ppm with a concentration coverage spanning three orders of magnitude from 1.2 × 10-2%vol to 25%vol for the flow cell and 1.5 × 10-2%vol to 19%vol in the in situ configuration, respectively.

Zobrazit více v PubMed

Scholz E., Karl Fischer Titration: Determination of Water, Springer, Berlin Heidelberg, 1984

ASTM D6304–16 (Standard Test Method for Determination of Water in Petroleum Products, Lubricating Oils, and Additives by Coulometric Karl Fischer Titration); AOCS Official Method Ea 8–58, Reapproved 2009. Moisture, Karl Fischer Volumetric Method

Rohrs B. R., Thamann T. J., Gao P., Stelzer D. J., Bergren M. S. and Chao R. S., Dissolution Affect By Moisture, 1999 PubMed

Garcia-Perez M. Wang S. Shen J. Rhodes M. Lee W. J. Li C. Z. Energy Fuels. 2008;22:2022–2032. doi: 10.1021/ef7007634. DOI

Ricchiuti G. Dabrowska A. Pinto D. Ramer G. Lendl B. Anal. Chem. 2022;94:16353–16360. doi: 10.1021/acs.analchem.2c03303. PubMed DOI PMC

Margolis S. A. Anal. Chem. 1998;70:4264–4270. doi: 10.1021/ac980149h. DOI

Mettler Toledo, Good Titration Practice in Karl Fischer Titration, https://www.mt.com/dam/mt_ext_files/Editorial/LandingPage/8/DACH_PRO_Image/51725145a_v04_11gtpkftitrhbcomplet.pdf

Kumar P. Ghosh A. Jose D. A. ChemistrySelect. 2021;6:820–842. doi: 10.1002/slct.202003920. DOI

Jung H. S. Verwilst P. Kim W. Y. Kim J. S. Chem. Soc. Rev. 2016;45:1242–1256. doi: 10.1039/C5CS00494B. PubMed DOI

Yang D. Wu X. T. Cao X. J. Zhao B. X. Dyes Pigm. 2019;170:107558. doi: 10.1016/j.dyepig.2019.107558. DOI

Ding L. Zhang Z. Li X. Su J. Chem. Commun. 2013;49:7319–7321. doi: 10.1039/C3CC43608J. PubMed DOI

Tsamis E. D. Avaritsiotis J. N. Sens. Actuators, A. 2005;118:202–211. doi: 10.1016/j.sna.2004.07.008. DOI

Fabian H. and Mantele W., Infrared Spectroscopy of Proteins, in Handbook of Vibrational Spectroscopy, John Wiley & Sons, Ltd, 2006, 10.1002/0470027320 DOI

Barth A. Biochim. Biophys. Acta. 2007;1767:1073–1101. doi: 10.1016/j.bbabio.2007.06.004. PubMed DOI

Andrew Chan K. L. Kazarian S. G. Chem. Soc. Rev. 2016;45:1850–1864. doi: 10.1039/C5CS00515A. PubMed DOI

Alcaraz M. R. Schwaighofer A. Goicoechea H. Lendl B. Spectrochim. Acta, Part A. 2017;185:304–309. doi: 10.1016/j.saa.2017.05.005. PubMed DOI

Guler G. Vorob'ev M. M. Vogel V. Mantele W. Spectrochim. Acta, Part A. 2016;161:8–18. doi: 10.1016/j.saa.2016.02.013. PubMed DOI

Bibikova O. Haas J. Lopez-Lorente A. I. Popov A. Kinnunen M. Ryabchikov Y. Kabashin A. Meglinski I. Mizaikoff B. Anal. Chim. Acta. 2017;990:141–149. doi: 10.1016/j.aca.2017.07.045. PubMed DOI

Chen J. Z. Liu Z. Gmachl C. F. Sivco D. L. Opt. Express. 2005;13:5953. doi: 10.1364/OPEX.13.005953. PubMed DOI

Zhou X. Yu Q. Peng W. Opt. Laser Technol. 2019;120:105686. doi: 10.1016/j.optlastec.2019.105686. DOI

Schadle T. Mizaikoff B. Appl. Spectrosc. 2016;70:1625–1638. doi: 10.1177/0003702816659668. PubMed DOI

Baumgartner B. Hayden J. Schwaighofer A. Lendl B. ACS Appl. Nano Mater. 2018;1:7083–7091. doi: 10.1021/acsanm.8b01876. DOI

Wacht D. David M. Hinkov B. Detz H. Schwaighofer A. Baumgartner B. Lendl B. Appl. Spectrosc. 2021:1–9. PubMed

Teuber A. Mizaikoff B. Appl. Sci. 2022;12:1–9.

Amrania H. Antonacci G. Chan C.-H. Drummond L. Otto W. R. Wright N. A. Phillips C. Opt. Express. 2012;20:7290. doi: 10.1364/OE.20.007290. PubMed DOI

Amrania H. Woodley-Barker L. Goddard K. Rosales B. Shousha S. Thomas G. McFarlane T. Sroya M. Wilhelm-Benartzi C. Cocks K. Coombes R. C. Phillips C. C. Convergent Sci. Phys. Oncol. 2018;4:025001. doi: 10.1088/2057-1739/aaabc3. DOI

Pleitez M. von Lilienfeld-Toal H. Mantele W. Spectrochim. Acta, Part A. 2012;85:61–65. doi: 10.1016/j.saa.2011.09.007. PubMed DOI

Liakat S. Bors K. A. Huang T.-Y. Michel A. P. M. Zanghi E. Gmachl C. F. Biomed. Opt. Express. 2013;4:1083–1090. doi: 10.1364/BOE.4.001083. PubMed DOI PMC

Isensee K. Kroger-lui N. Petrich W. Kroger-lui N. Analyst. 2018;143:5888–5911. doi: 10.1039/C8AN01306C. PubMed DOI

Schwaighofer A. Akhgar C. K. Lendl B. Spectrochim. Acta, Part A. 2021;253:119563. doi: 10.1016/j.saa.2021.119563. PubMed DOI

Dabrowska A. David M. Freitag S. Andrews A. M. Strasser G. Hinkov B. Schwaighofer A. Lendl B. Sens. Actuators, B. 2022;350:130873. doi: 10.1016/j.snb.2021.130873. DOI

Faist J. Capasso F. Sivco D. L. Sirtori C. Hutchinson A. L. Cho A. Y. Science. 1994;264:553–556. doi: 10.1126/science.264.5158.553. PubMed DOI

Hugi A. Terazzi R. Bonetti Y. Wittmann A. Fischer M. Beck M. Faist J. Gini E. Appl. Phys. Lett. 2009;95:128–130. doi: 10.1063/1.3193539. DOI

Bai Y. Bandyopadhyay N. Tsao S. Slivken S. Razeghi M. Appl. Phys. Lett. 2011;98:181102. doi: 10.1063/1.3586773. DOI

Schwarz B. Wang C. A. Missaggia L. Mansuripur T. S. Chevalier P. Connors M. K. McNulty D. Cederberg J. Strasser G. Capasso F. ACS Photonics. 2017;4:1225–1231. doi: 10.1021/acsphotonics.7b00133. PubMed DOI PMC

Carras M. Garcia M. Marcadet X. Parillaud O. De Rossi A. Bansropun S. Appl. Phys. Lett. 2008;93:5–7. doi: 10.1063/1.2950086. DOI

Ma Y. Lewicki R. Razeghi M. Tittel F. K. Opt. Express. 2013;21:1008–1019. doi: 10.1364/OE.21.001008. PubMed DOI

Suess M. J. Peretti R. Liang Y. Wolf J. M. Bonzon C. Hinkov B. Nida S. Jouy P. Metaferia W. Lourdudoss S. Beck M. Faist J. Photonics. 2016;3:1–18. PubMed

Wysocki G. Curl R. F. Tittel F. K. Maulini R. Bulliard J. M. Faist J. Appl. Phys. B: Lasers Opt. 2005;81:769–777. doi: 10.1007/s00340-005-1965-4. DOI

Hugi A. Villares G. Blaser S. Liu H. C. Faist J. Nature. 2012;492:229–233. doi: 10.1038/nature11620. PubMed DOI

Vitiello M. S. Scalari G. Williams B. De Natale P. Opt. Express. 2015;23:5167. doi: 10.1364/OE.23.005167. PubMed DOI

Hofstetter D. Beck M. Faist J. Appl. Phys. Lett. 2002;81:2683–2685. doi: 10.1063/1.1512954. DOI

Delga A., Quantum cascade detectors: A review, Elsevier Ltd, 2020, pp. 337–377

Jollivet A. Hinkov B. Pirotta S. Hoang H. Derelle S. Jaeck J. Tchernycheva M. Colombelli R. Bousseksou A. Hugues M. Biavan N. L. Tamayo-Arriola J. Bajo M. M. Rigutti L. Hierro A. Strasser G. Chauveau J. Julien F. H. Appl. Phys. Lett. 2018;113:251104. doi: 10.1063/1.5058120. DOI

Schwarz B. Reininger P. Detz H. Zederbauer T. Andrews A. M. Kalchmair S. Schrenk W. Baumgartner O. Kosina H. Strasser G. Appl. Phys. Lett. 2012;101:191109. doi: 10.1063/1.4767128. DOI

Schwarz B. Reininger P. Ristanić D. Detz H. Andrews A. M. Schrenk W. Strasser G. Nat. Commun. 2014;5:1–7. PubMed PMC

David M. Dabrowska A. Sistani M. Doganlar I. Hinkelmann E. Detz H. Weber W. Lendl B. Strasser G. Hinkov B. Opt. Express. 2021;29:43567–43579. doi: 10.1364/OE.443966. DOI

Hinkov B. Pilat F. Lux L. Souza P. L. David M. Schwaighofer A. Ristani D. Schwarz B. Detz H. Andrews A. M. Lendl B. Strasser G. Nat. Commun. 2022;13:4753. doi: 10.1038/s41467-022-32417-7. PubMed DOI PMC

Hinkov B. Fuchs F. Bronner W. Kohler K. Wagner J. IEEE J. Quantum Electron. 2008;44:1124–1128.

Schmidt W., in Absorptionsspektrophotometrie, John Wiley & Sons, Ltd, 2000, ch. 4, pp. 123–190

Griffiths P. R. and DeHaseth J. A., Fourier Transform Infrared Spectrometry, John Wiley and Sons, Ltd, Hoboken, NJ, 2007

Ozcelik D. Parks J. W. Wall T. A. Stott M. A. Cai H. Parks J. W. Hawkins A. R. Schmidt H. Proc. Natl. Acad. Sci. U. S. A. 2015;112:12933–12937. doi: 10.1073/pnas.1511921112. PubMed DOI PMC

Yan R. Cui E. Zhao S. Zhou F. Wang D. Lei C. Opt. Express. 2022;30:16031. doi: 10.1364/OE.458280. PubMed DOI

Diehl L. Lee B. G. Behroozi P. Loncar M. Belkin M. Capasso F. Aellen T. Hofstetter D. Beck M. Faist J. Opt. Express. 2006;14:11660–11667. doi: 10.1364/OE.14.011660. PubMed DOI

David M. Disnan D. Lardschneider A. Wacht D. Hoang H. T. Ramer G. Detz H. Lendl B. Schmid U. Strasser G. Hinkov B. Opt. Mater. Express. 2022;12:2168. doi: 10.1364/OME.458667. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...