Beyond Karl Fischer titration: a monolithic quantum cascade sensor for monitoring residual water concentration in solvents
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
36800171
PubMed Central
PMC10045895
DOI
10.1039/d2lc00724j
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Quality control of liquids is an important part of analytical chemistry. The gold standard for measuring residual water in organic solvents and pharmaceutical applications is Karl Fischer titration. It has a high sensitivity, selectivity and accuracy. The downsides are a time-consuming offline analysis, together with the need for toxic reagents producing waste, and it suffers from poor inter-laboratory reproducibility. In this work, we present a high-performance lab-on-a-chip sensor exploiting mid-IR spectroscopy for liquid sensing. It is operating at 6.1 μm wavelength and is suitable for robust and flexible real-time in situ analysis of the residual water concentration in isopropyl alcohol. This is demonstrated in two experiments. A custom-made 60 μL flow cell is employed to measure only minute amounts of analyte in an inline configuration. In a second approach, the whole sensor is immersed into the analyte to demonstrate sensitive and rapid in situ operation on the millisecond time scale. This is confirmed by the ability for time resolved single water-droplet monitoring, while they are mixed into the liquid sample. We obtain a limit of detection between 120 ppm and 150 ppm with a concentration coverage spanning three orders of magnitude from 1.2 × 10-2%vol to 25%vol for the flow cell and 1.5 × 10-2%vol to 19%vol in the in situ configuration, respectively.
Central European Institute of Technology Brno University of Technology 621 00 Brno Czech Republic
Institute of Chemical Technologies and Analytics TU Wien 1060 Vienna Austria
Zobrazit více v PubMed
Scholz E., Karl Fischer Titration: Determination of Water, Springer, Berlin Heidelberg, 1984
ASTM D6304–16 (Standard Test Method for Determination of Water in Petroleum Products, Lubricating Oils, and Additives by Coulometric Karl Fischer Titration); AOCS Official Method Ea 8–58, Reapproved 2009. Moisture, Karl Fischer Volumetric Method
Rohrs B. R., Thamann T. J., Gao P., Stelzer D. J., Bergren M. S. and Chao R. S., Dissolution Affect By Moisture, 1999 PubMed
Garcia-Perez M. Wang S. Shen J. Rhodes M. Lee W. J. Li C. Z. Energy Fuels. 2008;22:2022–2032. doi: 10.1021/ef7007634. DOI
Ricchiuti G. Dabrowska A. Pinto D. Ramer G. Lendl B. Anal. Chem. 2022;94:16353–16360. doi: 10.1021/acs.analchem.2c03303. PubMed DOI PMC
Margolis S. A. Anal. Chem. 1998;70:4264–4270. doi: 10.1021/ac980149h. DOI
Mettler Toledo, Good Titration Practice in Karl Fischer Titration, https://www.mt.com/dam/mt_ext_files/Editorial/LandingPage/8/DACH_PRO_Image/51725145a_v04_11gtpkftitrhbcomplet.pdf
Kumar P. Ghosh A. Jose D. A. ChemistrySelect. 2021;6:820–842. doi: 10.1002/slct.202003920. DOI
Jung H. S. Verwilst P. Kim W. Y. Kim J. S. Chem. Soc. Rev. 2016;45:1242–1256. doi: 10.1039/C5CS00494B. PubMed DOI
Yang D. Wu X. T. Cao X. J. Zhao B. X. Dyes Pigm. 2019;170:107558. doi: 10.1016/j.dyepig.2019.107558. DOI
Ding L. Zhang Z. Li X. Su J. Chem. Commun. 2013;49:7319–7321. doi: 10.1039/C3CC43608J. PubMed DOI
Tsamis E. D. Avaritsiotis J. N. Sens. Actuators, A. 2005;118:202–211. doi: 10.1016/j.sna.2004.07.008. DOI
Fabian H. and Mantele W., Infrared Spectroscopy of Proteins, in Handbook of Vibrational Spectroscopy, John Wiley & Sons, Ltd, 2006, 10.1002/0470027320 DOI
Barth A. Biochim. Biophys. Acta. 2007;1767:1073–1101. doi: 10.1016/j.bbabio.2007.06.004. PubMed DOI
Andrew Chan K. L. Kazarian S. G. Chem. Soc. Rev. 2016;45:1850–1864. doi: 10.1039/C5CS00515A. PubMed DOI
Alcaraz M. R. Schwaighofer A. Goicoechea H. Lendl B. Spectrochim. Acta, Part A. 2017;185:304–309. doi: 10.1016/j.saa.2017.05.005. PubMed DOI
Guler G. Vorob'ev M. M. Vogel V. Mantele W. Spectrochim. Acta, Part A. 2016;161:8–18. doi: 10.1016/j.saa.2016.02.013. PubMed DOI
Bibikova O. Haas J. Lopez-Lorente A. I. Popov A. Kinnunen M. Ryabchikov Y. Kabashin A. Meglinski I. Mizaikoff B. Anal. Chim. Acta. 2017;990:141–149. doi: 10.1016/j.aca.2017.07.045. PubMed DOI
Chen J. Z. Liu Z. Gmachl C. F. Sivco D. L. Opt. Express. 2005;13:5953. doi: 10.1364/OPEX.13.005953. PubMed DOI
Zhou X. Yu Q. Peng W. Opt. Laser Technol. 2019;120:105686. doi: 10.1016/j.optlastec.2019.105686. DOI
Schadle T. Mizaikoff B. Appl. Spectrosc. 2016;70:1625–1638. doi: 10.1177/0003702816659668. PubMed DOI
Baumgartner B. Hayden J. Schwaighofer A. Lendl B. ACS Appl. Nano Mater. 2018;1:7083–7091. doi: 10.1021/acsanm.8b01876. DOI
Wacht D. David M. Hinkov B. Detz H. Schwaighofer A. Baumgartner B. Lendl B. Appl. Spectrosc. 2021:1–9. PubMed
Teuber A. Mizaikoff B. Appl. Sci. 2022;12:1–9.
Amrania H. Antonacci G. Chan C.-H. Drummond L. Otto W. R. Wright N. A. Phillips C. Opt. Express. 2012;20:7290. doi: 10.1364/OE.20.007290. PubMed DOI
Amrania H. Woodley-Barker L. Goddard K. Rosales B. Shousha S. Thomas G. McFarlane T. Sroya M. Wilhelm-Benartzi C. Cocks K. Coombes R. C. Phillips C. C. Convergent Sci. Phys. Oncol. 2018;4:025001. doi: 10.1088/2057-1739/aaabc3. DOI
Pleitez M. von Lilienfeld-Toal H. Mantele W. Spectrochim. Acta, Part A. 2012;85:61–65. doi: 10.1016/j.saa.2011.09.007. PubMed DOI
Liakat S. Bors K. A. Huang T.-Y. Michel A. P. M. Zanghi E. Gmachl C. F. Biomed. Opt. Express. 2013;4:1083–1090. doi: 10.1364/BOE.4.001083. PubMed DOI PMC
Isensee K. Kroger-lui N. Petrich W. Kroger-lui N. Analyst. 2018;143:5888–5911. doi: 10.1039/C8AN01306C. PubMed DOI
Schwaighofer A. Akhgar C. K. Lendl B. Spectrochim. Acta, Part A. 2021;253:119563. doi: 10.1016/j.saa.2021.119563. PubMed DOI
Dabrowska A. David M. Freitag S. Andrews A. M. Strasser G. Hinkov B. Schwaighofer A. Lendl B. Sens. Actuators, B. 2022;350:130873. doi: 10.1016/j.snb.2021.130873. DOI
Faist J. Capasso F. Sivco D. L. Sirtori C. Hutchinson A. L. Cho A. Y. Science. 1994;264:553–556. doi: 10.1126/science.264.5158.553. PubMed DOI
Hugi A. Terazzi R. Bonetti Y. Wittmann A. Fischer M. Beck M. Faist J. Gini E. Appl. Phys. Lett. 2009;95:128–130. doi: 10.1063/1.3193539. DOI
Bai Y. Bandyopadhyay N. Tsao S. Slivken S. Razeghi M. Appl. Phys. Lett. 2011;98:181102. doi: 10.1063/1.3586773. DOI
Schwarz B. Wang C. A. Missaggia L. Mansuripur T. S. Chevalier P. Connors M. K. McNulty D. Cederberg J. Strasser G. Capasso F. ACS Photonics. 2017;4:1225–1231. doi: 10.1021/acsphotonics.7b00133. PubMed DOI PMC
Carras M. Garcia M. Marcadet X. Parillaud O. De Rossi A. Bansropun S. Appl. Phys. Lett. 2008;93:5–7. doi: 10.1063/1.2950086. DOI
Ma Y. Lewicki R. Razeghi M. Tittel F. K. Opt. Express. 2013;21:1008–1019. doi: 10.1364/OE.21.001008. PubMed DOI
Suess M. J. Peretti R. Liang Y. Wolf J. M. Bonzon C. Hinkov B. Nida S. Jouy P. Metaferia W. Lourdudoss S. Beck M. Faist J. Photonics. 2016;3:1–18. PubMed
Wysocki G. Curl R. F. Tittel F. K. Maulini R. Bulliard J. M. Faist J. Appl. Phys. B: Lasers Opt. 2005;81:769–777. doi: 10.1007/s00340-005-1965-4. DOI
Hugi A. Villares G. Blaser S. Liu H. C. Faist J. Nature. 2012;492:229–233. doi: 10.1038/nature11620. PubMed DOI
Vitiello M. S. Scalari G. Williams B. De Natale P. Opt. Express. 2015;23:5167. doi: 10.1364/OE.23.005167. PubMed DOI
Hofstetter D. Beck M. Faist J. Appl. Phys. Lett. 2002;81:2683–2685. doi: 10.1063/1.1512954. DOI
Delga A., Quantum cascade detectors: A review, Elsevier Ltd, 2020, pp. 337–377
Jollivet A. Hinkov B. Pirotta S. Hoang H. Derelle S. Jaeck J. Tchernycheva M. Colombelli R. Bousseksou A. Hugues M. Biavan N. L. Tamayo-Arriola J. Bajo M. M. Rigutti L. Hierro A. Strasser G. Chauveau J. Julien F. H. Appl. Phys. Lett. 2018;113:251104. doi: 10.1063/1.5058120. DOI
Schwarz B. Reininger P. Detz H. Zederbauer T. Andrews A. M. Kalchmair S. Schrenk W. Baumgartner O. Kosina H. Strasser G. Appl. Phys. Lett. 2012;101:191109. doi: 10.1063/1.4767128. DOI
Schwarz B. Reininger P. Ristanić D. Detz H. Andrews A. M. Schrenk W. Strasser G. Nat. Commun. 2014;5:1–7. PubMed PMC
David M. Dabrowska A. Sistani M. Doganlar I. Hinkelmann E. Detz H. Weber W. Lendl B. Strasser G. Hinkov B. Opt. Express. 2021;29:43567–43579. doi: 10.1364/OE.443966. DOI
Hinkov B. Pilat F. Lux L. Souza P. L. David M. Schwaighofer A. Ristani D. Schwarz B. Detz H. Andrews A. M. Lendl B. Strasser G. Nat. Commun. 2022;13:4753. doi: 10.1038/s41467-022-32417-7. PubMed DOI PMC
Hinkov B. Fuchs F. Bronner W. Kohler K. Wagner J. IEEE J. Quantum Electron. 2008;44:1124–1128.
Schmidt W., in Absorptionsspektrophotometrie, John Wiley & Sons, Ltd, 2000, ch. 4, pp. 123–190
Griffiths P. R. and DeHaseth J. A., Fourier Transform Infrared Spectrometry, John Wiley and Sons, Ltd, Hoboken, NJ, 2007
Ozcelik D. Parks J. W. Wall T. A. Stott M. A. Cai H. Parks J. W. Hawkins A. R. Schmidt H. Proc. Natl. Acad. Sci. U. S. A. 2015;112:12933–12937. doi: 10.1073/pnas.1511921112. PubMed DOI PMC
Yan R. Cui E. Zhao S. Zhou F. Wang D. Lei C. Opt. Express. 2022;30:16031. doi: 10.1364/OE.458280. PubMed DOI
Diehl L. Lee B. G. Behroozi P. Loncar M. Belkin M. Capasso F. Aellen T. Hofstetter D. Beck M. Faist J. Opt. Express. 2006;14:11660–11667. doi: 10.1364/OE.14.011660. PubMed DOI
David M. Disnan D. Lardschneider A. Wacht D. Hoang H. T. Ramer G. Detz H. Lendl B. Schmid U. Strasser G. Hinkov B. Opt. Mater. Express. 2022;12:2168. doi: 10.1364/OME.458667. DOI