Single-Atom Engineering in Room-Temperature Sodium-Sulfur Batteries
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41163944
PubMed Central
PMC12560075
DOI
10.1021/accountsmr.5c00172
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Zobrazit více v PubMed
Li R., Luo L., Ma X., Wu W., Wang M., Zeng J.. Single atoms supported on metal oxides for energy catalysis. J. Mater. Chem. A. 2022;10(11):5717–5742. doi: 10.1039/D1TA08016D. DOI
Urso M., Ju X., Nittoor-Veedu R., Lee H., Zaoralova D., Otyepka M., Pumera M.. Single Atom Engineering for Electrocatalysis: Fundamentals and Applications. ACS Catal. 2025;15(13):11617–11663. doi: 10.1021/acscatal.4c08027. PubMed DOI PMC
Zhang X., Shi H., Xu B.-Q.. Catalysis by Gold: Isolated Surface Au3+ Ions are Active Sites for Selective Hydrogenation of 1,3-Butadiene over Au/ZrO2 Catalysts. Angew. Chem., Int. Ed. 2005;44(43):7132–7135. doi: 10.1002/anie.200502101. PubMed DOI
Yang X.-F., Wang A., Qiao B., Li J., Liu J., Zhang T.. Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Acc. Chem. Res. 2013;46(8):1740–1748. doi: 10.1021/ar300361m. PubMed DOI
Khan A., Naqvi I. H., Bhargava C., Lin C.-P., Boles S. T., Kong L., Pecht M.. Safety and reliability analysis of lithium-ion batteries with real-time health monitoring. Renew. Sustain. Energy Rev. 2025;212:115408. doi: 10.1016/j.rser.2025.115408. DOI
Yao A., Benson S. M., Chueh W. C.. Critically assessing sodium-ion technology roadmaps and scenarios for techno-economic competitiveness against lithium-ion batteries. Nat. Energy. 2025;10(3):404–416. doi: 10.1038/s41560-024-01701-9. DOI
Phogat P., Dey S., Wan M.. Comprehensive review of Sodium-Ion Batteries: Principles, Materials, Performance, Challenges, and future Perspectives. Mater. Sci. Eng., B. 2025;312:117870. doi: 10.1016/j.mseb.2024.117870. DOI
Salama M., Rosy, Attias R., Yemini R., Gofer Y., Aurbach D., Noked M.. Metal-Sulfur Batteries: Overview and Research Methods. ACS Energy Lett. 2019;4(2):436–446. doi: 10.1021/acsenergylett.8b02212. DOI
Xu X., Zhou D., Qin X., Lin K., Kang F., Li B., Shanmukaraj D., Rojo T., Armand M., Wang G.. A room-temperature sodium-sulfur battery with high capacity and stable cycling performance. Nat. Commun. 2018;9(1):3870. doi: 10.1038/s41467-018-06443-3. PubMed DOI PMC
Wang Y., Chai J., Li Y., Li Q., Du J., Chen Z., Wang L., Tang B.. Strategies to mitigate the shuttle effect in room temperature sodium-sulfur batteries: improving cathode materials. Dalton Trans. 2023;52(9):2548–2560. doi: 10.1039/D3DT00008G. PubMed DOI
Syali M. S., Kumar D., Mishra K., Kanchan D. K.. Recent advances in electrolytes for room-temperature sodium-sulfur batteries: A review. Energy Storage Mater. 2020;31:352–372. doi: 10.1016/j.ensm.2020.06.023. DOI
Soni C. B., Bera S., Sungjemmenla, Chandra M., Vineeth S. K., Kumar S., Kumar H., Kumar V.. Altering Na-ion solvation to regulate dendrite growth for a reversible and stable room-temperature sodium-sulfur battery. J. Mater. Chem. A. 2024;12(33):21853–21863. doi: 10.1039/D4TA03187C. DOI
Zhang B.-W., Li S., Yang H.-L., Liang X., Lai W.-H., Zhao S., Dong J., Chu S.-Q., Gu Q.-F., Liang J., Du Y., Xu X., Cao L., Wang Y.-X., Pan F., Chou S.-L., Liu H.-K., Dou S.-X.. Atomically dispersed S-Fe-N4 for fast kinetics sodium-sulfur batteries via a dual function mechanism. Cell Rep. Phys. Sci. 2021;2(8):100531. doi: 10.1016/j.xcrp.2021.100531. DOI
Ruan J., Lei Y.-J., Fan Y., Borras M. C., Luo Z., Yan Z., Johannessen B., Gu Q., Konstantinov K., Pang W. K., Sun W., Wang J.-Z., Liu H.-K., Lai W.-H., Wang Y.-X., Dou S.-X.. Linearly Interlinked Fe-Nx-Fe Single Atoms Catalyze High-Rate Sodium-Sulfur Batteries. Adv. Mater. 2024;36(21):2312207. doi: 10.1002/adma.202312207. PubMed DOI
Lai W.-H., Wang H., Zheng L., Jiang Q., Yan Z.-C., Wang L., Yoshikawa H., Matsumura D., Sun Q., Wang Y.-X., Gu Q., Wang J.-Z., Liu H.-K., Chou S.-L., Dou S.-X.. General Synthesis of Single-Atom Catalysts for Hydrogen Evolution Reactions and Room-Temperature Na-S Batteries. Angew. Chem., Int. Ed. 2020;59(49):22171–22178. doi: 10.1002/anie.202009400. PubMed DOI
Lei Y.-J., Lu X., Yoshikawa H., Matsumura D., Fan Y., Zhao L., Li J., Wang S., Gu Q., Liu H.-K., Dou S.-X., Devaraj S., Rojo T., Lai W.-H., Armand M., Wang Y.-X., Wang G.. Understanding the charge transfer effects of single atoms for boosting the performance of Na-S batteries. Nat. Commun. 2024;15(1):3325. doi: 10.1038/s41467-024-47628-3. PubMed DOI PMC
Li Z., Chen X., Yao G., Wei L., Chen Q., Luo Q., Zheng F., Wang H.. Strengthening d-p Orbital-Hybridization via Coordination Number Regulation of Manganese Single-Atom Catalysts Toward Fast Kinetic and Long-Life Sodium-Sulfur Batteries. Adv. Funct. Mater. 2024;34(34):2400859. doi: 10.1002/adfm.202400859. DOI
Wu G., Liu T., Lao Z., Cheng Y., Wang T., Mao J., Zhang H., Liu E., Shi C., Zhou G., He C., Hu W., Zhao N., Wu N., Chen B.. Optimizing s-p Orbital Overlap Between Sodium Polysulfides and Single-Atom Indium Catalyst for Efficient Sulfur Redox Reaction. Angew. Chem., Int. Ed. 2025;64(12):e202422208. doi: 10.1002/anie.202422208. PubMed DOI
Li N., Zhan Y., Wu H., Fan J., Jia J.. Synergistically boosting the anchoring effect and catalytic activity of MXenes as bifunctional electrocatalysts for sodium-sulfur batteries by single-atom catalyst engineering. Nanoscale. 2023;15(6):2747–2755. doi: 10.1039/D2NR05930D. PubMed DOI
Jayan R., Islam M. M.. Single-Atom Catalysts for Improved Cathode Performance in Na-S Batteries: A Density Functional Theory (DFT) Study. J. Phys. Chem. C. 2021;125(8):4458–4467. doi: 10.1021/acs.jpcc.1c00467. DOI
Xu W., Feng T., Xia J., Cao R., Wu Q.. Single-atom catalysts based on C2N for sulfur cathodes in Na-S batteries: a first-principles study. Phys. Chem. Chem. Phys. 2024;26(21):15657–15665. doi: 10.1039/D4CP00815D. PubMed DOI
Zhang P., Jiang L., Jiang X., Zhao X., Wu J.. Enhancement of sodium-sulfur battery’s performance through transition metal single-atom catalysts on β12 borophene substrate: First-principles calculations. J. Energy Storage. 2024;88:111528. doi: 10.1016/j.est.2024.111528. DOI
Zhang B.-W., Sheng T., Liu Y.-D., Wang Y.-X., Zhang L., Lai W.-H., Wang L., Yang J., Gu Q.-F., Chou S.-L., Liu H.-K., Dou S.-X.. Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries. Nat. Commun. 2018;9(1):4082. doi: 10.1038/s41467-018-06144-x. PubMed DOI PMC
Zheng F., Chen F., Li Z., Yao G., Dong S., Wei L., Chen Q., Wang C., Wang H.. Template-Sacrificing Synthesis of Asymmetrically Coordinated Zn Single-Atom Sites for High-Performance Sodium-Sulfur Batteries. Adv. Funct. Mater. 2025;35(2):2413084. doi: 10.1002/adfm.202413084. DOI