Single-Atom Engineering in Room-Temperature Sodium-Sulfur Batteries

. 2025 Oct 24 ; 6 (10) : 1172-1176. [epub] 20250902

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41163944

Zobrazit více v PubMed

Li R., Luo L., Ma X., Wu W., Wang M., Zeng J.. Single atoms supported on metal oxides for energy catalysis. J. Mater. Chem. A. 2022;10(11):5717–5742. doi: 10.1039/D1TA08016D. DOI

Urso M., Ju X., Nittoor-Veedu R., Lee H., Zaoralova D., Otyepka M., Pumera M.. Single Atom Engineering for Electrocatalysis: Fundamentals and Applications. ACS Catal. 2025;15(13):11617–11663. doi: 10.1021/acscatal.4c08027. PubMed DOI PMC

Zhang X., Shi H., Xu B.-Q.. Catalysis by Gold: Isolated Surface Au3+ Ions are Active Sites for Selective Hydrogenation of 1,3-Butadiene over Au/ZrO2 Catalysts. Angew. Chem., Int. Ed. 2005;44(43):7132–7135. doi: 10.1002/anie.200502101. PubMed DOI

Yang X.-F., Wang A., Qiao B., Li J., Liu J., Zhang T.. Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Acc. Chem. Res. 2013;46(8):1740–1748. doi: 10.1021/ar300361m. PubMed DOI

Khan A., Naqvi I. H., Bhargava C., Lin C.-P., Boles S. T., Kong L., Pecht M.. Safety and reliability analysis of lithium-ion batteries with real-time health monitoring. Renew. Sustain. Energy Rev. 2025;212:115408. doi: 10.1016/j.rser.2025.115408. DOI

Yao A., Benson S. M., Chueh W. C.. Critically assessing sodium-ion technology roadmaps and scenarios for techno-economic competitiveness against lithium-ion batteries. Nat. Energy. 2025;10(3):404–416. doi: 10.1038/s41560-024-01701-9. DOI

Phogat P., Dey S., Wan M.. Comprehensive review of Sodium-Ion Batteries: Principles, Materials, Performance, Challenges, and future Perspectives. Mater. Sci. Eng., B. 2025;312:117870. doi: 10.1016/j.mseb.2024.117870. DOI

Salama M., Rosy, Attias R., Yemini R., Gofer Y., Aurbach D., Noked M.. Metal-Sulfur Batteries: Overview and Research Methods. ACS Energy Lett. 2019;4(2):436–446. doi: 10.1021/acsenergylett.8b02212. DOI

Xu X., Zhou D., Qin X., Lin K., Kang F., Li B., Shanmukaraj D., Rojo T., Armand M., Wang G.. A room-temperature sodium-sulfur battery with high capacity and stable cycling performance. Nat. Commun. 2018;9(1):3870. doi: 10.1038/s41467-018-06443-3. PubMed DOI PMC

Wang Y., Chai J., Li Y., Li Q., Du J., Chen Z., Wang L., Tang B.. Strategies to mitigate the shuttle effect in room temperature sodium-sulfur batteries: improving cathode materials. Dalton Trans. 2023;52(9):2548–2560. doi: 10.1039/D3DT00008G. PubMed DOI

Syali M. S., Kumar D., Mishra K., Kanchan D. K.. Recent advances in electrolytes for room-temperature sodium-sulfur batteries: A review. Energy Storage Mater. 2020;31:352–372. doi: 10.1016/j.ensm.2020.06.023. DOI

Soni C. B., Bera S., Sungjemmenla, Chandra M., Vineeth S. K., Kumar S., Kumar H., Kumar V.. Altering Na-ion solvation to regulate dendrite growth for a reversible and stable room-temperature sodium-sulfur battery. J. Mater. Chem. A. 2024;12(33):21853–21863. doi: 10.1039/D4TA03187C. DOI

Zhang B.-W., Li S., Yang H.-L., Liang X., Lai W.-H., Zhao S., Dong J., Chu S.-Q., Gu Q.-F., Liang J., Du Y., Xu X., Cao L., Wang Y.-X., Pan F., Chou S.-L., Liu H.-K., Dou S.-X.. Atomically dispersed S-Fe-N4 for fast kinetics sodium-sulfur batteries via a dual function mechanism. Cell Rep. Phys. Sci. 2021;2(8):100531. doi: 10.1016/j.xcrp.2021.100531. DOI

Ruan J., Lei Y.-J., Fan Y., Borras M. C., Luo Z., Yan Z., Johannessen B., Gu Q., Konstantinov K., Pang W. K., Sun W., Wang J.-Z., Liu H.-K., Lai W.-H., Wang Y.-X., Dou S.-X.. Linearly Interlinked Fe-Nx-Fe Single Atoms Catalyze High-Rate Sodium-Sulfur Batteries. Adv. Mater. 2024;36(21):2312207. doi: 10.1002/adma.202312207. PubMed DOI

Lai W.-H., Wang H., Zheng L., Jiang Q., Yan Z.-C., Wang L., Yoshikawa H., Matsumura D., Sun Q., Wang Y.-X., Gu Q., Wang J.-Z., Liu H.-K., Chou S.-L., Dou S.-X.. General Synthesis of Single-Atom Catalysts for Hydrogen Evolution Reactions and Room-Temperature Na-S Batteries. Angew. Chem., Int. Ed. 2020;59(49):22171–22178. doi: 10.1002/anie.202009400. PubMed DOI

Lei Y.-J., Lu X., Yoshikawa H., Matsumura D., Fan Y., Zhao L., Li J., Wang S., Gu Q., Liu H.-K., Dou S.-X., Devaraj S., Rojo T., Lai W.-H., Armand M., Wang Y.-X., Wang G.. Understanding the charge transfer effects of single atoms for boosting the performance of Na-S batteries. Nat. Commun. 2024;15(1):3325. doi: 10.1038/s41467-024-47628-3. PubMed DOI PMC

Li Z., Chen X., Yao G., Wei L., Chen Q., Luo Q., Zheng F., Wang H.. Strengthening d-p Orbital-Hybridization via Coordination Number Regulation of Manganese Single-Atom Catalysts Toward Fast Kinetic and Long-Life Sodium-Sulfur Batteries. Adv. Funct. Mater. 2024;34(34):2400859. doi: 10.1002/adfm.202400859. DOI

Wu G., Liu T., Lao Z., Cheng Y., Wang T., Mao J., Zhang H., Liu E., Shi C., Zhou G., He C., Hu W., Zhao N., Wu N., Chen B.. Optimizing s-p Orbital Overlap Between Sodium Polysulfides and Single-Atom Indium Catalyst for Efficient Sulfur Redox Reaction. Angew. Chem., Int. Ed. 2025;64(12):e202422208. doi: 10.1002/anie.202422208. PubMed DOI

Li N., Zhan Y., Wu H., Fan J., Jia J.. Synergistically boosting the anchoring effect and catalytic activity of MXenes as bifunctional electrocatalysts for sodium-sulfur batteries by single-atom catalyst engineering. Nanoscale. 2023;15(6):2747–2755. doi: 10.1039/D2NR05930D. PubMed DOI

Jayan R., Islam M. M.. Single-Atom Catalysts for Improved Cathode Performance in Na-S Batteries: A Density Functional Theory (DFT) Study. J. Phys. Chem. C. 2021;125(8):4458–4467. doi: 10.1021/acs.jpcc.1c00467. DOI

Xu W., Feng T., Xia J., Cao R., Wu Q.. Single-atom catalysts based on C2N for sulfur cathodes in Na-S batteries: a first-principles study. Phys. Chem. Chem. Phys. 2024;26(21):15657–15665. doi: 10.1039/D4CP00815D. PubMed DOI

Zhang P., Jiang L., Jiang X., Zhao X., Wu J.. Enhancement of sodium-sulfur battery’s performance through transition metal single-atom catalysts on β12 borophene substrate: First-principles calculations. J. Energy Storage. 2024;88:111528. doi: 10.1016/j.est.2024.111528. DOI

Zhang B.-W., Sheng T., Liu Y.-D., Wang Y.-X., Zhang L., Lai W.-H., Wang L., Yang J., Gu Q.-F., Chou S.-L., Liu H.-K., Dou S.-X.. Atomic cobalt as an efficient electrocatalyst in sulfur cathodes for superior room-temperature sodium-sulfur batteries. Nat. Commun. 2018;9(1):4082. doi: 10.1038/s41467-018-06144-x. PubMed DOI PMC

Zheng F., Chen F., Li Z., Yao G., Dong S., Wei L., Chen Q., Wang C., Wang H.. Template-Sacrificing Synthesis of Asymmetrically Coordinated Zn Single-Atom Sites for High-Performance Sodium-Sulfur Batteries. Adv. Funct. Mater. 2025;35(2):2413084. doi: 10.1002/adfm.202413084. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...