Efficient pathogen screening in honey bees: Application of FTA® cards for DNA storage and PCR analysis

. 2025 ; 20 (10) : e0334066. [epub] 20251030

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41166296

Screening honey bee pathogens is crucial for early infection detection, which helps prevent pathogen transmission. The most widely used method for pathogen detection in honey bees is polymerase chain reaction (PCR). FTA® cards (Qiagen) were compared with DNA-isolation kit DNeasy Plant Mini kit (Qiagen) for the detection of selected pathogens in honey bee samples collected from colonies in the Czech Republic in autumn and spring. FTA® cards provide highly accurate results for detecting N. ceranae with a sensitivity of 97.2% and a specificity of 100%. Thus, FTA® cards represent a reliable and cost-effective alternative to traditional methods for N. ceranae detection. Seasonal variation in pathogen prevalence was also assessed using FTA® cards, revealing significant differences between autumn and spring. In total 85 samples were analysed for main bee pathogens (N. ceranae, Nosema apis, Lotmaria passim, Crithidia mellificae, and Serratia marcescens). Greater diversity pathogen occurence was observed in autumn, with 32% of colonies showing no detectable levels of the tested pathogens, 48% infected by one pathogen, 16% by two, and 4% by three; whereas in spring, 40% of colonies tested negative for all target pathogens, with 51% infected by one pathogen and 9% by two. In autumn 2020, S. marcescens was the most prevalent pathogen (46%), followed by N. ceranae (28%) and L. passim (18%), while no C. mellificae or N. apis were detected. In spring 2021, N. ceranae dominated with a 60% prevalence, and other pathogens were detected in only one sample each. FTA® were found to be a more economical and faster alternative to commercial DNA isolation kits, particularly for N. ceranae. Moreover, FTA® cards maintained DNA stability under challenging conditions, including high temperatures, UV radiation, and oxidative stress, making them highly suitable for field applications. Collecting field samples on FTA® cards preserves DNA integrity and mitigates degradation risks associated with improper shipment of whole bees.

Zobrazit více v PubMed

Fünfhaus A, Ebeling J, Genersch E. Bacterial pathogens of bees. Curr Opin Insect Sci. 2018;26:89–96. doi: 10.1016/j.cois.2018.02.008 PubMed DOI

Ravoet J, Maharramov J, Meeus I, De Smet L, Wenseleers T, Smagghe G, et al. Comprehensive bee pathogen screening in Belgium reveals Crithidia mellificae as a new contributory factor to winter mortality. PLoS One. 2013;8(8):e72443. doi: 10.1371/journal.pone.0072443 PubMed DOI PMC

Minaud É, Rebaudo F, Davidson P, Hatjina F, Hotho A, Mainardi G, et al. How stressors disrupt honey bee biological traits and overwintering mechanisms. Heliyon. 2024;10(14):e34390. doi: 10.1016/j.heliyon.2024.e34390 PubMed DOI PMC

Matthijs S, De Waele V, Vandenberge V, Verhoeven B, Evers J, Brunain M, et al. Nationwide screening for bee viruses and parasites in Belgian honey bees. Viruses. 2020;12(8):890. doi: 10.3390/v12080890 PubMed DOI PMC

Steele MI, Motta EVS, Gattu T, Martinez D, Moran NA. The gut microbiota protects bees from invasion by a bacterial pathogen. Microbiol Spectr. 2021;9(2):e0039421. doi: 10.1128/Spectrum.00394-21 PubMed DOI PMC

Milbrath MO, van Tran T, Huang W-F, Solter LF, Tarpy DR, Lawrence F, et al. Comparative virulence and competition between Nosema apis and Nosema ceranae in honey bees (Apis mellifera). J Invertebr Pathol. 2015;125:9–15. doi: 10.1016/j.jip.2014.12.006 PubMed DOI

Schwarz RS, Bauchan GR, Murphy CA, Ravoet J, De Graaf DC, Evans JD. Characterization of two species of trypanosomatidae from the Honey Bee Apis mellifera: Crithidia mellificae Langridge and McGhee, and Lotmaria passim n. gen., n. sp. 2015. p. 567–83. PubMed

Gómez-Moracho T, Buendía-Abad M, Benito M, García-Palencia P, Barrios L, Bartolomé C, et al. Experimental evidence of harmful effects of Crithidia mellificae and Lotmaria passim on honey bees. Int J Parasitol. 2020;50(13):1117–24. doi: 10.1016/j.ijpara.2020.06.009 PubMed DOI

Braglia C, Alberoni D, Garrido PM, Porrini MP, Baffoni L, Scott D, et al. Vairimorpha (Nosema) ceranae can promote Serratia development in honeybee gut: an underrated threat for bees? Front Cell Infect Microbiol. 2024;14:1323157. doi: 10.3389/fcimb.2024.1323157 PubMed DOI PMC

Ravoet J, Maharramov J, Meeus I, De Smet L, Wenseleers T, Smagghe G. Comprehensive bee pathogen screening in Belgium reveals Crithidia mellificae as a new contributory factor to winter mortality. 2013. PubMed PMC

Arismendi N, Caro S, Castro MP, Vargas M, Riveros G, Venegas T. Impact of mixed infections of gut parasites Lotmaria passim and Nosema ceranae on the lifespan and immune-related biomarkers in Apis mellifera. Insects. 2020;11(7):420. doi: 10.3390/insects11070420 PubMed DOI PMC

Traynor KS, Rennich K, Forsgren E, Rose R, Pettis J, Kunkel G, et al. Multiyear survey targeting disease incidence in US honey bees. Apidologie. 2016;47(3):325–47. doi: 10.1007/s13592-016-0431-0 DOI

Fries I, Chauzat M-P, Chen Y-P, Doublet V, Genersch E, Gisder S, et al. Standard methods for Nosema research. J Apic Res. 2013;52(1):1–28. doi: 10.3896/ibra.1.52.1.14 DOI

Garrity G, Brenner D, Kreig N, Staley J. Bergey’s manual of systematic bacteriology, volume 2 Part B the gammaproteobacteria; 2005.

Gisder S, Möckel N, Linde A, Genersch E. A cell culture model for Nosema ceranae and Nosema apis allows new insights into the life cycle of these important honey bee-pathogenic microsporidia. Environ Microbiol. 2011;13(2):404–13. doi: 10.1111/j.1462-2920.2010.02346.x PubMed DOI

Gisder S, Genersch E. Molecular differentiation of Nosema apis and Nosema ceranae based on species-specific sequence differences in a protein coding gene. J Invertebr Pathol. 2013;113(1):1–6. doi: 10.1016/j.jip.2013.01.004 PubMed DOI

Okamoto M, Furuya H, Sugimoto I, Kusumoto M, Takamatsu D. A novel multiplex PCR assay to detect and distinguish between different types of Paenibacillus larvae and Melissococcus plutonius, and a survey of foulbrood pathogen contamination in Japanese honey. J Vet Med Sci. 2022;84(3):390–9. doi: 10.1292/jvms.21-0629 PubMed DOI PMC

Evans JD, Schwarz RS, Chen YP, Budge G, Cornman RS, De la Rua P, et al. Standard methods for molecular research inApis mellifera. J Apic Res. 2013;52(4):1–54. doi: 10.3896/ibra.1.52.4.11 DOI

Smith LM, Burgoyne LA. Collecting, archiving and processing DNA from wildlife samples using FTA databasing paper. BMC Ecol. 2004;4:4. doi: 10.1186/1472-6785-4-4 PubMed DOI PMC

da Cunha Santos GF. Fta cards for preservation of nucleic acids for molecular assays: A review on the use of cytologic/tissue samples. Allen Press; 2018. p. 308–12. PubMed

Rahikainen A-L, Palo JU, de Leeuw W, Budowle B, Sajantila A. DNA quality and quantity from up to 16 years old post-mortem blood stored on FTA cards. Forensic Sci Int. 2016;261:148–53. doi: 10.1016/j.forsciint.2016.02.014 PubMed DOI

Pirk CWW, de Miranda JR, Kramer M, Murray TE, Nazzi F, Shutler D, et al. Statistical guidelines forApis melliferaresearch. J Apic Res. 2013;52(4):1–24. doi: 10.3896/ibra.1.52.4.13 DOI

McHugh ML. Interrater reliability: the kappa statistic. Biochem Med (Zagreb). 2012;22(3):276–82. doi: 10.11613/bm.2012.031 PubMed DOI PMC

Baratloo A, Hosseini M, Negida A, El Ashal G. Part 1: simple definition and calculation of accuracy, sensitivity and specificity. Emerg (Tehran). 2015;3(2):48–9. PubMed PMC

Cardona-Ospina JA, Villalba-Miranda MF, Palechor-Ocampo LA, Mancilla LI, Sepúlveda-Arias JC. A systematic review of FTA cards® as a tool for viral RNA preservation in fieldwork: Are they safe and effective? Prev Vet Med. 2019;172:104772. doi: 10.1016/j.prevetmed.2019.104772 PubMed DOI PMC

Birnberg L, Temmam S, Aranda C, Correa-Fiz F, Talavera S, Bigot T. Viromics on honey-baited FTA cards as a new tool for the detection of circulating viruses in mosquitoes. Viruses. 2020;12(3). PubMed PMC

Yan W, Shen Z, Tang X, Xu L, Li Q, Yue Y, et al. Detection of Nosema bombycis by FTA cards and loop-mediated isothermal amplification (LAMP). Curr Microbiol. 2014;69(4):532–40. doi: 10.1007/s00284-014-0619-3 PubMed DOI

Thompson M, Hrabak E. Capture and storage of plant genomic DNA on a readily available cellulose matrix. Biotechniques. 2018:285–7. PubMed

Chandler L. Sources of errors in molecular testing. In: Dasgupta A, Sepulveda JL, editors. Accurate results in the clinical laboratory. San Diego: Elsevier; 2013. p. 327–41. doi: 10.1016/b978-0-12-415783-5.00021-9 DOI

Morono Y, Hoshino T, Terada T, Suzuki T, Sato T, Yuasa H, et al. Assessment of capacity to capture DNA aerosols by clean filters for molecular biology experiments. Microbes Environ. 2018;33(2):222–6. doi: 10.1264/jsme2.ME18012 PubMed DOI PMC

Erler S, Lommatzsch S, Lattorff HMG. Comparative analysis of detection limits and specificity of molecular diagnostic markers for three pathogens (Microsporidia, Nosema spp.) in the key pollinators Apis mellifera and Bombus terrestris. Parasitol Res. 2012;110(4):1403–10. doi: 10.1007/s00436-011-2640-9 PubMed DOI

Emsen B, De la Mora A, Lacey B, Eccles L, Kelly PG, Medina-Flores CA, et al. Seasonality of Nosema ceranae infections and their relationship with honey bee populations, food stores, and survivorship in a North American Region. Vet Sci. 2020;7(3):131. doi: 10.3390/vetsci7030131 PubMed DOI PMC

Gisder S, Schüler V, Horchler LL, Groth D, Genersch E. Long-term temporal trends of Nosema spp. infection prevalence in Northeast Germany: continuous spread of Nosema ceranae, an emerging pathogen of honey bees (Apis mellifera), but No general replacement of Nosema apis. Front Cell Infect Microbiol. 2017;7:301. doi: 10.3389/fcimb.2017.00301 PubMed DOI PMC

Gajda A, Grzęda U, Topolska G, Wilde J, Bieńkowska M, Gerula D, et al., editors. Nosema ceranae has been present in honey bee colonies in Poland at least since 1994 and appears to have ousted Nosema apis. Proceedings of 9th COLOSS Conference; Kyiv, Ukraine; 2013.

Meixner MD, Francis RM, Gajda A, Kryger P, Andonov S, Uzunov A, et al. Occurrence of parasites and pathogens in honey bee colonies used in a European genotype-environment interactions experiment. J Apic Res. 2014;53(2):215–29. doi: 10.3896/ibra.1.53.2.04 DOI

Kamler F, Titěra D, Kamler M. Rozšíření, patogeneze a návrh opatření v chovech včel ohrožených mikrosporidií Nosema ceranae. Závěrečná zpráva za rok 2011; 2011.

Mattila HR, Rios D, Walker-Sperling VE, Roeselers G, Newton ILG. Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse. PLoS One. 2012;7(3):e32962. doi: 10.1371/journal.pone.0032962 PubMed DOI PMC

Raymann K, Shaffer Z, Moran NA. Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol. 2017;15(3):e2001861. doi: 10.1371/journal.pbio.2001861 PubMed DOI PMC

Carlini DB, Winslow SK, Cloppenborg-Schmidt K, Baines JF. Quantitative microbiome profiling of honey bee (Apis mellifera) guts is predictive of winter colony loss in northern Virginia (USA). Sci Rep. 2024;14(1):11021. doi: 10.1038/s41598-024-61199-9 PubMed DOI PMC

Castelli L, Branchiccela B, Garrido M, Invernizzi C, Porrini M, Romero H, et al. Impact of nutritional stress on honeybee gut microbiota, immunity, and Nosema ceranae infection. Microb Ecol. 2020;80(4):908–19. doi: 10.1007/s00248-020-01538-1 PubMed DOI

Kešnerová L, Emery O, Troilo M, Liberti J, Erkosar B, Engel P. Gut microbiota structure differs between honeybees in winter and summer. ISME J. 2020;14(3):801–14. doi: 10.1038/s41396-019-0568-8 PubMed DOI PMC

Yamamoto S, Nakamura S, Nakayama K, Kusakisako K, Watanabe K, Ikadai H, et al. Molecular detection of Lotmaria passim in honeybees in Japan. Parasitol Int. 2023;93:102711. doi: 10.1016/j.parint.2022.102711 PubMed DOI

Vargas M, Arismendi N, Riveros G, Zapata N, Bruna A, Vidal M, et al. Viral and intestinal diseases detected in Apis mellifera in Central and Southern Chile. Chilean J Agric Res. 2017;77(3):243–9. doi: 10.4067/s0718-58392017000300243 DOI

Mráz P, Hýbl M, Kopecký M, Bohatá A, Hoštičková I, Šipoš J, et al. Screening of honey bee pathogens in the Czech Republic and their prevalence in various habitats. Multidisciplinary Digital Publishing Institute (MDPI); 2021. PubMed PMC

Vočadlová K. Molekulární epidemiologie druhů Crithidia mellificae a Lotmaria passim v populaci včelstev. České Budějovice: Jihočeská univerzita v Českých Budějovicích; 2018. Available from: http://www.jcu.cz

van Engelsdorp D, Lengerich E, Spleen A, Dainat B, Cresswell J, Baylis K, et al. Standard epidemiological methods to understand and improveApis mellifera health. J Apic Res. 2013;52(1):1–16. doi: 10.3896/ibra.1.52.1.08 DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...