Efficient pathogen screening in honey bees: Application of FTA® cards for DNA storage and PCR analysis
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41166296
PubMed Central
PMC12574871
DOI
10.1371/journal.pone.0334066
PII: PONE-D-25-04229
Knihovny.cz E-zdroje
- MeSH
- Crithidia genetika izolace a purifikace MeSH
- DNA bakterií genetika izolace a purifikace MeSH
- DNA fungální * genetika izolace a purifikace MeSH
- Nosema genetika izolace a purifikace MeSH
- polymerázová řetězová reakce * metody MeSH
- roční období MeSH
- senzitivita a specificita MeSH
- včely mikrobiologie genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- DNA bakterií MeSH
- DNA fungální * MeSH
Screening honey bee pathogens is crucial for early infection detection, which helps prevent pathogen transmission. The most widely used method for pathogen detection in honey bees is polymerase chain reaction (PCR). FTA® cards (Qiagen) were compared with DNA-isolation kit DNeasy Plant Mini kit (Qiagen) for the detection of selected pathogens in honey bee samples collected from colonies in the Czech Republic in autumn and spring. FTA® cards provide highly accurate results for detecting N. ceranae with a sensitivity of 97.2% and a specificity of 100%. Thus, FTA® cards represent a reliable and cost-effective alternative to traditional methods for N. ceranae detection. Seasonal variation in pathogen prevalence was also assessed using FTA® cards, revealing significant differences between autumn and spring. In total 85 samples were analysed for main bee pathogens (N. ceranae, Nosema apis, Lotmaria passim, Crithidia mellificae, and Serratia marcescens). Greater diversity pathogen occurence was observed in autumn, with 32% of colonies showing no detectable levels of the tested pathogens, 48% infected by one pathogen, 16% by two, and 4% by three; whereas in spring, 40% of colonies tested negative for all target pathogens, with 51% infected by one pathogen and 9% by two. In autumn 2020, S. marcescens was the most prevalent pathogen (46%), followed by N. ceranae (28%) and L. passim (18%), while no C. mellificae or N. apis were detected. In spring 2021, N. ceranae dominated with a 60% prevalence, and other pathogens were detected in only one sample each. FTA® were found to be a more economical and faster alternative to commercial DNA isolation kits, particularly for N. ceranae. Moreover, FTA® cards maintained DNA stability under challenging conditions, including high temperatures, UV radiation, and oxidative stress, making them highly suitable for field applications. Collecting field samples on FTA® cards preserves DNA integrity and mitigates degradation risks associated with improper shipment of whole bees.
Department of Biochemistry Faculty of Science Palacký University Olomouc Olomouc Czech Republic
Department of Geoinformatics Faculty of Science Palacký University Olomouc Olomouc Czech Republic
Olomouc University Social Health Institute Palacký University Olomouc Olomouc Czech Republic
Zobrazit více v PubMed
Fünfhaus A, Ebeling J, Genersch E. Bacterial pathogens of bees. Curr Opin Insect Sci. 2018;26:89–96. doi: 10.1016/j.cois.2018.02.008 PubMed DOI
Ravoet J, Maharramov J, Meeus I, De Smet L, Wenseleers T, Smagghe G, et al. Comprehensive bee pathogen screening in Belgium reveals Crithidia mellificae as a new contributory factor to winter mortality. PLoS One. 2013;8(8):e72443. doi: 10.1371/journal.pone.0072443 PubMed DOI PMC
Minaud É, Rebaudo F, Davidson P, Hatjina F, Hotho A, Mainardi G, et al. How stressors disrupt honey bee biological traits and overwintering mechanisms. Heliyon. 2024;10(14):e34390. doi: 10.1016/j.heliyon.2024.e34390 PubMed DOI PMC
Matthijs S, De Waele V, Vandenberge V, Verhoeven B, Evers J, Brunain M, et al. Nationwide screening for bee viruses and parasites in Belgian honey bees. Viruses. 2020;12(8):890. doi: 10.3390/v12080890 PubMed DOI PMC
Steele MI, Motta EVS, Gattu T, Martinez D, Moran NA. The gut microbiota protects bees from invasion by a bacterial pathogen. Microbiol Spectr. 2021;9(2):e0039421. doi: 10.1128/Spectrum.00394-21 PubMed DOI PMC
Milbrath MO, van Tran T, Huang W-F, Solter LF, Tarpy DR, Lawrence F, et al. Comparative virulence and competition between Nosema apis and Nosema ceranae in honey bees (Apis mellifera). J Invertebr Pathol. 2015;125:9–15. doi: 10.1016/j.jip.2014.12.006 PubMed DOI
Schwarz RS, Bauchan GR, Murphy CA, Ravoet J, De Graaf DC, Evans JD. Characterization of two species of trypanosomatidae from the Honey Bee Apis mellifera: Crithidia mellificae Langridge and McGhee, and Lotmaria passim n. gen., n. sp. 2015. p. 567–83. PubMed
Gómez-Moracho T, Buendía-Abad M, Benito M, García-Palencia P, Barrios L, Bartolomé C, et al. Experimental evidence of harmful effects of Crithidia mellificae and Lotmaria passim on honey bees. Int J Parasitol. 2020;50(13):1117–24. doi: 10.1016/j.ijpara.2020.06.009 PubMed DOI
Braglia C, Alberoni D, Garrido PM, Porrini MP, Baffoni L, Scott D, et al. Vairimorpha (Nosema) ceranae can promote Serratia development in honeybee gut: an underrated threat for bees? Front Cell Infect Microbiol. 2024;14:1323157. doi: 10.3389/fcimb.2024.1323157 PubMed DOI PMC
Ravoet J, Maharramov J, Meeus I, De Smet L, Wenseleers T, Smagghe G. Comprehensive bee pathogen screening in Belgium reveals Crithidia mellificae as a new contributory factor to winter mortality. 2013. PubMed PMC
Arismendi N, Caro S, Castro MP, Vargas M, Riveros G, Venegas T. Impact of mixed infections of gut parasites Lotmaria passim and Nosema ceranae on the lifespan and immune-related biomarkers in Apis mellifera. Insects. 2020;11(7):420. doi: 10.3390/insects11070420 PubMed DOI PMC
Traynor KS, Rennich K, Forsgren E, Rose R, Pettis J, Kunkel G, et al. Multiyear survey targeting disease incidence in US honey bees. Apidologie. 2016;47(3):325–47. doi: 10.1007/s13592-016-0431-0 DOI
Fries I, Chauzat M-P, Chen Y-P, Doublet V, Genersch E, Gisder S, et al. Standard methods for Nosema research. J Apic Res. 2013;52(1):1–28. doi: 10.3896/ibra.1.52.1.14 DOI
Garrity G, Brenner D, Kreig N, Staley J. Bergey’s manual of systematic bacteriology, volume 2 Part B the gammaproteobacteria; 2005.
Gisder S, Möckel N, Linde A, Genersch E. A cell culture model for Nosema ceranae and Nosema apis allows new insights into the life cycle of these important honey bee-pathogenic microsporidia. Environ Microbiol. 2011;13(2):404–13. doi: 10.1111/j.1462-2920.2010.02346.x PubMed DOI
Gisder S, Genersch E. Molecular differentiation of Nosema apis and Nosema ceranae based on species-specific sequence differences in a protein coding gene. J Invertebr Pathol. 2013;113(1):1–6. doi: 10.1016/j.jip.2013.01.004 PubMed DOI
Okamoto M, Furuya H, Sugimoto I, Kusumoto M, Takamatsu D. A novel multiplex PCR assay to detect and distinguish between different types of Paenibacillus larvae and Melissococcus plutonius, and a survey of foulbrood pathogen contamination in Japanese honey. J Vet Med Sci. 2022;84(3):390–9. doi: 10.1292/jvms.21-0629 PubMed DOI PMC
Evans JD, Schwarz RS, Chen YP, Budge G, Cornman RS, De la Rua P, et al. Standard methods for molecular research inApis mellifera. J Apic Res. 2013;52(4):1–54. doi: 10.3896/ibra.1.52.4.11 DOI
Smith LM, Burgoyne LA. Collecting, archiving and processing DNA from wildlife samples using FTA databasing paper. BMC Ecol. 2004;4:4. doi: 10.1186/1472-6785-4-4 PubMed DOI PMC
da Cunha Santos GF. Fta cards for preservation of nucleic acids for molecular assays: A review on the use of cytologic/tissue samples. Allen Press; 2018. p. 308–12. PubMed
Rahikainen A-L, Palo JU, de Leeuw W, Budowle B, Sajantila A. DNA quality and quantity from up to 16 years old post-mortem blood stored on FTA cards. Forensic Sci Int. 2016;261:148–53. doi: 10.1016/j.forsciint.2016.02.014 PubMed DOI
Pirk CWW, de Miranda JR, Kramer M, Murray TE, Nazzi F, Shutler D, et al. Statistical guidelines forApis melliferaresearch. J Apic Res. 2013;52(4):1–24. doi: 10.3896/ibra.1.52.4.13 DOI
McHugh ML. Interrater reliability: the kappa statistic. Biochem Med (Zagreb). 2012;22(3):276–82. doi: 10.11613/bm.2012.031 PubMed DOI PMC
Baratloo A, Hosseini M, Negida A, El Ashal G. Part 1: simple definition and calculation of accuracy, sensitivity and specificity. Emerg (Tehran). 2015;3(2):48–9. PubMed PMC
Cardona-Ospina JA, Villalba-Miranda MF, Palechor-Ocampo LA, Mancilla LI, Sepúlveda-Arias JC. A systematic review of FTA cards® as a tool for viral RNA preservation in fieldwork: Are they safe and effective? Prev Vet Med. 2019;172:104772. doi: 10.1016/j.prevetmed.2019.104772 PubMed DOI PMC
Birnberg L, Temmam S, Aranda C, Correa-Fiz F, Talavera S, Bigot T. Viromics on honey-baited FTA cards as a new tool for the detection of circulating viruses in mosquitoes. Viruses. 2020;12(3). PubMed PMC
Yan W, Shen Z, Tang X, Xu L, Li Q, Yue Y, et al. Detection of Nosema bombycis by FTA cards and loop-mediated isothermal amplification (LAMP). Curr Microbiol. 2014;69(4):532–40. doi: 10.1007/s00284-014-0619-3 PubMed DOI
Thompson M, Hrabak E. Capture and storage of plant genomic DNA on a readily available cellulose matrix. Biotechniques. 2018:285–7. PubMed
Chandler L. Sources of errors in molecular testing. In: Dasgupta A, Sepulveda JL, editors. Accurate results in the clinical laboratory. San Diego: Elsevier; 2013. p. 327–41. doi: 10.1016/b978-0-12-415783-5.00021-9 DOI
Morono Y, Hoshino T, Terada T, Suzuki T, Sato T, Yuasa H, et al. Assessment of capacity to capture DNA aerosols by clean filters for molecular biology experiments. Microbes Environ. 2018;33(2):222–6. doi: 10.1264/jsme2.ME18012 PubMed DOI PMC
Erler S, Lommatzsch S, Lattorff HMG. Comparative analysis of detection limits and specificity of molecular diagnostic markers for three pathogens (Microsporidia, Nosema spp.) in the key pollinators Apis mellifera and Bombus terrestris. Parasitol Res. 2012;110(4):1403–10. doi: 10.1007/s00436-011-2640-9 PubMed DOI
Emsen B, De la Mora A, Lacey B, Eccles L, Kelly PG, Medina-Flores CA, et al. Seasonality of Nosema ceranae infections and their relationship with honey bee populations, food stores, and survivorship in a North American Region. Vet Sci. 2020;7(3):131. doi: 10.3390/vetsci7030131 PubMed DOI PMC
Gisder S, Schüler V, Horchler LL, Groth D, Genersch E. Long-term temporal trends of Nosema spp. infection prevalence in Northeast Germany: continuous spread of Nosema ceranae, an emerging pathogen of honey bees (Apis mellifera), but No general replacement of Nosema apis. Front Cell Infect Microbiol. 2017;7:301. doi: 10.3389/fcimb.2017.00301 PubMed DOI PMC
Gajda A, Grzęda U, Topolska G, Wilde J, Bieńkowska M, Gerula D, et al., editors. Nosema ceranae has been present in honey bee colonies in Poland at least since 1994 and appears to have ousted Nosema apis. Proceedings of 9th COLOSS Conference; Kyiv, Ukraine; 2013.
Meixner MD, Francis RM, Gajda A, Kryger P, Andonov S, Uzunov A, et al. Occurrence of parasites and pathogens in honey bee colonies used in a European genotype-environment interactions experiment. J Apic Res. 2014;53(2):215–29. doi: 10.3896/ibra.1.53.2.04 DOI
Kamler F, Titěra D, Kamler M. Rozšíření, patogeneze a návrh opatření v chovech včel ohrožených mikrosporidií Nosema ceranae. Závěrečná zpráva za rok 2011; 2011.
Mattila HR, Rios D, Walker-Sperling VE, Roeselers G, Newton ILG. Characterization of the active microbiotas associated with honey bees reveals healthier and broader communities when colonies are genetically diverse. PLoS One. 2012;7(3):e32962. doi: 10.1371/journal.pone.0032962 PubMed DOI PMC
Raymann K, Shaffer Z, Moran NA. Antibiotic exposure perturbs the gut microbiota and elevates mortality in honeybees. PLoS Biol. 2017;15(3):e2001861. doi: 10.1371/journal.pbio.2001861 PubMed DOI PMC
Carlini DB, Winslow SK, Cloppenborg-Schmidt K, Baines JF. Quantitative microbiome profiling of honey bee (Apis mellifera) guts is predictive of winter colony loss in northern Virginia (USA). Sci Rep. 2024;14(1):11021. doi: 10.1038/s41598-024-61199-9 PubMed DOI PMC
Castelli L, Branchiccela B, Garrido M, Invernizzi C, Porrini M, Romero H, et al. Impact of nutritional stress on honeybee gut microbiota, immunity, and Nosema ceranae infection. Microb Ecol. 2020;80(4):908–19. doi: 10.1007/s00248-020-01538-1 PubMed DOI
Kešnerová L, Emery O, Troilo M, Liberti J, Erkosar B, Engel P. Gut microbiota structure differs between honeybees in winter and summer. ISME J. 2020;14(3):801–14. doi: 10.1038/s41396-019-0568-8 PubMed DOI PMC
Yamamoto S, Nakamura S, Nakayama K, Kusakisako K, Watanabe K, Ikadai H, et al. Molecular detection of Lotmaria passim in honeybees in Japan. Parasitol Int. 2023;93:102711. doi: 10.1016/j.parint.2022.102711 PubMed DOI
Vargas M, Arismendi N, Riveros G, Zapata N, Bruna A, Vidal M, et al. Viral and intestinal diseases detected in Apis mellifera in Central and Southern Chile. Chilean J Agric Res. 2017;77(3):243–9. doi: 10.4067/s0718-58392017000300243 DOI
Mráz P, Hýbl M, Kopecký M, Bohatá A, Hoštičková I, Šipoš J, et al. Screening of honey bee pathogens in the Czech Republic and their prevalence in various habitats. Multidisciplinary Digital Publishing Institute (MDPI); 2021. PubMed PMC
Vočadlová K. Molekulární epidemiologie druhů Crithidia mellificae a Lotmaria passim v populaci včelstev. České Budějovice: Jihočeská univerzita v Českých Budějovicích; 2018. Available from: http://www.jcu.cz
van Engelsdorp D, Lengerich E, Spleen A, Dainat B, Cresswell J, Baylis K, et al. Standard epidemiological methods to understand and improveApis mellifera health. J Apic Res. 2013;52(1):1–16. doi: 10.3896/ibra.1.52.1.08 DOI