Integrating climate scenarios and advanced modeling to predict freshwater fish invasions: insights from Carassius species in Iran

. 2025 Oct 30 ; 15 (1) : 38025. [epub] 20251030

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41168264
Odkazy

PubMed 41168264
PubMed Central PMC12575621
DOI 10.1038/s41598-025-21958-8
PII: 10.1038/s41598-025-21958-8
Knihovny.cz E-zdroje

Freshwater ecosystems are increasingly imperiled by the dual pressures of biological invasions and climate change, necessitating robust predictive frameworks for effective management. This study integrates advanced ensemble machine learning (EML) within a species distribution modeling (SDM) framework to assess the current and future invasion risk of Carassius species (C. auratus, C. gibelio, and C. langsdorfii) across Iranian inland waters. A comprehensive dataset of 486 occurrence records was analyzed alongside eight rigorously selected environmental predictors encompassing climatic, topographical, hydrological, and anthropogenic variables. The BIOMOD2 R package facilitated the construction of an EML-based SDM, leveraging six algorithms weighted by AUC to maximize predictive accuracy. Model performance, evaluated via AUC and true skill statistic (TSS), demonstrated high discriminatory power. Projections under two CMIP6 climate scenarios (SSP 126 and SSP 585) reveal significant potential for range expansion and spatial redistribution of Carassius species, particularly under high-emission trajectories, highlighting increased invasion risks in ecologically sensitive basins. Variable importance analysis underscored the primacy of temperature, precipitation, terrain ruggedness, and human footprint in shaping invasion potential. Additionally, using kernel density estimation (KDE) analysis, the Caspian basin emerged as a critical invasion region for Carassius populations. These findings underscore the urgent need for targeted monitoring and management strategies and demonstrate the utility of EML-SDMs in anticipating biological invasions under global change. The integrative approach presented here provides a scalable framework for proactive biodiversity conservation and policy development in freshwater systems facing multifaceted anthropogenic threats and provides a replicable framework for forecasting biological invasions in other vulnerable freshwater systems.

Zobrazit více v PubMed

Ghosh, S., Anju, P., Pattanayak, R. & Sahu, N. C. Fisheries and aquaculture in wetland ecosystems: A review of benefits, risks, and future prospects in India.

Kaplan, A. et al. in

Thomaz, S. M. Ecosystem services provided by freshwater macrophytes. DOI

Khoshnamvand, H., Malekian, M. & Keivani, Y. Feasibility of using geometric morphometrics on larvae of Loristan Newt for population identifications.

Badr, Rl-Shazly, H. & ِa. & Climate change and biodiversity loss: interconnected challenges and priority measures. DOI

Soomro, S. et al. Are global influences of cascade dams affecting river water temperature and fish ecology? DOI

Hosseini, N., Mehrabian, A. & Mostafavi, H. Modeling climate change effects on Spatial distribution of wild PubMed DOI

Bagheri, M., Azimi, M., Khoshnamvand, H., Abdoli, A. & Ahmadzadeh, F. The threat of a non-native oligochaete species in Iran’s freshwater: Assessment of the diversity and origin of PubMed PMC

Bănăduc, D. et al. Multi-Interacting natural and anthropogenic stressors on freshwater ecosystems: their current status and future prospects for 21st century. DOI

Dudgeon, D. & Strayer, D. L. Bending the curve of global freshwater biodiversity loss: what are the prospects? PubMed PMC

Searcy, C. A., Howell, H. J., David, A. S., Rumelt, R. B. & Clements, S. L. Patterns of Non-Native species Introduction, Spread, and ecological impact in South Florida, the world’s most invaded continental ecoregion. DOI

Mostafavi, H., Mehrabian, A. R., Teimori, A., Shafizade-Moghadam, H. & Kambouzia, J. in

Zamani-Faradonbe, M., Keivany, Y. & Khoshnamvand, H. Length-weight and length-length relationships of four DOI

Adelino, J. R. P. & Lima, M. R. Current patterns of non-native vertebrate introductions in brazil: introduction pathways and the contribution of niche dynamics in Understanding the invasion process. DOI

Khattak, W. A. et al. Unveiling the resistance of native weed communities: insights for managing invasive weed species in disturbed environments. PubMed DOI

Xu, M. et al. Global freshwater fish invasion linked to the presence of closely related species. PubMed DOI PMC

Brandon, R. N.

Franklin, J. Species distribution modelling supports the study of past, present and future biogeographies. DOI

Santini, L., Benítez-López, A., Maiorano, L., Čengić, M. & Huijbregts, M. A. J. Assessing the reliability of species distribution projections in climate change research. DOI

Sittaro, F., Hutengs, C. & Vohland, M. Which factors determine the invasion of plant species? Machine learning based habitat modelling integrating environmental factors and climate scenarios.

Soley-Guardia, M., Alvarado‐Serrano, D. F. & Anderson, R. P. Top ten hazards to avoid when modeling species distributions: a didactic guide of assumptions, problems, and recommendations.

Caves, E. M. & Johnsen, S. The sensory impacts of climate change: bathymetric shifts and visually mediated interactions in aquatic species. PubMed PMC

Viitasalo, M. & Bonsdorff, E. Global climate change and the Baltic sea ecosystem: direct and indirect effects on species, communities and ecosystem functioning. DOI

Pritchard Cairns, J., de Bragança, P. H. N. & South, J. A systematic review of poeciliid fish invasions in Africa. PubMed DOI PMC

Silveira, M. J. & de Harthman, V. Evidence that siltation aggravated by climate change can shift the dominance of two globally invasive freshwater macrophytes. DOI

Esch, M. M., Jarnevich, C. S., Simões, N., McClanahan, T. R. & Harborne, A. R. Modeling the potential spread of the non-native Regal demoiselle, neopomacentrus cyanomos, in the Western Atlantic. DOI

Hodson, J., South, J., Cancellario, T. & Guareschi, S. Multi-method distribution modelling of an invasive crayfish (Pontastacus leptodactylus) at Eurasian scale. DOI

Khoshnamvand, H. et al. Macroecological predictors to determine future refuges of

Fois, M., Cuena-Lombraña, A., Fenu, G. & Bacchetta, G. Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions. DOI

Khoshnamvand, H. et al. A different destiny after the ice age: impacts of climate change on the global biogeography of carasobarbus.

Khwarahm, N. R. Spatial modeling of land use and land cover change in Sulaimani, Iraq, using multitemporal satellite data. PubMed DOI

McKenna, J. E. & Kocovsky, P. M. Habitat characterization and species distribution model of the only large-lake population of the endangered silver Chub ( PubMed DOI PMC

Konowalik, K., Proćków, M. & Proćków, J. Climatic niche of selinum alatum (Apiaceae, Selineae), a new invasive plant species in central Europe and its alterations according to the climate change scenarios: are the European mountains threatened by invasion? PubMed DOI PMC

Chen, N., Yuan, L., Wu, H. & Xue, J. Climate change’s influence on

Ponti, L. & Gutierrez, A. P. Challenging the status quo in invasive species assessment using mechanistic physiologically based demographic modeling. DOI

Srivastava, V., Roe, A. D., Keena, M. A., Hamelin, R. C. & Griess, V. C. Oh the places they’ll go: improving species distribution modelling for invasive forest pests in an uncertain world. DOI

Van Rees, C. B. et al. Safeguarding freshwater life beyond 2020: recommendations for the new global biodiversity framework from the European experience. DOI

Bonannella, C. et al. Forest tree species distribution for Europe 2000–2020: mapping potential and realized distributions using Spatiotemporal machine learning. PubMed DOI PMC

Khoshnamvand, H., Vaissi, S., Azimi, M. & Ahmadzadeh, F. Phylogenetic Climatic niche evolution and diversification of the PubMed DOI PMC

Makki, T., Mostafavi, H., Matkan, A. & Aghighi, H. Modelling Climate-Change impact on the Spatial distribution of Garra Rufa (Heckel, 1843) (Teleostei: Cyprinidae). DOI

Abdoli, A., Valikhani, H., Nejat, F. & Khosravi, M.

Bănărescu, P. & Coad, B. W. in

Rylková, K., Kalous, L., Bohlen, J., Lamatsch, D. K. & Petrtýl, M. Phylogeny and biogeographic history of the cyprinid fish genus DOI

In (ed. Bănărescu, P.) (Aula-Verl, (2002).

Bănărescu, P. & Banarescu, P.

Morgan, D. L. & Beatty, S. J.

Elgin, E., Tunna, H. & Jackson, L. First confirmed records of Prussian carp, Carassius Gibelio (Bloch, 1782) in open waters of North America. DOI

Gyorui Kensaku, N. S.

Richardson, M. J., Whoriskey, F. G. & Roy, L. H. Turbidity generation and biological impacts of an exotic fish Carassius auratus, introduced into shallow seasonally anoxic ponds.

Rylková, K. & Kalous, L. New finding of non-indigenous Japanese cyprinid fish in the Czech Republic.

Coad, B. W. & Abdoli, A. Exotic fish species in the fresh waters of Iran.

Khosravi, M. et al. Toward a preliminary assessment of the diversity and origin of cyprinid fish genus DOI

Abdoli, A.

Eagderi, S., Moulodi-saleh, A., Esmaeili, H. R., Sayyadzadeh, G. & nasri, M. Freshwater lamprey and fishes of Iran; a revised and updated annotated checklist-2022. DOI

Jouladeh-Roudbar, A., Ghanavi, H. R. & Doadrio, I. Ichthyofauna From Iranian Freshwater: Annotated Checklist, Diagnosis, Taxonomy, Distribution and Conservation Assessment. PubMed PMC

Sayyadzadeh, G. & Esmaeili, H. R. <strong > Freshwater lamprey and fishes of iran: reappraisal and updated checklist with a note on Eagderi < em > et al. (2022)</strong >. PubMed DOI

Moghaddas, S. D. et al. Identifying invasive fish species threats to RAMSAR wetland sites in the Caspian sea region—A case study of the Anzali wetland complex (Iran). DOI

Shahraki, M. Z. et al. Distribution and expansion of alien fish species in the Karun river Basin, Iran. PubMed DOI PMC

Calizza, E., Rossi, L., Careddu, G., Sporta Caputi, S. & Costantini, M. L. A novel approach to quantifying trophic interaction strengths and impact of invasive species in food webs. DOI

Adeniran-Obey, S. O. & Osagie, D. A. in

Fazeli, N.

Fromherz, A. J.

Noori, S. et al. Extensive mismatch between protected areas and biodiversity hotspots of Iranian lepidoptera. DOI

Shorabeh, S. N. et al. The site selection of wind energy power plant using GIS-multi-criteria evaluation from economic perspectives. DOI

Ramezani, E. et al. Between the mountains and the sea: late holocene Caspian sea level fluctuations and vegetation history of the lowland forests of Northern Iran. DOI

Salahi, A. & Asareh, M. H.

Dar, S. A. et al. Projected climate change threatens Himalayan brown bear habitat more than human land use. DOI

Hamid, M. et al. Impact of climate change on the distribution range and niche dynamics of Himalayan birch, a typical treeline species in Himalayas. DOI

Cobos, M. E., Barve, N., Barve, V. & Jimenez-Valverde, A. & Nuñez-Penichet, C. Rangemap: simple tools for defining species ranges. at (2021). https://github.com/marlonecobos/rangemap

Zizka, A. et al. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. DOI

Steen, V. A., Tingley, M. W., Paton, P. W. C. & Elphick, C. S. Spatial thinning and class balancing: key choices lead to variation in the performance of species distribution models with citizen science data. DOI

Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. SpThin: an R package for Spatial thinning of species occurrence records for use in ecological niche models. DOI

ESRI. ArcGIS Desktop. ESRI. ArcGIS Desktop: Release 10. (2011).

Sanderson, E. W. et al. The human footprint and the last of the wild. DOI

James, G., Witten, D., Hastie, T. & Tibshirani, R.

Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD – a platform for ensemble forecasting of species distributions. DOI

Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N. & Zimmermann, N. E. Uncertainty in ensembles of global biodiversity scenarios. PubMed DOI PMC

R Development Core Team. R: a Language and Environment for Statistical Computing. (2021).

Leathwick, J. R. et al. Use of generalised dissimilarity modelling to improve the biological discrimination of river and stream classifications. DOI

McCullagh, P. & Nelder, J. A.

Friedman, J. H. Greedy function approximation: A gradient boosting machine.

Breiman, L. Random forests. DOI

Walczak, S. & Cerpa, N.

Hastie, T., Tibshirani, R. & Buja, A. Flexible discriminant analysis by optimal scoring. DOI

Wang, J. L., Chiou, J. M. & Müller, H. G. Functional data analysis. DOI

Rahmati, K., Ashofteh, P. S. & Loáiciga, H. A. Application of the grasshopper optimization algorithm (GOA) to the optimal operation of hydropower reservoir systems under climate change. DOI

Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K. & Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. DOI

Intergovernmental Panel On Climate Change (IPCC).

Lu, Q. B. Critical review on radiative forcing and climate models for global climate change since 1970. DOI

Goberville, E., Beaugrand, G., Hautekèete, N., Piquot, Y. & Luczak, C. Uncertainties in the projection of species distributions related to general circulation models. PubMed DOI PMC

Paź-Dyderska, S., Jagodziński, A. M. & Dyderski, M. K. Possible changes in Spatial distribution of walnut (Juglans regia L.) in Europe under warming climate. DOI

Dyderski, M. K., Jagodziński, A., Paź-Dyderska, S. & Puchałka, R. DOI

Dyderski, M. K., Paź-Dyderska, S., Jagodziński, A. M. & Puchałka, R. Shifts in native tree species distributions in Europe under climate change. PubMed DOI

Gramacki, A.

University of Mary Washington &, Yin, P., Kernels & Estimation, D. DOI

Chabrerie, O. et al. Biological Invasion Theories: Merging Perspectives from Population, Community and Ecosystem Scales. Preprint at (2019). 10.20944/preprints201910.0327.v1

Li, X., Emery, R. N., Coupland, G. T., Ren, Y. & McKirdy, S. J. A comparison of multiple species distribution models and the ensemble model technique for ecological niche analysis: an Australian biosecurity case study using false codling moth as an exemplar species. SSRN Scholarly Paper at (2023). 10.2139/ssrn.4664172

Ashrafzadeh, M. R. et al. Modeling climate change impacts on the distribution of an endangered brown bear population in its critical habitat in Iran. PubMed DOI

Bowler, D. E. et al. Treating gaps and biases in biodiversity data as a missing data problem. PubMed DOI PMC

Ge, X., Griswold, C. K. & Newman, J. A. Robust species distribution predictions of predator and prey responses to climate change. DOI

Maclean, I. M. D. Predicting future climate at high Spatial and Temporal resolution. PubMed DOI PMC

Merchant, C. J. et al. Uncertainty information in climate data records from Earth observation. DOI

Chowdhary, M. A., Sharma, V., Gadri, H. S., Roy, S. & Bhardwaj, P. Spatio-temporal mapping and climate change impact on current and future expansion of P. roxburghii in the Himalayan biodiversity hotspot. PubMed DOI

Hubbard, J. A. G., Drake, D. A. R. & Mandrak, N. E. Climate change alters global invasion vulnerability among ecoregions. DOI

Liu, X., Guo, Z., Ke, Z., Wang, S. & Li, Y. Increasing potential risk of a global aquatic invader in Europe in contrast to other continents under future climate change. PubMed DOI PMC

Carosi, A., Padula, R., Ghetti, L. & Lorenzoni, M. Endemic freshwater fish range shifts related to global climate changes: A Long-Term study provides some observational evidence for the mediterranean area. DOI

Mamun, M., Kim, S. & An, K. G. Distribution pattern prediction of an invasive alien species largemouth bass using a maximum entropy model (MaxEnt) in the Korean Peninsula. DOI

Bagheri, B. & Soltani, A. The spatio-temporal dynamics of urban growth and population in metropolitan regions of Iran. DOI

Jia, Y. & Climate Habitat and human disturbance driving the variation of life-history traits of the invasive goldfish Carassius auratus (Linnaeus, 1758) in a Tibetan plateau river. DOI

Hong, S. et al. Predicting potential habitat changes of two invasive alien fish species with climate change at a regional scale. DOI

Britton, J. R. et al. Preventing and controlling nonnative species invasions to Bend the curve of global freshwater biodiversity loss. DOI

Kim, Z., Shim, T., Ki, S. J., An, K. G. & Jung, J. Prediction of three-dimensional shift in the distribution of largemouth bass ( DOI

Pauchard, A. et al. Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: new challenges for ecology and conservation. DOI

Denoël, M. & Ficetola, G. F. Using kernels and ecological niche modeling to delineate conservation areas in an endangered patch-breeding phenotype. PubMed DOI

Carter, S. et al. Spatial prioritization for widespread invasive species control: Trade-offs between current impact and future spread. PubMed DOI

Liu, G. et al. The influence of Climatic and human-induced factors on the Spatial distribution of invasive plant species richness across the loess plateau.

Ricciardi, A. et al. Four priority areas to advance invasion science in the face of rapid environmental change. DOI

Ricciardi, A. et al. Invasion science: A horizon scan of emerging challenges and opportunities. PubMed DOI

Cabral, J. S. et al. The road to integrate climate change projections with regional land-use–biodiversity models. DOI

Leclerc, C. et al. Climate impacts on lake Food-Webs are mediated by biological invasions. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...