Integrating climate scenarios and advanced modeling to predict freshwater fish invasions: insights from Carassius species in Iran
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
41168264
PubMed Central
PMC12575621
DOI
10.1038/s41598-025-21958-8
PII: 10.1038/s41598-025-21958-8
Knihovny.cz E-zdroje
- Klíčová slova
- Carassius invasions, Climate change scenarios, Ensemble machine learning, Freshwater ecosystems conservation, Species distribution modeling (SDM),
- MeSH
- ekosystém MeSH
- klimatické změny * MeSH
- sladká voda MeSH
- strojové učení MeSH
- teoretické modely MeSH
- zachování přírodních zdrojů MeSH
- zavlečené druhy * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Írán MeSH
Freshwater ecosystems are increasingly imperiled by the dual pressures of biological invasions and climate change, necessitating robust predictive frameworks for effective management. This study integrates advanced ensemble machine learning (EML) within a species distribution modeling (SDM) framework to assess the current and future invasion risk of Carassius species (C. auratus, C. gibelio, and C. langsdorfii) across Iranian inland waters. A comprehensive dataset of 486 occurrence records was analyzed alongside eight rigorously selected environmental predictors encompassing climatic, topographical, hydrological, and anthropogenic variables. The BIOMOD2 R package facilitated the construction of an EML-based SDM, leveraging six algorithms weighted by AUC to maximize predictive accuracy. Model performance, evaluated via AUC and true skill statistic (TSS), demonstrated high discriminatory power. Projections under two CMIP6 climate scenarios (SSP 126 and SSP 585) reveal significant potential for range expansion and spatial redistribution of Carassius species, particularly under high-emission trajectories, highlighting increased invasion risks in ecologically sensitive basins. Variable importance analysis underscored the primacy of temperature, precipitation, terrain ruggedness, and human footprint in shaping invasion potential. Additionally, using kernel density estimation (KDE) analysis, the Caspian basin emerged as a critical invasion region for Carassius populations. These findings underscore the urgent need for targeted monitoring and management strategies and demonstrate the utility of EML-SDMs in anticipating biological invasions under global change. The integrative approach presented here provides a scalable framework for proactive biodiversity conservation and policy development in freshwater systems facing multifaceted anthropogenic threats and provides a replicable framework for forecasting biological invasions in other vulnerable freshwater systems.
Zobrazit více v PubMed
Ghosh, S., Anju, P., Pattanayak, R. & Sahu, N. C. Fisheries and aquaculture in wetland ecosystems: A review of benefits, risks, and future prospects in India.
Kaplan, A. et al. in
Thomaz, S. M. Ecosystem services provided by freshwater macrophytes. DOI
Khoshnamvand, H., Malekian, M. & Keivani, Y. Feasibility of using geometric morphometrics on larvae of Loristan Newt for population identifications.
Badr, Rl-Shazly, H. & ِa. & Climate change and biodiversity loss: interconnected challenges and priority measures. DOI
Soomro, S. et al. Are global influences of cascade dams affecting river water temperature and fish ecology? DOI
Hosseini, N., Mehrabian, A. & Mostafavi, H. Modeling climate change effects on Spatial distribution of wild PubMed DOI
Bagheri, M., Azimi, M., Khoshnamvand, H., Abdoli, A. & Ahmadzadeh, F. The threat of a non-native oligochaete species in Iran’s freshwater: Assessment of the diversity and origin of PubMed PMC
Bănăduc, D. et al. Multi-Interacting natural and anthropogenic stressors on freshwater ecosystems: their current status and future prospects for 21st century. DOI
Dudgeon, D. & Strayer, D. L. Bending the curve of global freshwater biodiversity loss: what are the prospects? PubMed PMC
Searcy, C. A., Howell, H. J., David, A. S., Rumelt, R. B. & Clements, S. L. Patterns of Non-Native species Introduction, Spread, and ecological impact in South Florida, the world’s most invaded continental ecoregion. DOI
Mostafavi, H., Mehrabian, A. R., Teimori, A., Shafizade-Moghadam, H. & Kambouzia, J. in
Zamani-Faradonbe, M., Keivany, Y. & Khoshnamvand, H. Length-weight and length-length relationships of four DOI
Adelino, J. R. P. & Lima, M. R. Current patterns of non-native vertebrate introductions in brazil: introduction pathways and the contribution of niche dynamics in Understanding the invasion process. DOI
Khattak, W. A. et al. Unveiling the resistance of native weed communities: insights for managing invasive weed species in disturbed environments. PubMed DOI
Xu, M. et al. Global freshwater fish invasion linked to the presence of closely related species. PubMed DOI PMC
Brandon, R. N.
Franklin, J. Species distribution modelling supports the study of past, present and future biogeographies. DOI
Santini, L., Benítez-López, A., Maiorano, L., Čengić, M. & Huijbregts, M. A. J. Assessing the reliability of species distribution projections in climate change research. DOI
Sittaro, F., Hutengs, C. & Vohland, M. Which factors determine the invasion of plant species? Machine learning based habitat modelling integrating environmental factors and climate scenarios.
Soley-Guardia, M., Alvarado‐Serrano, D. F. & Anderson, R. P. Top ten hazards to avoid when modeling species distributions: a didactic guide of assumptions, problems, and recommendations.
Caves, E. M. & Johnsen, S. The sensory impacts of climate change: bathymetric shifts and visually mediated interactions in aquatic species. PubMed PMC
Viitasalo, M. & Bonsdorff, E. Global climate change and the Baltic sea ecosystem: direct and indirect effects on species, communities and ecosystem functioning. DOI
Pritchard Cairns, J., de Bragança, P. H. N. & South, J. A systematic review of poeciliid fish invasions in Africa. PubMed DOI PMC
Silveira, M. J. & de Harthman, V. Evidence that siltation aggravated by climate change can shift the dominance of two globally invasive freshwater macrophytes. DOI
Esch, M. M., Jarnevich, C. S., Simões, N., McClanahan, T. R. & Harborne, A. R. Modeling the potential spread of the non-native Regal demoiselle, neopomacentrus cyanomos, in the Western Atlantic. DOI
Hodson, J., South, J., Cancellario, T. & Guareschi, S. Multi-method distribution modelling of an invasive crayfish (Pontastacus leptodactylus) at Eurasian scale. DOI
Khoshnamvand, H. et al. Macroecological predictors to determine future refuges of
Fois, M., Cuena-Lombraña, A., Fenu, G. & Bacchetta, G. Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions. DOI
Khoshnamvand, H. et al. A different destiny after the ice age: impacts of climate change on the global biogeography of carasobarbus.
Khwarahm, N. R. Spatial modeling of land use and land cover change in Sulaimani, Iraq, using multitemporal satellite data. PubMed DOI
McKenna, J. E. & Kocovsky, P. M. Habitat characterization and species distribution model of the only large-lake population of the endangered silver Chub ( PubMed DOI PMC
Konowalik, K., Proćków, M. & Proćków, J. Climatic niche of selinum alatum (Apiaceae, Selineae), a new invasive plant species in central Europe and its alterations according to the climate change scenarios: are the European mountains threatened by invasion? PubMed DOI PMC
Chen, N., Yuan, L., Wu, H. & Xue, J. Climate change’s influence on
Ponti, L. & Gutierrez, A. P. Challenging the status quo in invasive species assessment using mechanistic physiologically based demographic modeling. DOI
Srivastava, V., Roe, A. D., Keena, M. A., Hamelin, R. C. & Griess, V. C. Oh the places they’ll go: improving species distribution modelling for invasive forest pests in an uncertain world. DOI
Van Rees, C. B. et al. Safeguarding freshwater life beyond 2020: recommendations for the new global biodiversity framework from the European experience. DOI
Bonannella, C. et al. Forest tree species distribution for Europe 2000–2020: mapping potential and realized distributions using Spatiotemporal machine learning. PubMed DOI PMC
Khoshnamvand, H., Vaissi, S., Azimi, M. & Ahmadzadeh, F. Phylogenetic Climatic niche evolution and diversification of the PubMed DOI PMC
Makki, T., Mostafavi, H., Matkan, A. & Aghighi, H. Modelling Climate-Change impact on the Spatial distribution of Garra Rufa (Heckel, 1843) (Teleostei: Cyprinidae). DOI
Abdoli, A., Valikhani, H., Nejat, F. & Khosravi, M.
Bănărescu, P. & Coad, B. W. in
Rylková, K., Kalous, L., Bohlen, J., Lamatsch, D. K. & Petrtýl, M. Phylogeny and biogeographic history of the cyprinid fish genus DOI
In (ed. Bănărescu, P.) (Aula-Verl, (2002).
Bănărescu, P. & Banarescu, P.
Morgan, D. L. & Beatty, S. J.
Elgin, E., Tunna, H. & Jackson, L. First confirmed records of Prussian carp, Carassius Gibelio (Bloch, 1782) in open waters of North America. DOI
Gyorui Kensaku, N. S.
Richardson, M. J., Whoriskey, F. G. & Roy, L. H. Turbidity generation and biological impacts of an exotic fish Carassius auratus, introduced into shallow seasonally anoxic ponds.
Rylková, K. & Kalous, L. New finding of non-indigenous Japanese cyprinid fish in the Czech Republic.
Coad, B. W. & Abdoli, A. Exotic fish species in the fresh waters of Iran.
Khosravi, M. et al. Toward a preliminary assessment of the diversity and origin of cyprinid fish genus DOI
Abdoli, A.
Eagderi, S., Moulodi-saleh, A., Esmaeili, H. R., Sayyadzadeh, G. & nasri, M. Freshwater lamprey and fishes of Iran; a revised and updated annotated checklist-2022. DOI
Jouladeh-Roudbar, A., Ghanavi, H. R. & Doadrio, I. Ichthyofauna From Iranian Freshwater: Annotated Checklist, Diagnosis, Taxonomy, Distribution and Conservation Assessment. PubMed PMC
Sayyadzadeh, G. & Esmaeili, H. R. <strong > Freshwater lamprey and fishes of iran: reappraisal and updated checklist with a note on Eagderi < em > et al. (2022)</strong >. PubMed DOI
Moghaddas, S. D. et al. Identifying invasive fish species threats to RAMSAR wetland sites in the Caspian sea region—A case study of the Anzali wetland complex (Iran). DOI
Shahraki, M. Z. et al. Distribution and expansion of alien fish species in the Karun river Basin, Iran. PubMed DOI PMC
Calizza, E., Rossi, L., Careddu, G., Sporta Caputi, S. & Costantini, M. L. A novel approach to quantifying trophic interaction strengths and impact of invasive species in food webs. DOI
Adeniran-Obey, S. O. & Osagie, D. A. in
Fazeli, N.
Fromherz, A. J.
Noori, S. et al. Extensive mismatch between protected areas and biodiversity hotspots of Iranian lepidoptera. DOI
Shorabeh, S. N. et al. The site selection of wind energy power plant using GIS-multi-criteria evaluation from economic perspectives. DOI
Ramezani, E. et al. Between the mountains and the sea: late holocene Caspian sea level fluctuations and vegetation history of the lowland forests of Northern Iran. DOI
Salahi, A. & Asareh, M. H.
Dar, S. A. et al. Projected climate change threatens Himalayan brown bear habitat more than human land use. DOI
Hamid, M. et al. Impact of climate change on the distribution range and niche dynamics of Himalayan birch, a typical treeline species in Himalayas. DOI
Cobos, M. E., Barve, N., Barve, V. & Jimenez-Valverde, A. & Nuñez-Penichet, C. Rangemap: simple tools for defining species ranges. at (2021). https://github.com/marlonecobos/rangemap
Zizka, A. et al. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. DOI
Steen, V. A., Tingley, M. W., Paton, P. W. C. & Elphick, C. S. Spatial thinning and class balancing: key choices lead to variation in the performance of species distribution models with citizen science data. DOI
Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. SpThin: an R package for Spatial thinning of species occurrence records for use in ecological niche models. DOI
ESRI. ArcGIS Desktop. ESRI. ArcGIS Desktop: Release 10. (2011).
Sanderson, E. W. et al. The human footprint and the last of the wild. DOI
James, G., Witten, D., Hastie, T. & Tibshirani, R.
Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD – a platform for ensemble forecasting of species distributions. DOI
Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N. & Zimmermann, N. E. Uncertainty in ensembles of global biodiversity scenarios. PubMed DOI PMC
R Development Core Team. R: a Language and Environment for Statistical Computing. (2021).
Leathwick, J. R. et al. Use of generalised dissimilarity modelling to improve the biological discrimination of river and stream classifications. DOI
McCullagh, P. & Nelder, J. A.
Friedman, J. H. Greedy function approximation: A gradient boosting machine.
Breiman, L. Random forests. DOI
Walczak, S. & Cerpa, N.
Hastie, T., Tibshirani, R. & Buja, A. Flexible discriminant analysis by optimal scoring. DOI
Wang, J. L., Chiou, J. M. & Müller, H. G. Functional data analysis. DOI
Rahmati, K., Ashofteh, P. S. & Loáiciga, H. A. Application of the grasshopper optimization algorithm (GOA) to the optimal operation of hydropower reservoir systems under climate change. DOI
Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K. & Thuiller, W. Evaluation of consensus methods in predictive species distribution modelling. DOI
Intergovernmental Panel On Climate Change (IPCC).
Lu, Q. B. Critical review on radiative forcing and climate models for global climate change since 1970. DOI
Goberville, E., Beaugrand, G., Hautekèete, N., Piquot, Y. & Luczak, C. Uncertainties in the projection of species distributions related to general circulation models. PubMed DOI PMC
Paź-Dyderska, S., Jagodziński, A. M. & Dyderski, M. K. Possible changes in Spatial distribution of walnut (Juglans regia L.) in Europe under warming climate. DOI
Dyderski, M. K., Jagodziński, A., Paź-Dyderska, S. & Puchałka, R. DOI
Dyderski, M. K., Paź-Dyderska, S., Jagodziński, A. M. & Puchałka, R. Shifts in native tree species distributions in Europe under climate change. PubMed DOI
Gramacki, A.
University of Mary Washington &, Yin, P., Kernels & Estimation, D. DOI
Chabrerie, O. et al. Biological Invasion Theories: Merging Perspectives from Population, Community and Ecosystem Scales. Preprint at (2019). 10.20944/preprints201910.0327.v1
Li, X., Emery, R. N., Coupland, G. T., Ren, Y. & McKirdy, S. J. A comparison of multiple species distribution models and the ensemble model technique for ecological niche analysis: an Australian biosecurity case study using false codling moth as an exemplar species. SSRN Scholarly Paper at (2023). 10.2139/ssrn.4664172
Ashrafzadeh, M. R. et al. Modeling climate change impacts on the distribution of an endangered brown bear population in its critical habitat in Iran. PubMed DOI
Bowler, D. E. et al. Treating gaps and biases in biodiversity data as a missing data problem. PubMed DOI PMC
Ge, X., Griswold, C. K. & Newman, J. A. Robust species distribution predictions of predator and prey responses to climate change. DOI
Maclean, I. M. D. Predicting future climate at high Spatial and Temporal resolution. PubMed DOI PMC
Merchant, C. J. et al. Uncertainty information in climate data records from Earth observation. DOI
Chowdhary, M. A., Sharma, V., Gadri, H. S., Roy, S. & Bhardwaj, P. Spatio-temporal mapping and climate change impact on current and future expansion of P. roxburghii in the Himalayan biodiversity hotspot. PubMed DOI
Hubbard, J. A. G., Drake, D. A. R. & Mandrak, N. E. Climate change alters global invasion vulnerability among ecoregions. DOI
Liu, X., Guo, Z., Ke, Z., Wang, S. & Li, Y. Increasing potential risk of a global aquatic invader in Europe in contrast to other continents under future climate change. PubMed DOI PMC
Carosi, A., Padula, R., Ghetti, L. & Lorenzoni, M. Endemic freshwater fish range shifts related to global climate changes: A Long-Term study provides some observational evidence for the mediterranean area. DOI
Mamun, M., Kim, S. & An, K. G. Distribution pattern prediction of an invasive alien species largemouth bass using a maximum entropy model (MaxEnt) in the Korean Peninsula. DOI
Bagheri, B. & Soltani, A. The spatio-temporal dynamics of urban growth and population in metropolitan regions of Iran. DOI
Jia, Y. & Climate Habitat and human disturbance driving the variation of life-history traits of the invasive goldfish Carassius auratus (Linnaeus, 1758) in a Tibetan plateau river. DOI
Hong, S. et al. Predicting potential habitat changes of two invasive alien fish species with climate change at a regional scale. DOI
Britton, J. R. et al. Preventing and controlling nonnative species invasions to Bend the curve of global freshwater biodiversity loss. DOI
Kim, Z., Shim, T., Ki, S. J., An, K. G. & Jung, J. Prediction of three-dimensional shift in the distribution of largemouth bass ( DOI
Pauchard, A. et al. Non-native and native organisms moving into high elevation and high latitude ecosystems in an era of climate change: new challenges for ecology and conservation. DOI
Denoël, M. & Ficetola, G. F. Using kernels and ecological niche modeling to delineate conservation areas in an endangered patch-breeding phenotype. PubMed DOI
Carter, S. et al. Spatial prioritization for widespread invasive species control: Trade-offs between current impact and future spread. PubMed DOI
Liu, G. et al. The influence of Climatic and human-induced factors on the Spatial distribution of invasive plant species richness across the loess plateau.
Ricciardi, A. et al. Four priority areas to advance invasion science in the face of rapid environmental change. DOI
Ricciardi, A. et al. Invasion science: A horizon scan of emerging challenges and opportunities. PubMed DOI
Cabral, J. S. et al. The road to integrate climate change projections with regional land-use–biodiversity models. DOI
Leclerc, C. et al. Climate impacts on lake Food-Webs are mediated by biological invasions. PubMed DOI PMC