Synthesis of m,n‑Diaza[n]helicenes via Skeletal Editing of Indeno[2,1‑c]fluorene-5,8-diols
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41169553
PubMed Central
PMC12569675
DOI
10.1021/jacsau.5c00729
Knihovny.cz E-zdroje
- Klíčová slova
- Schmidt reaction, diazahelicene, enantioselectivity, reaction mechanism, skeletal editing,
- Publikační typ
- časopisecké články MeSH
Skeletal editing of 5-membered carbocycles to 6-membered heteroaromatic compounds represents an attractive concept that would enable late-stage heteroarene construction. However, the current state of the art does not offer many synthetic strategies on how to achieve such a goal. One of those is based on a reaction of aromatic tertiary alcohols with sodium azide under acidic conditions, i.e., the Schmidt reaction. Herein, we present a hitherto unexplored double Schmidt reaction toward aromatic compounds possessing two pyridine rings. It is the first example of a conversion of 5,8-disubstituted indeno-[2,1-c]-fluorene-5,8-diols to m,n-diaza-[5]-helicenes in high yields. We also demonstrate that the regioisomeric ratio can be controlled, to a certain extent, by tuning conditions. Mechanistic investigation encompassing experimental as well as DFT calculations sheds light on the course of the reaction and provides a rationale for the observed regioselectivity and its control. In addition, structures of several diaza[5]-helicenes and intermediates were unequivocally confirmed by single crystal X-ray diffraction analyses. The double Schmidt rearrangement strategy was also applied for the transformation of enantioenriched [7]-helical indeno-[2,1-c]-fluorene-5,8-diols into the corresponding enantioenriched m,n-diaza-[7]-helicenes without significant loss of enantiopurity. Their structures were also unequivocally confirmed by single crystal X-ray diffraction analyses.
Zobrazit více v PubMed
Joynson B. W., Ball L. T.. Skeletal Editing: Interconversion of Arenes and Heteroarenes. Helv. Chim. Acta. 2023;106:e202200182. doi: 10.1002/hlca.202200182. DOI
Hui C., Wang Z., Wang S., Xu C.. Molecular editing in natural product synthesis. Org. Chem. Front. 2022;9:1451–1457. doi: 10.1039/D2QO00043A. DOI
Ma C., Lindsley C. W., Chang J., Yu B.. Rational Molecular Editing: A New Paradigm in Drug Discovery. J. Med. Chem. 2024;67:11459–11466. doi: 10.1021/acs.jmedchem.4c01347. PubMed DOI
Peplow M.. ‘Almost magical’: chemists can now move single atoms in and out of a molecule’s core. Nature. 2023;618:21–24. doi: 10.1038/d41586-023-01735-1. PubMed DOI
Patel C. K., Kant K., Banerjee S., Kalita S., Atta A. K., Malakar C. C.. Skeletal Editing through Single-Atom Insertion and Transmutation: An Insight into a New Era of Synthetic Organic Chemistry. Synthesis. 2024;56:3793–3814. doi: 10.1055/a-2395-5804. DOI
Sharma R., Arisawa M., Takizawa S., Salem M. S. H.. Remodelling molecular frameworks via atom-level surgery: recent advances in skeletal editing of (hetero)cycles. Org. Chem. Front. 2025;12:1633–1670. doi: 10.1039/D4QO02157F. DOI
Reisenbauer J. C., Green O., Franchino A., Finkelstein P., Morandi B.. Late-stage diversification of indole skeletons through nitrogen atom insertion. Science. 2022;377:1104. doi: 10.1126/science.add1383. PubMed DOI
Liu Z., Sivaguru P., Ning Y., Wu Y., Bi X.. Skeletal Editing of (Hetero)Arenes Using Carbenes. Chem.Eur. J. 2023;29:e202301227. doi: 10.1002/chem.202301227. PubMed DOI
Liu S., Yang Y., Song Q., Liu Y., Sivaguru P., Zhang Y., de Ruiter G., Anderson E. A., Bi H.. Halogencarbene-free Ciamician-Dennstedt single-atom skeletal editing. Nat. Commun. 2024;15:9998. doi: 10.1038/s41467-024-54379-8. PubMed DOI PMC
Hyland E. E., Kelly P. Q., McKillop A. M., Dherange B. D., Levin M. D.. Unified Access to Pyrimidines and Quinazolines Enabled by N–N Cleaving Carbon Atom Insertion. J. Am. Chem. Soc. 2022;144:19258–19264. doi: 10.1021/jacs.2c09616. PubMed DOI PMC
Feng J., Wang L., Xue X., Chao Z., Hong B., Gu Z.. Ring-Expansion Strategy for α-Aryl Azahelicene Construction: Building Blocks for Optoelectronic Materials. Org. Lett. 2021;23:8056–8061. doi: 10.1021/acs.orglett.1c03070. PubMed DOI
Nishimoto M., Uetake Y., Yakiyama Y., Sakurai H.. Thermodynamic Differentiation of the Two Sides of Azabuckybowl through Complexation with Square Planar Platinum(II) Chem.Asian J. 2023;18:2508–2519. doi: 10.1002/asia.202201103. PubMed DOI
Wang J., Lu H., He Y., Jing C., Wei H.. Cobalt-Catalyzed Nitrogen Atom Insertion in Arylcycloalkenes. J. Am. Chem. Soc. 2022;144:22433–22439. doi: 10.1021/jacs.2c10570. PubMed DOI
Reviews on helicenes: Chen, C.-F. ; Shen, Y. . Helicene Chemistry. From Synthesis to Applications. Springer-Verlag: Berlin Heidelberg, 2017.
Lin W.-B., Li M., Fang L., Chen C.-F.. Recent progress on multidimensional construction of helicenes. Chin. Chem. Lett. 2018;29:40–46. doi: 10.1016/j.cclet.2017.08.039. DOI
Gulevskaya A. V., Tonkoglazova D. I.. Alkyne-Based Syntheses of Carbo- and Heterohelicenes. Adv. Synth. Catal. 2022;364:2502–2539. doi: 10.1002/adsc.202200513. DOI
Liu W., Qin T., Xie W., Yang X.. Catalytic Enantioselective Synthesis of Helicenes. Chem.Eur. J. 2022;28:e202202369. doi: 10.1002/chem.202202369. PubMed DOI
Dhbaibi K., Favereau L., Crassous J.. Enantioenriched Helicenes and Helicenoids Containing Main-Group Elements (B, Si, N, P) Chem. Rev. 2019;119:8846–8963. doi: 10.1021/acs.chemrev.9b00033. PubMed DOI
Degač M., Kotora M.. Synthesis and Application of Diaza[5]helicenes. Targets Heterocycl. Syst. 2023;27:360–378.
Hoffmann N.. Photochemical reactions applied to the synthesis of helicenes and helicene-like compounds. J. Photoch. Photobio. C. 2014;19:1–19. doi: 10.1016/j.jphotochemrev.2013.11.001. DOI
Storch, J. ; Žádný, J. ; Církva, V. ; Jakubec, M. ; Hrbáč, J. ; Vacek, J. . Helicenes: Synthesis, Properties, and Applications, 1st ed.; Crassous, J. , Stará, I. G. , Starý, I. , Eds.; WILEY-VCH GmbH, 2022.
Stará I. G., Starý I.. Helically Chiral Aromatics: The Synthesis of Helicenes by [2 + 2 + 2]Cycloisomerization of π-Electron Systems. Acc. Chem. Res. 2020;53:144–158. doi: 10.1021/acs.accounts.9b00364. PubMed DOI
Bräse S., Gil C., Knepper K., Zimmermann V.. Organic azides: an exploding diversity of a unique class of compounds. Angew. Chem., Int. Ed. 2005;44:5188–5240. doi: 10.1002/anie.200400657. PubMed DOI
Nishimoto M., Uetake Y., Yakiyama Y., Ishiwari F., Saeki A., Sakurai H.. Synthesis of the C70 Fragment Buckybowl, Homosumanene, and Heterahomosumanenes via Ring-Expansion Reactions from Sumanenone. J. Org. Chem. 2022;87:2508–2519. doi: 10.1021/acs.joc.1c02416. PubMed DOI
Bräse S., Gil C., Knepper K., Zimmermann V.. Organic azides: an exploding diversity of a unique class of compounds. Angew. Chem., Int. Ed. 2005;44:5188–5240. doi: 10.1002/anie.200400657. PubMed DOI
Caronna T., Gabbiadini S., Mele A., Recupero F.. Approaches to the Azahelicene System: Synthesis and Spectroscopic Characterization of Some Diazapentahelicenes. Helv. Chim. Acta. 2002;85:1–8. doi: 10.1002/1522-2675(200201)85:1<1::AID-HLCA1>3.0.CO;2-C. DOI
Kaiser R. P., Nečas D., Cadart T., Gyepes R., Císařová I., Mosinger J., Pospíšil L., Kotora M.. Straightforward Synthesis and Properties of Highly Fluorescent [5]- and [7]-Helical Dispiroindeno[2,1-c]fluorenes. Angew. Chem., Int. Ed. 2019;58:17169–17174. doi: 10.1002/anie.201908348. PubMed DOI
Marenich V. A., Cramer C. J., Truhlar D. G.. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B. 2009;113:6378–6396. doi: 10.1021/jp810292n. PubMed DOI
Klamt A.. The COSMO and COSMO-RS Solvation Models. WIREs Comput. Mol. Sci. 2018;8:e1338. doi: 10.1002/wcms.1338. DOI
Frisch, M. J. ; Trucks, G. W. ; Schlegel, H. B. ; Scuseria, G. E. ; Robb, M. A. ; Cheeseman, J. R. ; Scalmani, G. ; Barone, V. ; Petersson, G. A. ; Nakatsuji, H. ; et al. Gaussian 16, revision C.01; Gaussian, Inc.: Wallingford, CT, 2016.
Becke A. D.. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI
Lee C., Yang W., Parr R. G.. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI
Vosko S. H., Wilk L., Nusair M.. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys. 1980;58:1200–1211. doi: 10.1139/p80-159. DOI
Stephens P. J., Devlin F. J., Chabalowski C. F., Frisch M. J.. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994;98:11623–11627. doi: 10.1021/j100096a001. DOI
Grimme S., Antony J., Ehrlich S., Krieg H.. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI
Grimme S., Ehrlich S., Goerigk L.. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011;32:1456–1465. doi: 10.1002/jcc.21759. PubMed DOI
Pracht P., Bohle F., Grimme S.. Automated Exploration of the Low-Energy Chemical Space with Fast Quantum Chemical Methods. Phys. Chem. Chem. Phys. 2020;22:7169–7192. doi: 10.1039/C9CP06869D. PubMed DOI
Bannwarth C., Ehlert S., Grimme S.. GFN2-xTBAn Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput. 2019;15:1652–1671. doi: 10.1021/acs.jctc.8b01176. PubMed DOI
Bannwarth C., Caldeweyher E., Ehlert S., Hansen A., Pracht P., Seibert J., Spicher S., Grimme S.. Extended tight-binding Quantum Chemistry Methods. WIREs Comput. Mol. Sci. 2021;11:e1493. doi: 10.1002/wcms.1493. DOI
Becke A. D.. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A. 1988;38:3098–3100. doi: 10.1103/PhysRevA.38.3098. PubMed DOI
Perdew J. P.. Density-Functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas. Phys. Rev. B. 1986;33:8822–8824. doi: 10.1103/PhysRevB.33.8822. PubMed DOI
Hostaš J., Řezáč J.. Accurate DFT-D3 Calculations in a Small Basis Set. J. Chem. Theory Comput. 2017;13:3575–3585. doi: 10.1021/acs.jctc.7b00365. PubMed DOI
Godbout N., Salahub D. R., Andzelm J., Wimmer E.. Optimization of Gaussian-Type Basis Sets for Local Spin Density Functional Calculations. Part I. Boron through Neon, Optimization Technique and Validation. Can. J. Chem. 1992;70:560–571. doi: 10.1139/v92-079. DOI
Pritchard B. P., Altarawy D., Didier B., Gibson T. D., Windus T. L.. A New Basis Set Exchange: An Open, Up-to-date Resource for the Molecular Sciences Community. J. Chem. Inf. Model. 2019;59:4814–4820. doi: 10.1021/acs.jcim.9b00725. PubMed DOI
Custom D3BJ dispersion parameters. https://www.rezacovi.cz/science/dft-d3.html (accessed Mar 18, 2024).
Zhang X., Paton R. S.. Stereoretention in styrene heterodimerisation promoted by one-electron oxidants. Chem. Sci. 2020;11:9309–9324. doi: 10.1039/D0SC03059G. PubMed DOI PMC
Chai J., Head-Gordon M.. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008;10:6615. doi: 10.1039/b810189b. PubMed DOI
Klamt A., Diedenhofen M.. A refined cavity construction algorithm for the conductor-like screening model. J. Comput. Chem. 2018;39:1648–1655. doi: 10.1002/jcc.25342. PubMed DOI
Young R. N.. NMR Spectroscopy of carbanions and carbocations. Prog. Nucl. Magn. Reson. Spectrosc. 1979;12:261–286. doi: 10.1016/0079-6565(79)80004-7. DOI
Hallett-Tapley G., Cozens F. L., Schepp N. P.. Absolute reactivity of arylallyl carbocations. J. Phys. Org. Chem. 2009;22:343–348. doi: 10.1002/poc.1484. DOI
Ammer J., Mayr H.. Solvent nucleophilicities of hexafluoroisopropanol/water mixtures. J. Phys. Org. Chem. 2013;26:59–63. doi: 10.1002/poc.3064. DOI
Motiwala H. F., Armaly A. M., Cacioppo J. G., Coombs T. C., Koehn K. R., Norwood V. M. IV, Aubé J.. HFIP in Organic Synthesis. Chem. Rev. 2022;122:12544–12747. doi: 10.1021/acs.chemrev.1c00749. PubMed DOI
Tian F.-X., Qu J.. Studies on the Origin of the Stabilizing Effects of Fluorinated Alcohols and Weakly Coordinated Fluorine-Containing Anions on Cationic Reaction Intermediates. J. Org. Chem. 2022;87:1814–1829. doi: 10.1021/acs.joc.1c02361. PubMed DOI
Abramovitch, R. A. ; Kyba, E. P. . Decomposition of organic azides. The Chemistry of the Azido Group; Patai, S. , Ed.; John Wiley & Sons, 1971; Ch. 5, pp 221–329.
Wentrup C.. Nitrenes, Carbenes, Diradicals, and Ylides. Interconversions of Reactive Intermediates. Acc. Chem. Res. 2011;44:393–404. doi: 10.1021/ar700198z. PubMed DOI
Wentrup C.. Rearrangements and Interconversions of Carbenes and Nitrenes. Top. Curr. Chem. 1976;62:173–251. doi: 10.1007/BFb0046048. PubMed DOI
Cadart T., Nečas D., Kaiser R. P., Favereau L., Císařová I., Gyepes R., Hodačová J., Kalíková K., Bednárová L., Crassous J., Kotora M.. Rhodium Catalyzed Enantioselective Synthesis of Highly Fluorescent and CPL Active Dispiroindeno[2,1-c]fluorenes. Chem.Eur. J. 2021;27:11279–11284. doi: 10.1002/chem.202100759. PubMed DOI
Kaehler T., John A., Jin T., Bolte M., Lerner H.-W., Wagner M.. Selective Vicinal Diiodination of Polycyclic Aromatic Hydrocarbons. Eur. J. Org. Chem. 2020;2020:5847–5851. doi: 10.1002/ejoc.202000954. DOI
Bazzini C., Caronna T., Fontana F., Macchi P., Mele A., Natali Sora I., Panzeri W., Sironi A.. Synthesis, crystal structure and crystal packing of diaza[5]helicenes. New J. Chem. 2008;32:1710–1717. doi: 10.1039/b800050f. DOI
Sýkora, J. ; Císařová, I. ; Církva, V. ; Storch, J. . CCDC 206539, CSD Communication 2021. 10.5517/ccdc.csd.cc27668y. DOI
Romain M., Thiery S., Shirinskaya A., Declairieux C., Tondelier D., Geffroy B., Jeannin O., Rault-Berthelot J., Metivier R., Poriel C.. ortho-, meta-, and para-Dihydroindenofluorene Derivatives as Host Materials for Phosphorescent OLEDs. Angew. Chem., Int. Ed. 2015;54:1176–1180. doi: 10.1002/anie.201409479. PubMed DOI