Engineering a Functional Histidine Brace Copper-Binding Site into a De Novo-Designed Protein Scaffold

. 2025 Oct 27 ; 5 (10) : 4799-4810. [epub] 20250929

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41169579

De novo metalloprotein design has contributed to tremendous advances in bioinorganic chemistry by allowing the manufacturing of proteins with unique structures and functionalities that go beyond evolutionary constraints. Among the array of metal sites that can be engineered within de novo scaffolds, the design of catalytic copper centers is particularly challenging but still harder to achieve due to the versatile coordination environment and redox properties of the copper ion. Here, we present miniLPMO, a fully de novo protein, incorporating a functional histidine brace copper-binding site. Starting from a four-helix-bundle scaffold based on the designed homodimeric α2D protein, our design has integrated rational and computational strategies to optimize coordination shell residues. Circular dichroism and analytical ultracentrifugation experiments indicate that the folding and dimerization state is driven by copper binding. A detailed characterization by UV-Vis and EPR revealed that miniLPMO replicates the spectroscopic features of natural histidine brace sites. Finally, the designed metalloprotein catalyzes the cleavage of glycosidic bonds upon hydrogen peroxide activation, mimicking the activity of natural lytic polysaccharide monooxygenases (LPMOs). This study establishes the feasibility of integrating peculiar catalytic metal-binding sites into scaffolds unrelated to the native protein and designed entirely from scratch.

Zobrazit více v PubMed

Leone L., De Fenza M., Esposito A., Maglio O., Nastri F., Lombardi A.. Peptides and Metal Ions: A Successful Marriage for Developing Artificial Metalloproteins. J. Pept. Sci. 2024;30(10):e3606. doi: 10.1002/psc.3606. PubMed DOI

Nastri F., D’Alonzo D., Leone L., Zambrano G., Pavone V., Lombardi A.. Engineering Metalloprotein Functions in Designed and Native Scaffolds. Trends Biochem. Sci. 2019;44(12):1022–1040. doi: 10.1016/j.tibs.2019.06.006. PubMed DOI

Chalkley M. J., Mann S. I., DeGrado W. F.. De Novo Metalloprotein Design. Nat. Rev. Chem. 2022;6(1):31–50. doi: 10.1038/s41570-021-00339-5. PubMed DOI PMC

Koebke K. J., Pinter T. B. J., Pitts W. C., Pecoraro V. L.. Catalysis and Electron Transfer in De Novo Designed Metalloproteins. Chem. Rev. 2022;122(14):12046–12109. doi: 10.1021/acs.chemrev.1c01025. PubMed DOI PMC

La Gatta S., Pecoraro V. L.. Recent Advances in de Novo Designed Metallopeptides as Tailored Enzyme Mimics. Curr. Opin. Chem. Biol. 2025;86:102586. doi: 10.1016/j.cbpa.2025.102586. PubMed DOI PMC

Pirro F., Schmidt N., Lincoff J., Widel Z. X., Polizzi N. F., Liu L., Therien M. J., Grabe M., Chino M., Lombardi A., DeGrado W. F.. Allosteric Cooperation in a de Novo-Designed Two-Domain Protein. Proc. Natl. Acad. Sci. U. S. A. 2020;117(52):33246–33253. doi: 10.1073/pnas.2017062117. PubMed DOI PMC

Stenner R., Steventon J. W., Seddon A., Anderson J. L. R.. A de Novo Peroxidase Is Also a Promiscuous yet Stereoselective Carbene Transferase. Proc. Natl. Acad. Sci. U. S. A. 2020;117(3):1419–1428. doi: 10.1073/pnas.1915054117. PubMed DOI PMC

Leone L., D’Alonzo D., Maglio O., Pavone V., Nastri F., Lombardi A.. Highly Selective Indole Oxidation Catalyzed by a Mn-Containing Artificial Mini-Enzyme. ACS Catal. 2021;11(15):9407–9417. doi: 10.1021/acscatal.1c01985. DOI

Jenkins J. M. X., Noble C. E. M., Grayson K. J., Mulholland A. J., Anderson J. L. R.. Substrate Promiscuity of a de Novo Designed Peroxidase. J. Inorg. Biochem. 2021;217:111370. doi: 10.1016/j.jinorgbio.2021.111370. PubMed DOI

Basler S., Studer S., Zou Y., Mori T., Ota Y., Camus A., Bunzel H. A., Helgeson R. C., Houk K. N., Jiménez-Osés G., Hilvert D.. Efficient Lewis Acid Catalysis of an Abiological Reaction in a de Novo Protein Scaffold. Nat. Chem. 2021;13(3):231–235. doi: 10.1038/s41557-020-00628-4. PubMed DOI

Edwards E. H., Le J. M., Salamatian A. A., Peluso N. L., Leone L., Lombardi A., Bren K. L.. A Cobalt Mimochrome for Photochemical Hydrogen Evolution from Neutral Water. J. Inorg. Biochem. 2022;230:111753. doi: 10.1016/j.jinorgbio.2022.111753. PubMed DOI PMC

Chino M., La Gatta S., Leone L., De Fenza M., Lombardi A., Pavone V., Maglio O.. Dye Decolorization by a Miniaturized Peroxidase Fe-MimochromeVI*a. Int. J. Mol. Sci. 2023;24(13):11070. doi: 10.3390/ijms241311070. PubMed DOI PMC

Kalvet I., Ortmayer M., Zhao J., Crawshaw R., Ennist N. M., Levy C., Roy A., Green A. P., Baker D.. Design of Heme Enzymes with a Tunable Substrate Binding Pocket Adjacent to an Open Metal Coordination Site. J. Am. Chem. Soc. 2023;145(26):14307–14315. doi: 10.1021/jacs.3c02742. PubMed DOI PMC

Borghesani V., Zastrow M. L., Tolbert A. E., Deb A., Penner-Hahn J. E., Pecoraro V. L.. Co­(II) Substitution Enhances the Esterase Activity of a de Novo Designed Zn­(II) Carbonic Anhydrase. Chem. – Eur. J. 2024;30(24):e202304367. doi: 10.1002/chem.202304367. PubMed DOI PMC

Pitts W. C., Deb A., Penner-Hahn J. E., Pecoraro V. L.. Revving up a Designed Copper Nitrite Reductase Using Noncoded Active Site Ligands. ACS Catal. 2024;14(6):4362–4368. doi: 10.1021/acscatal.3c06159. PubMed DOI PMC

Zambrano G., Nastri F., Pavone V., Lombardi A., Chino M.. Use of an Artificial Miniaturized Enzyme in Hydrogen Peroxide Detection by Chemiluminescence. Sensors. 2020;20(13):3793. doi: 10.3390/s20133793. PubMed DOI PMC

Renzi E., Piper A., Nastri F., Merkoçi A., Lombardi A.. An Artificial Miniaturized Peroxidase for Signal Amplification in Lateral Flow Immunoassays. Small. 2023;19(51):2207949. doi: 10.1002/smll.202207949. PubMed DOI

Lengyel Z., Rufo C. M., Moroz Y. S., Makhlynets O. V., Korendovych I. V.. Copper-Containing Catalytic Amyloids Promote Phosphoester Hydrolysis and Tandem Reactions. ACS Catal. 2018;8(1):59–62. doi: 10.1021/acscatal.7b03323. PubMed DOI PMC

Zambrano G., Sekretareva A., D’Alonzo D., Leone L., Pavone V., Lombardi A., Nastri F.. Oxidative Dehalogenation of Trichlorophenol Catalyzed by a Promiscuous Artificial Heme-Enzyme. RSC Adv. 2022;12(21):12947–12956. doi: 10.1039/D2RA00811D. PubMed DOI PMC

D’Alonzo D., De Fenza M., Pavone V., Lombardi A., Nastri F.. Selective Oxidation of Halophenols Catalyzed by an Artificial Miniaturized Peroxidase. Int. J. Mol. Sci. 2023;24(9):8058. doi: 10.3390/ijms24098058. PubMed DOI PMC

Peacock A. F.. Incorporating Metals into de Novo Proteins. Curr. Opin. Chem. Biol. 2013;17(6):934–939. doi: 10.1016/j.cbpa.2013.10.015. PubMed DOI

Pott M., Hayashi T., Mori T., Mittl P. R. E., Green A. P., Hilvert D.. A Noncanonical Proximal Heme Ligand Affords an Efficient Peroxidase in a Globin Fold. J. Am. Chem. Soc. 2018;140(4):1535–1543. doi: 10.1021/jacs.7b12621. PubMed DOI

Koebke K. J., Kühl T., Lojou E., Demeler B., Schoepp-Cothenet B., Iranzo O., Pecoraro V. L., Ivancich A.. The pH-Induced Selectivity Between Cysteine or Histidine Coordinated Heme in an Artificial α-Helical Metalloprotein. Angew. Chem., Int. Ed. 2021;60(8):3974–3978. doi: 10.1002/anie.202012673. PubMed DOI PMC

Zastrow M. L., Peacock A. F. A., Stuckey J. A., Pecoraro V. L.. Hydrolytic Catalysis and Structural Stabilization in a Designed Metalloprotein. Nat. Chem. 2012;4(2):118–123. doi: 10.1038/nchem.1201. PubMed DOI PMC

La Gatta S., Leone L., Maglio O., De Fenza M., Nastri F., Pavone V., Chino M., Lombardi A.. Unravelling the Structure of the Tetrahedral Metal-Binding Site in METP3 through an Experimental and Computational Approach. Molecules. 2021;26(17):5221. doi: 10.3390/molecules26175221. PubMed DOI PMC

Shah A., Taylor M. J., Molinaro G., Anbu S., Verdu M., Jennings L., Mikulska I., Diaz-Moreno S., EL Mkami H., Smith G. M., Britton M. M., Lovett J. E., Peacock A. F. A.. Design of the Elusive Proteinaceous Oxygen Donor Copper Site Suggests a Promising Future for Copper for MRI Contrast Agents. Proc. Natl. Acad. Sci. U. S. A. 2023;120(27):e2219036120. doi: 10.1073/pnas.2219036120. PubMed DOI PMC

Di Costanzo L. F., Sgueglia G., Orlando C., Polentarutti M., Leone L., La Gatta S., De Fenza M., De Gioia L., Lombardi A., Arrigoni F., Chino M.. Structural Insights into Temperature-Dependent Dynamics of METPsc1, a Miniaturized Electron-Transfer Protein. J. Inorg. Biochem. 2025;264:112810. doi: 10.1016/j.jinorgbio.2024.112810. PubMed DOI

Prakash D., Mitra S., Sony S., Murphy M., Andi B., Ashley L., Prasad P., Chakraborty S.. Controlling Outer-Sphere Solvent Reorganization Energy to Turn on or off the Function of Artificial Metalloenzymes. Nat. Commun. 2025;16(1):3048. doi: 10.1038/s41467-025-57904-5. PubMed DOI PMC

Shiga D., Funahashi Y., Masuda H., Kikuchi A., Noda M., Uchiyama S., Fukui K., Kanaori K., Tajima K., Takano Y., Nakamura H., Kamei M., Tanaka T.. Creation of a Binuclear Purple Copper Site within a de Novo Coiled-Coil Protein. Biochemistry. 2012;51(40):7901–7907. doi: 10.1021/bi3007884. PubMed DOI

Chino M., Leone L., Maglio O., D’Alonzo D., Pirro F., Pavone V., Nastri F., Lombardi A.. A De Novo Heterodimeric Due Ferri Protein Minimizes the Release of Reactive Intermediates in Dioxygen-Dependent Oxidation. Angew. Chem., Int. Ed. 2017;56(49):15580–15583. doi: 10.1002/anie.201707637. PubMed DOI

Timm J., Pike D. H., Mancini J. A., Tyryshkin A. M., Poudel S., Siess J. A., Molinaro P. M., McCann J. J., Waldie K. M., Koder R. L., Falkowski P. G., Nanda V.. Design of a Minimal Di-Nickel Hydrogenase Peptide. Sci. Adv. 2023;9(10):eabq1990. doi: 10.1126/sciadv.abq1990. PubMed DOI PMC

Pirro F., La Gatta S., Arrigoni F., Famulari A., Maglio O., Del Vecchio P., Chiesa M., De Gioia L., Bertini L., Chino M., Nastri F., Lombardi A.. A De Novo-Designed Type 3 Copper Protein Tunes Catechol Substrate Recognition and Reactivity. Angew. Chem., Int. Ed. 2023;62(1):e202211552. doi: 10.1002/anie.202211552. PubMed DOI

Roy A., Sarrou I., Vaughn M. D., Astashkin A. V., Ghirlanda G.. De Novo Design of an Artificial Bis­[4Fe-4S] Binding Protein. Biochemistry. 2013;52(43):7586–7594. doi: 10.1021/bi401199s. PubMed DOI

Kim J. D., Pike D. H., Tyryshkin A. M., Swapna G. V. T., Raanan H., Montelione G. T., Nanda V., Falkowski P. G.. Minimal Heterochiral de Novo Designed 4Fe–4S Binding Peptide Capable of Robust Electron Transfer. J. Am. Chem. Soc. 2018;140(36):11210–11213. doi: 10.1021/jacs.8b07553. PubMed DOI PMC

Zhang S.-Q., Chino M., Liu L., Tang Y., Hu X., DeGrado W. F., Lombardi A.. De Novo Design of Tetranuclear Transition Metal Clusters Stabilized by Hydrogen-Bonded Networks in Helical Bundles. J. Am. Chem. Soc. 2018;140(4):1294–1304. doi: 10.1021/jacs.7b08261. PubMed DOI PMC

Chino M., Zhang S.-Q., Pirro F., Leone L., Maglio O., Lombardi A., DeGrado W. F.. Spectroscopic and Metal Binding Properties of a de Novo Metalloprotein Binding a Tetrazinc Cluster. Biopolymers. 2018;109(10):e23339. doi: 10.1002/bip.23229. PubMed DOI PMC

Hakemian A. S., Rosenzweig A. C.. The Biochemistry of Methane Oxidation. Annu. Rev. Biochem. 2007;76(1):223–241. doi: 10.1146/annurev.biochem.76.061505.175355. PubMed DOI

Frandsen K. E. H., Simmons T. J., Dupree P., Poulsen J.-C. N., Hemsworth G. R., Ciano L., Johnston E. M., Tovborg M., Johansen K. S., von Freiesleben P., Marmuse L., Fort S., Cottaz S., Driguez H., Henrissat B., Lenfant N., Tuna F., Baldansuren A., Davies G. J., Lo Leggio L., Walton P. H.. The Molecular Basis of Polysaccharide Cleavage by Lytic Polysaccharide Monooxygenases. Nat. Chem. Biol. 2016;12(4):298–303. doi: 10.1038/nchembio.2029. PubMed DOI PMC

Santos C. A., Morais M. A. B., Mandelli F., Lima E. A., Miyamoto R. Y., Higasi P. M. R., Araujo E. A., Paixão D. A. A., Junior J. M., Motta M. L., Streit R. S. A., Morão L. G., Silva C. B. C., Wolf L. D., Terrasan C. R. F., Bulka N. R., Diogo J. A., Fuzita F. J., Colombari F. M., Santos C. R., Rodrigues P. T., Silva D. B., Grisel S., Bernardes J. S., Terrapon N., Lombard V., Filho A. J. C., Henrissat B., Bissaro B., Berrin J.-G., Persinoti G. F., Murakami M. T.. A Metagenomic ‘Dark Matter’ Enzyme Catalyses Oxidative Cellulose Conversion. Nature. 2025;639(8056):1076–1083. doi: 10.1038/s41586-024-08553-z. PubMed DOI PMC

Ciano L., Davies G. J., Tolman W. B., Walton P. H.. Bracing Copper for the Catalytic Oxidation of C–H Bonds. Nat. Catal. 2018;1(8):571–577. doi: 10.1038/s41929-018-0110-9. DOI

Bissaro B., Eijsink V. G. H.. Lytic Polysaccharide Monooxygenases: Enzymes for Controlled and Site-Specific Fenton-like Chemistry. Essays Biochem. 2023;67(3):575–584. doi: 10.1042/EBC20220250. PubMed DOI PMC

Munzone A., Eijsink V. G. H., Berrin J.-G., Bissaro B.. Expanding the Catalytic Landscape of Metalloenzymes with Lytic Polysaccharide Monooxygenases. Nat. Rev. Chem. 2024;8(2):106–119. doi: 10.1038/s41570-023-00565-z. PubMed DOI

Lawton T. J., Kenney G. E., Hurley J. D., Rosenzweig A. C.. The CopC Family: Structural and Bioinformatic Insights into a Diverse Group of Periplasmic Copper Binding Proteins. Biochemistry. 2016;55(15):2278–2290. doi: 10.1021/acs.biochem.6b00175. PubMed DOI PMC

Ipsen J. Ø., Hernández-Rollán C., Muderspach S. J., Brander S., Bertelsen A. B., Jensen P. E., Nørholm M. H. H., Lo Leggio L., Johansen K. S.. Copper Binding and Reactivity at the Histidine Brace Motif: Insights from Mutational Analysis of the Pseudomonas Fluorescens Copper Chaperone CopC. FEBS Lett. 2021;595(12):1708–1720. doi: 10.1002/1873-3468.14092. PubMed DOI

Ross M. O., MacMillan F., Wang J., Nisthal A., Lawton T. J., Olafson B. D., Mayo S. L., Rosenzweig A. C., Hoffman B. M.. Particulate Methane Monooxygenase Contains Only Mononuclear Copper Centers. Science. 2019;364(6440):566–570. doi: 10.1126/science.aav2572. PubMed DOI PMC

Chang W.-H., Lin H.-H., Tsai I.-K., Huang S.-H., Chung S.-C., Tu I.-P., Yu S. S.-F., Chan S. I.. Copper Centers in the Cryo-EM Structure of Particulate Methane Monooxygenase Reveal the Catalytic Machinery of Methane Oxidation. J. Am. Chem. Soc. 2021;143(26):9922–9932. doi: 10.1021/jacs.1c04082. PubMed DOI

Fowler C. A., Sabbadin F., Ciano L., Hemsworth G. R., Elias L., Bruce N., McQueen-Mason S., Davies G. J., Walton P. H.. Discovery, Activity and Characterisation of an AA10 Lytic Polysaccharide Oxygenase from the Shipworm Symbiont Teredinibacter Turnerae. Biotechnol. Biofuels. 2019;12(1):232. doi: 10.1186/s13068-019-1573-x. PubMed DOI PMC

Tandrup T., Muderspach S. J., Banerjee S., Santoni G., Ipsen J. Ø., Hernández-Rollán C., Nørholm M. H. H., Johansen K. S., Meilleur F., Lo Leggio L.. Changes in Active-Site Geometry on X-Ray Photoreduction of a Lytic Polysaccharide Monooxygenase Active-Site Copper and Saccharide Binding. IUCrJ. 2022;9(5):666–681. doi: 10.1107/S2052252522007175. PubMed DOI PMC

Walton P. H., Davies G. J., Diaz D. E., Franco-Cairo J. P.. The Histidine Brace: Nature’s Copper Alternative to Haem? FEBS Lett. 2023;597(4):485–494. doi: 10.1002/1873-3468.14579. PubMed DOI PMC

Vaaje-Kolstad G., Westereng B., Horn S. J., Liu Z., Zhai H., Sørlie M., Eijsink V. G. H.. An Oxidative Enzyme Boosting the Enzymatic Conversion of Recalcitrant Polysaccharides. Science. 2010;330(6001):219–222. doi: 10.1126/science.1192231. PubMed DOI

Quinlan R. J., Sweeney M. D., Lo Leggio L., Otten H., Poulsen J.-C. N., Johansen K. S., Krogh K. B. R. M., Jørgensen C. I., Tovborg M., Anthonsen A., Tryfona T., Walter C. P., Dupree P., Xu F., Davies G. J., Walton P. H.. Insights into the Oxidative Degradation of Cellulose by a Copper Metalloenzyme That Exploits Biomass Components. Proc. Natl. Acad. Sci. U. S. A. 2011;108(37):15079–15084. doi: 10.1073/pnas.1105776108. PubMed DOI PMC

Vaaje-Kolstad G., Forsberg Z., Loose J. S., Bissaro B., Eijsink V. G.. Structural Diversity of Lytic Polysaccharide Monooxygenases. Curr. Opin. Struct. Biol. 2017;44:67–76. doi: 10.1016/j.sbi.2016.12.012. PubMed DOI

Hall K. R., Mollatt M., Forsberg Z., Golten O., Schwaiger L., Ludwig R., Ayuso-Fernández I., Eijsink V. G. H., Sørlie M.. Impact of the Copper Second Coordination Sphere on Catalytic Performance and Substrate Specificity of a Bacterial Lytic Polysaccharide Monooxygenase. ACS Omega. 2024;9(21):23040–23052. doi: 10.1021/acsomega.4c02666. PubMed DOI PMC

Concia A. L., Beccia M. R., Orio M., Ferre F. T., Scarpellini M., Biaso F., Guigliarelli B., Réglier M., Simaan A. J.. Copper Complexes as Bioinspired Models for Lytic Polysaccharide Monooxygenases. Inorg. Chem. 2017;56(3):1023–1026. doi: 10.1021/acs.inorgchem.6b02165. PubMed DOI

Fukatsu A., Morimoto Y., Sugimoto H., Itoh S.. Modelling a ‘Histidine Brace’ Motif in Mononuclear Copper Monooxygenases. Chem. Commun. 2020;56(38):5123–5126. doi: 10.1039/D0CC01392G. PubMed DOI

Castillo I., Torres-Flores A. P., Abad-Aguilar D. F., Berlanga-Vázquez A., Orio M., Martínez-Otero D.. Cellulose Depolymerization with LPMO-Inspired Cu Complexes. ChemCatChem. 2021;13(22):4700–4704. doi: 10.1002/cctc.202101169. DOI

Bouchey C. J., Shopov D. Y., Gruen A. D., Tolman W. B.. Mimicking the Cu Active Site of Lytic Polysaccharide Monooxygenase Using Monoanionic Tridentate N-Donor Ligands. ACS Omega. 2022;7(39):35217–35232. doi: 10.1021/acsomega.2c04432. PubMed DOI PMC

Leblay R., Delgadillo-Ruíz R., Decroos C., Hureau C., Réglier M., Castillo I., Faure B., Simaan A. J.. LPMO-like Activity of Bioinspired Copper Complexes: From Model Substrate to Extended Polysaccharides. ChemCatChem. 2023;15(23):e202300933. doi: 10.1002/cctc.202300933. DOI

Neupane K. P., Aldous A. R., Kritzer J. A.. Metal-Binding and Redox Properties of Substituted Linear and Cyclic ATCUN Motifs. J. Inorg. Biochem. 2014;139:65–76. doi: 10.1016/j.jinorgbio.2014.06.004. PubMed DOI PMC

Saikia J., Bhat V. T., Potnuru L. R., Redkar A. S., Agarwal V., Ramakrishnan V.. Minimalist De Novo Design of an Artificial Enzyme. ACS Omega. 2022;7(23):19131–19140. doi: 10.1021/acsomega.1c07075. PubMed DOI PMC

Hassoon A. A., Szorcsik A., Fülöp L., Papp Z. I., May N. V., Gajda T.. Peptide-Based Chemical Models for Lytic Polysaccharide Monooxygenases. Dalton Trans. 2022;51(45):17241–17254. doi: 10.1039/D2DT02836K. PubMed DOI

Liu Y., Harnden K. A., Van Stappen C., Dikanov S. A., Lu Y.. A Designed Copper Histidine-Brace Enzyme for Oxidative Depolymerization of Polysaccharides as a Model of Lytic Polysaccharide Monooxygenase. Proc. Natl. Acad. Sci. U. S. A. 2023;120(43):e2308286120. doi: 10.1073/pnas.2308286120. PubMed DOI PMC

Mann S. I., Heinisch T., Ward T. R., Borovik A. S.. Peroxide Activation Regulated by Hydrogen Bonds within Artificial Cu Proteins. J. Am. Chem. Soc. 2017;139(48):17289–17292. doi: 10.1021/jacs.7b10452. PubMed DOI PMC

Leone L., Chino M., Nastri F., Maglio O., Pavone V., Lombardi A.. Mimochrome, a Metalloporphyrin-Based Catalytic Swiss Knife†. Biotechnol. Appl. Biochem. 2020;67(4):495–515. doi: 10.1002/bab.1985. PubMed DOI

Salamatian A. A., Alvarez-Hernandez J. L., Ramesh K. B., Leone L., Lombardi A., Bren K. L.. Electrocatalytic CO 2 Reduction by a Cobalt Porphyrin Mini-Enzyme. Chem. Sci. 2025;16(13):5707–5716. doi: 10.1039/D4SC07026G. PubMed DOI PMC

Chino M., Di Costanzo L. F., Leone L., La Gatta S., Famulari A., Chiesa M., Lombardi A., Pavone V.. Designed Rubredoxin Miniature in a Fully Artificial Electron Chain Triggered by Visible Light. Nat. Commun. 2023;14(1):2368. doi: 10.1038/s41467-023-37941-8. PubMed DOI PMC

Lombardi A., Pirro F., Maglio O., Chino M., DeGrado W. F.. De Novo Design of Four-Helix Bundle Metalloproteins: One Scaffold, Diverse Reactivities. Acc. Chem. Res. 2019;52(5):1148–1159. doi: 10.1021/acs.accounts.8b00674. PubMed DOI PMC

Nobel Prize in Chemistry 2024. NobelPrize.org. Nobel Prize Outreach AB 2024. Sun. 17 November 2024. https://www.nobelprize.org/prizes/chemistry/2024/summary/ (accessed 2024-11-17).

Abramson J., Adler J., Dunger J., Evans R., Green T., Pritzel A., Ronneberger O., Willmore L., Ballard A. J., Bambrick J., Bodenstein S. W., Evans D. A., Hung C.-C., O’Neill M., Reiman D., Tunyasuvunakool K., Wu Z., Žemgulytė A., Arvaniti E., Beattie C., Bertolli O., Bridgland A., Cherepanov A., Congreve M., Cowen-Rivers A. I., Cowie A., Figurnov M., Fuchs F. B., Gladman H., Jain R., Khan Y. A., Low C. M. R., Perlin K., Potapenko A., Savy P., Singh S., Stecula A., Thillaisundaram A., Tong C., Yakneen S., Zhong E. D., Zielinski M., Žídek A., Bapst V., Kohli P., Jaderberg M., Hassabis D., Jumper J. M.. Accurate Structure Prediction of Biomolecular Interactions with AlphaFold 3. Nature. 2024;630(8016):493–500. doi: 10.1038/s41586-024-07487-w. PubMed DOI PMC

Discovery C., Boitreaud J., Dent J., McPartlon M., Meier J., Reis V., Rogozhnikov A., Wu K.. Chai-1: Decoding the Molecular Interactions of Life. bioRxiv. 2024:n/a. doi: 10.1101/2024.10.10.615955. DOI

Raleigh D. P., Betz S. F., DeGrado W. F.. A de Novo Designed Protein Mimics the Native State of Natural Proteins. J. Am. Chem. Soc. 1995;117(28):7558–7559. doi: 10.1021/ja00133a035. DOI

Hill R. B., DeGrado W. F.. Solution Structure of α2D, a Nativelike de Novo Designed Protein. J. Am. Chem. Soc. 1998;120(6):1138–1145. doi: 10.1021/ja9733649. DOI

Hill R. B., Raleigh D. P., Lombardi A., DeGrado W. F.. De Novo Design of Helical Bundles as Models for Understanding Protein Folding and Function. Acc. Chem. Res. 2000;33(11):745–754. doi: 10.1021/ar970004h. PubMed DOI PMC

Grigoryan G., DeGrado W. F.. Probing Designability via a Generalized Model of Helical Bundle Geometry. J. Mol. Biol. 2011;405(4):1079–1100. doi: 10.1016/j.jmb.2010.08.058. PubMed DOI PMC

Arai R., Kobayashi N., Kimura A., Sato T., Matsuo K., Wang A. F., Platt J. M., Bradley L. H., Hecht M. H.. Domain-Swapped Dimeric Structure of a Stable and Functional De Novo Four-Helix Bundle Protein, WA20. J. Phys. Chem. B. 2012;116(23):6789–6797. doi: 10.1021/jp212438h. PubMed DOI

Kostrewa D., Granzin J., Koch C., Choe H.-W., Raghunathan S., Wolf W., Labahn J., Kahmann R., Saenger W.. Three-Dimensional Structure of the E. Coli DMA-Binding Protein FIS. Nature. 1991;349(6305):178–180. doi: 10.1038/349178a0. PubMed DOI

Huang B., Eberstadt M., Olejniczak E. T., Meadows R. P., Fesik S. W.. NMR Structure and Mutagenesis of the Fas (APO-1/CD95) Death Domain. Nature. 1996;384(6610):638–641. doi: 10.1038/384638a0. PubMed DOI

Wilkens S., Rodgers A., Ogilvie I., Capaldi R. A.. Structure and Arrangement of the δ Subunit in the E. Coli ATP Synthase (ECF1F0) Biophys. Chem. 1997;68(1):95–102. doi: 10.1016/S0301-4622(97)00018-5. PubMed DOI

Glykos N. M., Cesareni G., Kokkinidis M.. Protein Plasticity to the Extreme: Changing the Topology of a 4-α-Helical Bundle with a Single Amino Acid Substitution. Structure. 1999;7(6):597–603. doi: 10.1016/S0969-2126(99)80081-1. PubMed DOI

Schröder G. C., O’Dell W. B., Webb S. P., Agarwal P. K., Meilleur F.. Capture of Activated Dioxygen Intermediates at the Copper-Active Site of a Lytic Polysaccharide Monooxygenase. Chem. Sci. 2022;13(45):13303–13320. doi: 10.1039/D2SC05031E. PubMed DOI PMC

Leaver-Fay, A. ; Tyka, M. ; Lewis, S. M. ; Lange, O. F. ; Thompson, J. ; Jacak, R. ; Kaufman, K. W. ; Renfrew, P. D. ; Smith, C. A. ; Sheffler, W. ; Davis, I. W. ; Cooper, S. ; Treuille, A. ; Mandell, D. J. ; Richter, F. ; Ban, Y.-E. A. ; Fleishman, S. J. ; Corn, J. E. ; Kim, D. E. ; Lyskov, S. ; Berrondo, M. ; Mentzer, S. ; Popović, Z. ; Havranek, J. J. ; Karanicolas, J. ; Das, R. ; Meiler, J. ; Kortemme, T. ; Gray, J. J. ; Kuhlman, B. ; Baker, D. ; Bradley, P. . Rosetta3. In Methods in Enzymology; Johnson, M. L. ; Brand, L. , Eds.; Computer Methods, Part C; Academic Press, 2011; Vol. 487, pp 545–574. 10.1016/B978-0-12-381270-4.00019-6 PubMed DOI PMC

Alford R. F., Leaver-Fay A., Jeliazkov J. R., O’Meara M. J., DiMaio F. P., Park H., Shapovalov M. V., Renfrew P. D., Mulligan V. K., Kappel K., Labonte J. W., Pacella M. S., Bonneau R., Bradley P., Dunbrack R. L. Jr., Das R., Baker D., Kuhlman B., Kortemme T., Gray J. J.. The Rosetta All-Atom Energy Function for Macromolecular Modeling and Design. J. Chem. Theory Comput. 2017;13(6):3031–3048. doi: 10.1021/acs.jctc.7b00125. PubMed DOI PMC

Hemsworth G. R., Henrissat B., Davies G. J., Walton P. H.. Discovery and Characterization of a New Family of Lytic Polysaccharide Monooxygenases. Nat. Chem. Biol. 2014;10(2):122–126. doi: 10.1038/nchembio.1417. PubMed DOI PMC

Fleming P. J., Fleming K. G.. HullRad: Fast Calculations of Folded and Disordered Protein and Nucleic Acid Hydrodynamic Properties. Biophys. J. 2018;114(4):856–869. doi: 10.1016/j.bpj.2018.01.002. PubMed DOI PMC

Yu F., Penner-Hahn J. E., Pecoraro V. L.. De Novo-Designed Metallopeptides with Type 2 Copper Centers: Modulation of Reduction Potentials and Nitrite Reductase Activities. J. Am. Chem. Soc. 2013;135(48):18096–18107. doi: 10.1021/ja406648n. PubMed DOI PMC

Koebke K. J., Yu F., Van Stappen C., Pinter T. B. J., Deb A., Penner-Hahn J. E., Pecoraro V. L.. Methylated Histidines Alter Tautomeric Preferences That Influence the Rates of Cu Nitrite Reductase Catalysis in Designed Peptides. J. Am. Chem. Soc. 2019;141(19):7765–7775. doi: 10.1021/jacs.9b00196. PubMed DOI PMC

Brenner A. J., Harris E. D.. A Quantitative Test for Copper Using Bicinchoninic Acid. Anal. Biochem. 1995;226(1):80–84. doi: 10.1006/abio.1995.1194. PubMed DOI

Aachmann F. L., Sørlie M., Skjåk-Bræk G., Eijsink V. G. H., Vaaje-Kolstad G.. NMR Structure of a Lytic Polysaccharide Monooxygenase Provides Insight into Copper Binding, Protein Dynamics, and Substrate Interactions. Proc. Natl. Acad. Sci. U. S. A. 2012;109(46):18779–18784. doi: 10.1073/pnas.1208822109. PubMed DOI PMC

Cordas C. M., Valério G. N., Stepnov A., Kommedal E., Kjendseth Å. R., Forsberg Z., Eijsink V. G. H., Moura J. J. G.. Electrochemical Characterization of a Family AA10 LPMO and the Impact of Residues Shaping the Copper Site on Reactivity. J. Inorg. Biochem. 2023;238:112056. doi: 10.1016/j.jinorgbio.2022.112056. PubMed DOI

Tegoni M., Yu F., Bersellini M., Penner-Hahn J. E., Pecoraro V. L.. Designing a Functional Type 2 Copper Center That Has Nitrite Reductase Activity within α-Helical Coiled Coils. Proc. Natl. Acad. Sci. U. S. A. 2012;109(52):21234–21239. doi: 10.1073/pnas.1212893110. PubMed DOI PMC

Lindley P. J., Parkin A., Davies G. J., Walton P. H.. Mapping the Protonation States of the Histidine Brace in an AA10 Lytic Polysaccharide Monooxygenase Using CW-EPR Spectroscopy and DFT Calculations. Faraday Discuss. 2022;234(0):336–348. doi: 10.1039/D1FD00068C. PubMed DOI

Gómez-Piñeiro R. J., Drosou M., Bertaina S., Decroos C., Simaan A. J., Pantazis D. A., Orio M.. Decoding the Ambiguous Electron Paramagnetic Resonance Signals in the Lytic Polysaccharide Monooxygenase from Photorhabdus Luminescens. Inorg. Chem. 2022;61(20):8022–8035. doi: 10.1021/acs.inorgchem.2c00766. PubMed DOI PMC

Haak J., Golten O., Sørlie M., Eijsink V. G. H., Cutsail G. E.. pH-Mediated Manipulation of the Histidine Brace in LPMOs and Generation of a Tri-Anionic Variant, Investigated by EPR, ENDOR, ESEEM and HYSCORE Spectroscopy. Chem. Sci. 2024;16(1):233–254. doi: 10.1039/D4SC04794J. PubMed DOI PMC

Munzone A., Pujol M., Tamhankar A., Joseph C., Mazurenko I., Réglier M., Jannuzzi S. A. V., Royant A., Sicoli G., DeBeer S., Orio M., Simaan A. J., Decroos C.. Integrated Experimental and Theoretical Investigation of Copper Active Site Properties of a Lytic Polysaccharide Monooxygenase from Serratia Marcescens. Inorg. Chem. 2024;63(24):11063–11078. doi: 10.1021/acs.inorgchem.4c00602. PubMed DOI

Peisach J., Blumberg W. E.. Structural Implications Derived from the Analysis of Electron Paramagnetic Resonance Spectra of Natural and Artificial Copper Proteins. Arch. Biochem. Biophys. 1974;165(2):691–708. doi: 10.1016/0003-9861(74)90298-7. PubMed DOI

Scholl H. J., Huettermann J.. ESR and ENDOR of Copper­(II) Complexes with Nitrogen Donors: Probing Parameters for Prosthetic Group Modeling of Superoxide Dismutase. J. Phys. Chem. 1992;96(24):9684–9691. doi: 10.1021/j100203a023. DOI

van Gastel M., Coremans J. W. A., Sommerdijk H., van Hemert M. C., Groenen E. J. J.. An Ab Initio Quantum-Chemical Study of the Blue-Copper Site of Azurin. J. Am. Chem. Soc. 2002;124(9):2035–2041. doi: 10.1021/ja0028166. PubMed DOI

Krupa K., Korabik M., Kowalik-Jankowska T.. Coordination Properties of Cu­(II) Ions towards the Peptides Based on the His-Xaa-His Motif from Fusobacterium Nucleatum P1 Protein. J. Inorg. Biochem. 2019;201:110819. doi: 10.1016/j.jinorgbio.2019.110819. PubMed DOI

Hoffman B. M., Venters R. A., Martinsen J.. General Theory of Polycrystalline ENDOR Patterns. Effects of Finite EPR and ENDOR Component Linewidths. J. Magn. Reson. 1969. 1985;62(3):537–542. doi: 10.1016/0022-2364(85)90225-2. DOI

Hurst G. G., Henderson T. A., Kreilick R. W.. Angle-Selected ENDOR Spectroscopy. 1. Theoretical Interpretation of ENDOR Shifts from Randomly Orientated Transition-Metal Complexes. J. Am. Chem. Soc. 1985;107(25):7294–7299. doi: 10.1021/ja00311a012. DOI

Jodts R. J., Ross M. O., Koo C. W., Doan P. E., Rosenzweig A. C., Hoffman B. M.. Coordination of the Copper Centers in Particulate Methane Monooxygenase: Comparison between Methanotrophs and Characterization of the CuC Site by EPR and ENDOR Spectroscopies. J. Am. Chem. Soc. 2021;143(37):15358–15368. doi: 10.1021/jacs.1c07018. PubMed DOI PMC

Werst M. M., Davoust C. E., Hoffman B. M.. Ligand Spin Densities in Blue Copper Proteins by Q-Band Proton and Nitrogen-14 ENDOR Spectroscopy. J. Am. Chem. Soc. 1991;113(5):1533–1538. doi: 10.1021/ja00005a011. DOI

Roberts J. E., Cline J. F., Lum V., Gray H. B., Freeman H., Peisach J., Reinhammar B., Hoffman B. M.. Comparative ENDOR Study of Six Blue Copper Proteins. J. Am. Chem. Soc. 1984;106(18):5324–5330. doi: 10.1021/ja00330a048. DOI

Bissaro B., Røhr Å. K., Müller G., Chylenski P., Skaugen M., Forsberg Z., Horn S. J., Vaaje-Kolstad G., Eijsink V. G. H.. Oxidative Cleavage of Polysaccharides by Monocopper Enzymes Depends on H2O2. Nat. Chem. Biol. 2017;13(10):1123–1128. doi: 10.1038/nchembio.2470. PubMed DOI

Bertini L., Breglia R., Lambrughi M., Fantucci P., De Gioia L., Borsari M., Sola M., Bortolotti C. A., Bruschi M.. Catalytic Mechanism of Fungal Lytic Polysaccharide Monooxygenases Investigated by First-Principles Calculations. Inorg. Chem. 2018;57(1):86–97. doi: 10.1021/acs.inorgchem.7b02005. PubMed DOI

Paradisi A., Johnston E. M., Tovborg M., Nicoll C. R., Ciano L., Dowle A., McMaster J., Hancock Y., Davies G. J., Walton P. H.. Formation of a Copper­(II)–Tyrosyl Complex at the Active Site of Lytic Polysaccharide Monooxygenases Following Oxidation by H2O2. J. Am. Chem. Soc. 2019;141(46):18585–18599. doi: 10.1021/jacs.9b09833. PubMed DOI PMC

Uyeda K. S., Follmer A. H., Borovik A. S.. Selective Oxidation of Active Site Aromatic Residues in Engineered Cu Proteins. Chem. Sci. 2025;16(1):98–103. doi: 10.1039/D4SC06667G. PubMed DOI PMC

Singh R. K., Blossom B. M., Russo D. A., Singh R., Weihe H., Andersen N. H., Tiwari M. K., Jensen P. E., Felby C., Bjerrum M. J.. Detection and Characterization of a Novel Copper-Dependent Intermediate in a Lytic Polysaccharide Monooxygenase. Chem. – Eur. J. 2020;26(2):454–463. doi: 10.1002/chem.201903562. PubMed DOI

Stoll S., Schweiger A.. EasySpin, a Comprehensive Software Package for Spectral Simulation and Analysis in EPR. J. Magn. Reson. 2006;178(1):42–55. doi: 10.1016/j.jmr.2005.08.013. PubMed DOI

Stranava M., Martínek V., Man P., Fojtikova V., Kavan D., Vanek O., Shimizu T., Martinkova M.. Structural Characterization of the Heme-Based Oxygen Sensor, AfGcHK, Its Interactions with the Cognate Response Regulator, and Their Combined Mechanism of Action in a Bacterial Two-Component Signaling System. Proteins Struct. Funct. Bioinforma. 2016;84(10):1375–1389. doi: 10.1002/prot.25083. PubMed DOI

Skořepa O., Pazicky S., Kalousková B., Bláha J., Abreu C., Ječmen T., Rosulek M., Fish A., Sedivy A., Harlos K., Dohnálek J., Skálová T., Vanek O.. Natural Killer Cell Activation Receptor NKp30 Oligomerization Depends on Its N-Glycosylation. Cancers. 2020;12(7):1998. doi: 10.3390/cancers12071998. PubMed DOI PMC

Rozbeský D., Kavan D., Chmelík J., Novák P., Vanek O., Bezouška K.. High-Level Expression of Soluble Form of Mouse Natural Killer Cell Receptor NKR-P1C­(B6) in Escherichia Coli . Protein Expr. Purif. 2011;77(2):178–184. doi: 10.1016/j.pep.2011.01.013. PubMed DOI

Bláha J., Skálová T., Kalousková B., Skořepa O., Cmunt D., Grobárová V., Pazicky S., Poláchová E., Abreu C., Stránský J., Koval’ T., Dušková J., Zhao Y., Harlos K., Hašek J., Dohnálek J., Vanek O.. Structure of the Human NK Cell NKR-P1:LLT1 Receptor:Ligand Complex Reveals Clustering in the Immune Synapse. Nat. Commun. 2022;13(1):5022. doi: 10.1038/s41467-022-32577-6. PubMed DOI PMC

Philo J. S.. SEDNTERP: A Calculation and Database Utility to Aid Interpretation of Analytical Ultracentrifugation and Light Scattering Data. Eur. Biophys. J. 2023;52(4):233–266. doi: 10.1007/s00249-023-01629-0. PubMed DOI

Schuck P.. Size-Distribution Analysis of Macromolecules by Sedimentation Velocity Ultracentrifugation and Lamm Equation Modeling. Biophys. J. 2000;78(3):1606–1619. doi: 10.1016/S0006-3495(00)76713-0. PubMed DOI PMC

Brautigam, C. A. Chapter Five - Calculations and Publication-Quality Illustrations for Analytical Ultracentrifugation Data. In Methods in Enzymology; Cole, J. L. , Ed.; Analytical Ultracentrifugation; Academic Press, 2015; Vol. 562, pp 109–133. 10.1016/bs.mie.2015.05.001 PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...