Physics-Informed Gaussian Process Inference of Liquid Structure from Scattering Data
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41170602
PubMed Central
PMC12621243
DOI
10.1021/acs.jpcb.5c05024
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We present a nonparametric Bayesian framework to infer radial distribution functions from experimental scattering measurements with uncertainty quantification using nonstationary Gaussian processes. The Gaussian process prior mean and kernel functions are designed to mitigate well-known numerical challenges with the Fourier transform, including discrete measurement binning and detector windowing, while encoding fundamental yet minimal physical knowledge of the liquid structure. We demonstrate uncertainty propagation of the Gaussian process posterior to unmeasured quantities of interest. Experimental radial distribution functions of liquid argon and water with uncertainty quantification are provided as both a proof of principle for the method and a benchmark for molecular models.
Zobrazit více v PubMed
Ornstein L. S., Zernike F.. Accidental deviations of density and opalescence at the critical point of a single substance. Proc. Acad. Sci. Amsterdam. 1914;17:793–806.
Henderson R. L.. A uniqueness theorem for fluid pair correlation functions. Phys. Lett. A. 1974;49:197–198. doi: 10.1016/0375-9601(74)90847-0. DOI
Hansen, J. ; McDonald, I. R. . Theory of Simple Liquids: With Applications to Soft Matter; Academic Press, 2013.
Kirkwood J. G., Buff F. P.. The statistical mechanical theory of solutions. I. J. Chem. Phys. 1951;19:774–777. doi: 10.1063/1.1748352. DOI
Mackerell A. D. Jr.. Empirical force fields for biological macromolecules: Overview and issues. J. Comput. Chem. 2004;25:1584–1604. doi: 10.1002/jcc.20082. PubMed DOI
Deringer V. L., Bartók A. P., Bernstein N., Wilkins D. M., Ceriotti M., Csányi G.. Gaussian process regression for materials and molecules. Chem. Rev. 2021;121:10073–10141. doi: 10.1021/acs.chemrev.1c00022. PubMed DOI PMC
Headen F. T., Cullen P. L., Patel R., Taylor A., Skipper N. T.. The structures of liquid pyridine and naphthalene: The effects of heteroatoms and core size on aromatic interactions. Phys. Chem. Chem. Phys. 2018;20:2704–2715. doi: 10.1039/C7CP06689A. PubMed DOI
Cervenka M., Shanks B. L., Mason P. E., Jungwirth P.. Cation-π Interactions in Biomolecular Contexts by Neutron Scattering and Molecular Dynamics: A Case Study of the Tetramethylammonium Cation. J. Phys. Chem. B. 2025;129:6911–6918. doi: 10.1021/acs.jpcb.5c02001. PubMed DOI PMC
Fan S., Mason P. E., Chamorro V. C., Shanks B. L., Martinez-Seara H., Jungwirth P.. Charge Scaling Force Field for Biologically Relevant Ions Utilizing a Global Optimization Method. J. Chem. Theory Comput. 2025;21:9023–9034. doi: 10.1021/acs.jctc.5c00873. PubMed DOI PMC
Willis, B. T. M. ; Carlile, C. J. . Experimental Neutron Scattering; Oxford University Press, 2017.
Faber T. E., Ziman J. M.. A theory of the electrical properties of liquid metals: III. the resistivity of binary alloys. Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics. 1965;11:153–173. doi: 10.1080/14786436508211931. DOI
McGreevy R. L., Pusztai L.. Reverse Monte Carlo Simulation: A New Technique for the Determination of Disordered Structures. Mol. Simul. 1988;1:359–367. doi: 10.1080/08927028808080958. DOI
Soper A. K.. Empirical potential Monte Carlo simulation of fluid structure. Chem. Phys. 1996;202:295–306. doi: 10.1016/0301-0104(95)00357-6. DOI
Petersen D. P., Middleton D.. Sampling and reconstruction of wave-number-limited functions in N-dimensional euclidean spaces. Information and Control. 1962;5:279–323. doi: 10.1016/S0019-9958(62)90633-2. DOI
Neuefeind J., Feygenson M., Carruth J., Hoffmann R., Chipley K. K.. The nanoscale ordered materials diffractometer NOMAD at the spallation neutron source SNS. Nucl. Instrum. Methods. Phys. Res. B. 2012;287:68–75. doi: 10.1016/j.nimb.2012.05.037. DOI
Shanks B. L., Sullivan H. W., Hoepfner M. P.. Bayesian Analysis Reveals the Key to Extracting Pair Potentials from Neutron Scattering Data. J. Phys. Chem. Lett. 2024;15:12608–12618. doi: 10.1021/acs.jpclett.4c02941. PubMed DOI
Proctor J. E., Pruteanu C. G., Moss B., Kuzovnikov M. A., Ackland G. J., Monk C. W., Anzellini S.. A comparison of different Fourier transform procedures for analysis of diffraction data from noble gas fluids. J. Appl. Phys. 2023;134:114701. doi: 10.1063/5.0161033. DOI
Torquato S.. Hyperuniform states of matter. Phys. Rep. 2018;745:1–95. doi: 10.1016/j.physrep.2018.03.001. DOI
Lorch E.. Neutron diffraction by germania, silica and radiation-damaged silica glasses. J. Phys. C: Solid State Phys. 1969;2:229. doi: 10.1088/0022-3719/2/2/305. DOI
Soper A. K., Barney E. R.. On the use of modification functions when Fourier transforming total scattering data. J. Appl. Crystallogr. 2012;45:1314–1317. doi: 10.1107/S002188981203960X. DOI
Soper A. K., Barney E. R.. Extracting the pair distribution function from white-beam X-ray total scattering data. J. Appl. Crystallogr. 2011;44:714–726. doi: 10.1107/S0021889811021455. DOI
Bellissent-Funel M. C., Buontempo U., Filabozzi A., Petrillo C., Ricci F. P.. Neutron diffraction of liquid neon and xenon along the coexistence line. Phys. Rev. B. 1992;45:4605–4613. doi: 10.1103/PhysRevB.45.4605. PubMed DOI
Skinner L. B., Huang C., Schlesinger D., Pettersson L. G. M., Nilsson A., Benmore C. J.. Benchmark oxygen-oxygen pair-distribution function of ambient water from x-ray diffraction measurements with a wide Q-range. J. Chem. Phys. 2013;138:074506. doi: 10.1063/1.4790861. PubMed DOI
Soper A. K.. The radial distribution functions of water as derived from radiation total scattering experiments: Is there anything we can say for sure? Int. Scholarly Res. Not. 2013;2013:e279463. doi: 10.1155/2013/279463. DOI
Weitkamp T., Neuefeind J., Fischer H. E., Zeidler M. D.. Hydrogen bonding in liquid methanol at ambient conditions and at high pressure. Mol. Phys. 2000;98:125–134. doi: 10.1080/00268970009483276. DOI
Shanks B. L., Sullivan H. W., Shazed A. R., Hoepfner M. P.. Accelerated Bayesian inference for molecular simulations using local Gaussian process surrogate models. J. Chem. Theory Comput. 2024;20:3798–3808. doi: 10.1021/acs.jctc.3c01358. PubMed DOI
Ambrogioni, L. ; Maris, E. . Integral transforms from finite data: An application of Gaussian process regression to Fourier analysis. In AISTATS, 2018; pp 217–225.
Tung C., Yip S., Huang G., Porcar L., Shinohara Y., Sumpter B. G., Ding L., Do C., Chen W.. Unlocking hidden information in sparse small-angle neutron scattering measurements. J. Colloid Interface Sci. 2025;692:137554. doi: 10.1016/j.jcis.2025.137554. PubMed DOI
Yarnell J. L., Katz M. J., Wenzel R. G., Koenig S. H.. Structure factor and radial distribution function for liquid argon at 85K. Phys. Rev. A. 1973;7:2130–2144. doi: 10.1103/PhysRevA.7.2130. DOI
Amann-Winkel K., Bellissent-Funel M., Bove L. E., Loerting T., Nilsson A., Paciaroni A., Schlesinger D., Skinner L.. X-ray and Neutron Scattering of Water. Chem. Rev. 2016;116:7570–7589. doi: 10.1021/acs.chemrev.5b00663. PubMed DOI
Deringer V. L., Caro M. A., Csányi G.. Machine learning interatomic potentials as emerging tools for materials science. Adv. Mater. 2019;31:1902765. doi: 10.1002/adma.201902765. PubMed DOI
Shanks B. L., Potoff J. J., Hoepfner M. P.. Transferable force fields from experimental scattering data with machine learning assisted structure refinement. J. Phys. Chem. Lett. 2022;13:11512–11520. doi: 10.1021/acs.jpclett.2c03163. PubMed DOI
Shanks B. L., Sullivan H. W., Jungwirth P., Hoepfner M. P.. Experimental evidence of quantum Drude oscillator behavior in liquids revealed with probabilistic iterative Boltzmann inversion. J. Chem. Phys. 2025;162:164501. doi: 10.1063/5.0260274. PubMed DOI
Heinonen, M. ; Mannerström, H. ; Rousu, J. ; Kaski, S. ; Lähdesmäki, H. . Non-stationary Gaussian process regression with Hamiltonian Monte Carlo. In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, 2016; pp 732–740.
Goldberg, P. ; Williams, C. ; Bishop, C. . Regression with Input-dependent Noise: A Gaussian Process Treatment. In NeurIPS, 1997.
Li, R. ; John, S. T. ; Solin, A. . Improving Hyperparameter Learning under Approximate Inference in Gaussian Process Models. In Proceedings of the 40th International Conference on Machine Learning, 2023; pp 19595–19615.
Bishop, C. M. Pattern Recognition and Machine Learning; Information science and statistics; Springer, 2006.
Rasmussen, C. E. ; Williams, C. K. I. . Gaussian Processes for Machine Learning; MIT Press, 2006.
Baddour N.. Application of the generalized shift operator to the Hankel transform. SpringerPlus. 2014;3:246. doi: 10.1186/2193-1801-3-246. PubMed DOI PMC
Matsumoto T., Sullivan T. J.. Images of Gaussian and other stochastic processes under closed, densely-defined, unbounded linear operators. arXiv. 2024 doi: 10.48550/arXiv.2305.03594. DOI
Swiler L., Gulian M., Frankel A., Safta C., Jakeman J.. A Survey of Constrained Gaussian Process Regression: Approaches and Implementation Challenges. arXiv. 2020 doi: 10.48550/arXiv.2006.09319. DOI
O’Hagan A.. Bayes–Hermite quadrature. J. Stat. Plan. Inference. 1991;29:245–260. doi: 10.1016/0378-3758(91)90002-V. DOI
Gibbs, M. N. Bayesian Gaussian Processes for Regression and Classification. Ph.D. thesis, University of Cambridge, 1997.
González M. A., Abascal J. L. F.. A flexible model for water based on TIP4P/2005. J. Chem. Phys. 2011;135:224516. doi: 10.1063/1.3663219. PubMed DOI
Head-Gordon T., Johnson M. E.. Tetrahedral structure or chains for liquid water. Proc. Natl. Acad. Sci. U.S.A. 2006;103:7973–7977. doi: 10.1073/pnas.0510593103. PubMed DOI PMC
Soper A. K.. Tests of the empirical potential structure refinement method and a new method of application to neutron diffraction data on water. Mol. Phys. 2001;99:1503–1516. doi: 10.1080/00268970110056889. DOI
Soper A. K.. On the uniqueness of structure extracted from diffraction experiments on liquids and glasses. J. Phys.: Condens. Matter. 2007;19:415108. doi: 10.1088/0953-8984/19/41/415108. PubMed DOI