Physics-Informed Gaussian Process Inference of Liquid Structure from Scattering Data

. 2025 Nov 13 ; 129 (45) : 11802-11815. [epub] 20251031

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41170602

We present a nonparametric Bayesian framework to infer radial distribution functions from experimental scattering measurements with uncertainty quantification using nonstationary Gaussian processes. The Gaussian process prior mean and kernel functions are designed to mitigate well-known numerical challenges with the Fourier transform, including discrete measurement binning and detector windowing, while encoding fundamental yet minimal physical knowledge of the liquid structure. We demonstrate uncertainty propagation of the Gaussian process posterior to unmeasured quantities of interest. Experimental radial distribution functions of liquid argon and water with uncertainty quantification are provided as both a proof of principle for the method and a benchmark for molecular models.

Zobrazit více v PubMed

Ornstein L. S., Zernike F.. Accidental deviations of density and opalescence at the critical point of a single substance. Proc. Acad. Sci. Amsterdam. 1914;17:793–806.

Henderson R. L.. A uniqueness theorem for fluid pair correlation functions. Phys. Lett. A. 1974;49:197–198. doi: 10.1016/0375-9601(74)90847-0. DOI

Hansen, J. ; McDonald, I. R. . Theory of Simple Liquids: With Applications to Soft Matter; Academic Press, 2013.

Kirkwood J. G., Buff F. P.. The statistical mechanical theory of solutions. I. J. Chem. Phys. 1951;19:774–777. doi: 10.1063/1.1748352. DOI

Mackerell A. D. Jr.. Empirical force fields for biological macromolecules: Overview and issues. J. Comput. Chem. 2004;25:1584–1604. doi: 10.1002/jcc.20082. PubMed DOI

Deringer V. L., Bartók A. P., Bernstein N., Wilkins D. M., Ceriotti M., Csányi G.. Gaussian process regression for materials and molecules. Chem. Rev. 2021;121:10073–10141. doi: 10.1021/acs.chemrev.1c00022. PubMed DOI PMC

Headen F. T., Cullen P. L., Patel R., Taylor A., Skipper N. T.. The structures of liquid pyridine and naphthalene: The effects of heteroatoms and core size on aromatic interactions. Phys. Chem. Chem. Phys. 2018;20:2704–2715. doi: 10.1039/C7CP06689A. PubMed DOI

Cervenka M., Shanks B. L., Mason P. E., Jungwirth P.. Cation-π Interactions in Biomolecular Contexts by Neutron Scattering and Molecular Dynamics: A Case Study of the Tetramethylammonium Cation. J. Phys. Chem. B. 2025;129:6911–6918. doi: 10.1021/acs.jpcb.5c02001. PubMed DOI PMC

Fan S., Mason P. E., Chamorro V. C., Shanks B. L., Martinez-Seara H., Jungwirth P.. Charge Scaling Force Field for Biologically Relevant Ions Utilizing a Global Optimization Method. J. Chem. Theory Comput. 2025;21:9023–9034. doi: 10.1021/acs.jctc.5c00873. PubMed DOI PMC

Willis, B. T. M. ; Carlile, C. J. . Experimental Neutron Scattering; Oxford University Press, 2017.

Faber T. E., Ziman J. M.. A theory of the electrical properties of liquid metals: III. the resistivity of binary alloys. Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics. 1965;11:153–173. doi: 10.1080/14786436508211931. DOI

McGreevy R. L., Pusztai L.. Reverse Monte Carlo Simulation: A New Technique for the Determination of Disordered Structures. Mol. Simul. 1988;1:359–367. doi: 10.1080/08927028808080958. DOI

Soper A. K.. Empirical potential Monte Carlo simulation of fluid structure. Chem. Phys. 1996;202:295–306. doi: 10.1016/0301-0104(95)00357-6. DOI

Petersen D. P., Middleton D.. Sampling and reconstruction of wave-number-limited functions in N-dimensional euclidean spaces. Information and Control. 1962;5:279–323. doi: 10.1016/S0019-9958(62)90633-2. DOI

Neuefeind J., Feygenson M., Carruth J., Hoffmann R., Chipley K. K.. The nanoscale ordered materials diffractometer NOMAD at the spallation neutron source SNS. Nucl. Instrum. Methods. Phys. Res. B. 2012;287:68–75. doi: 10.1016/j.nimb.2012.05.037. DOI

Shanks B. L., Sullivan H. W., Hoepfner M. P.. Bayesian Analysis Reveals the Key to Extracting Pair Potentials from Neutron Scattering Data. J. Phys. Chem. Lett. 2024;15:12608–12618. doi: 10.1021/acs.jpclett.4c02941. PubMed DOI

Proctor J. E., Pruteanu C. G., Moss B., Kuzovnikov M. A., Ackland G. J., Monk C. W., Anzellini S.. A comparison of different Fourier transform procedures for analysis of diffraction data from noble gas fluids. J. Appl. Phys. 2023;134:114701. doi: 10.1063/5.0161033. DOI

Torquato S.. Hyperuniform states of matter. Phys. Rep. 2018;745:1–95. doi: 10.1016/j.physrep.2018.03.001. DOI

Lorch E.. Neutron diffraction by germania, silica and radiation-damaged silica glasses. J. Phys. C: Solid State Phys. 1969;2:229. doi: 10.1088/0022-3719/2/2/305. DOI

Soper A. K., Barney E. R.. On the use of modification functions when Fourier transforming total scattering data. J. Appl. Crystallogr. 2012;45:1314–1317. doi: 10.1107/S002188981203960X. DOI

Soper A. K., Barney E. R.. Extracting the pair distribution function from white-beam X-ray total scattering data. J. Appl. Crystallogr. 2011;44:714–726. doi: 10.1107/S0021889811021455. DOI

Bellissent-Funel M. C., Buontempo U., Filabozzi A., Petrillo C., Ricci F. P.. Neutron diffraction of liquid neon and xenon along the coexistence line. Phys. Rev. B. 1992;45:4605–4613. doi: 10.1103/PhysRevB.45.4605. PubMed DOI

Skinner L. B., Huang C., Schlesinger D., Pettersson L. G. M., Nilsson A., Benmore C. J.. Benchmark oxygen-oxygen pair-distribution function of ambient water from x-ray diffraction measurements with a wide Q-range. J. Chem. Phys. 2013;138:074506. doi: 10.1063/1.4790861. PubMed DOI

Soper A. K.. The radial distribution functions of water as derived from radiation total scattering experiments: Is there anything we can say for sure? Int. Scholarly Res. Not. 2013;2013:e279463. doi: 10.1155/2013/279463. DOI

Weitkamp T., Neuefeind J., Fischer H. E., Zeidler M. D.. Hydrogen bonding in liquid methanol at ambient conditions and at high pressure. Mol. Phys. 2000;98:125–134. doi: 10.1080/00268970009483276. DOI

Shanks B. L., Sullivan H. W., Shazed A. R., Hoepfner M. P.. Accelerated Bayesian inference for molecular simulations using local Gaussian process surrogate models. J. Chem. Theory Comput. 2024;20:3798–3808. doi: 10.1021/acs.jctc.3c01358. PubMed DOI

Ambrogioni, L. ; Maris, E. . Integral transforms from finite data: An application of Gaussian process regression to Fourier analysis. In AISTATS, 2018; pp 217–225.

Tung C., Yip S., Huang G., Porcar L., Shinohara Y., Sumpter B. G., Ding L., Do C., Chen W.. Unlocking hidden information in sparse small-angle neutron scattering measurements. J. Colloid Interface Sci. 2025;692:137554. doi: 10.1016/j.jcis.2025.137554. PubMed DOI

Yarnell J. L., Katz M. J., Wenzel R. G., Koenig S. H.. Structure factor and radial distribution function for liquid argon at 85K. Phys. Rev. A. 1973;7:2130–2144. doi: 10.1103/PhysRevA.7.2130. DOI

Amann-Winkel K., Bellissent-Funel M., Bove L. E., Loerting T., Nilsson A., Paciaroni A., Schlesinger D., Skinner L.. X-ray and Neutron Scattering of Water. Chem. Rev. 2016;116:7570–7589. doi: 10.1021/acs.chemrev.5b00663. PubMed DOI

Deringer V. L., Caro M. A., Csányi G.. Machine learning interatomic potentials as emerging tools for materials science. Adv. Mater. 2019;31:1902765. doi: 10.1002/adma.201902765. PubMed DOI

Shanks B. L., Potoff J. J., Hoepfner M. P.. Transferable force fields from experimental scattering data with machine learning assisted structure refinement. J. Phys. Chem. Lett. 2022;13:11512–11520. doi: 10.1021/acs.jpclett.2c03163. PubMed DOI

Shanks B. L., Sullivan H. W., Jungwirth P., Hoepfner M. P.. Experimental evidence of quantum Drude oscillator behavior in liquids revealed with probabilistic iterative Boltzmann inversion. J. Chem. Phys. 2025;162:164501. doi: 10.1063/5.0260274. PubMed DOI

Heinonen, M. ; Mannerström, H. ; Rousu, J. ; Kaski, S. ; Lähdesmäki, H. . Non-stationary Gaussian process regression with Hamiltonian Monte Carlo. In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, 2016; pp 732–740.

Goldberg, P. ; Williams, C. ; Bishop, C. . Regression with Input-dependent Noise: A Gaussian Process Treatment. In NeurIPS, 1997.

Li, R. ; John, S. T. ; Solin, A. . Improving Hyperparameter Learning under Approximate Inference in Gaussian Process Models. In Proceedings of the 40th International Conference on Machine Learning, 2023; pp 19595–19615.

Bishop, C. M. Pattern Recognition and Machine Learning; Information science and statistics; Springer, 2006.

Rasmussen, C. E. ; Williams, C. K. I. . Gaussian Processes for Machine Learning; MIT Press, 2006.

Baddour N.. Application of the generalized shift operator to the Hankel transform. SpringerPlus. 2014;3:246. doi: 10.1186/2193-1801-3-246. PubMed DOI PMC

Matsumoto T., Sullivan T. J.. Images of Gaussian and other stochastic processes under closed, densely-defined, unbounded linear operators. arXiv. 2024 doi: 10.48550/arXiv.2305.03594. DOI

Swiler L., Gulian M., Frankel A., Safta C., Jakeman J.. A Survey of Constrained Gaussian Process Regression: Approaches and Implementation Challenges. arXiv. 2020 doi: 10.48550/arXiv.2006.09319. DOI

O’Hagan A.. Bayes–Hermite quadrature. J. Stat. Plan. Inference. 1991;29:245–260. doi: 10.1016/0378-3758(91)90002-V. DOI

Gibbs, M. N. Bayesian Gaussian Processes for Regression and Classification. Ph.D. thesis, University of Cambridge, 1997.

González M. A., Abascal J. L. F.. A flexible model for water based on TIP4P/2005. J. Chem. Phys. 2011;135:224516. doi: 10.1063/1.3663219. PubMed DOI

Head-Gordon T., Johnson M. E.. Tetrahedral structure or chains for liquid water. Proc. Natl. Acad. Sci. U.S.A. 2006;103:7973–7977. doi: 10.1073/pnas.0510593103. PubMed DOI PMC

Soper A. K.. Tests of the empirical potential structure refinement method and a new method of application to neutron diffraction data on water. Mol. Phys. 2001;99:1503–1516. doi: 10.1080/00268970110056889. DOI

Soper A. K.. On the uniqueness of structure extracted from diffraction experiments on liquids and glasses. J. Phys.: Condens. Matter. 2007;19:415108. doi: 10.1088/0953-8984/19/41/415108. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...