Enhancing okra tolerance to salinity stress: role of PGPR and antioxidant enzymes
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Directorate of Collegiate Education, Government of Kerala
Directorate of Collegiate Education, Government of Kerala
PubMed
41171501
DOI
10.1007/s12223-025-01375-0
PII: 10.1007/s12223-025-01375-0
Knihovny.cz E-zdroje
- Klíčová slova
- Caballeronia sp. AS11, ACC deaminase, Antioxidant enzymes, Biofertilizer, Okra, Plant growth-promoting rhizobacteria, Salinity stress,
- Publikační typ
- časopisecké články MeSH
Salinity stress is a major constraint on global crop productivity, necessitating sustainable strategies to enhance plant resilience. Plant growth-promoting rhizobacteria (PGPR) with 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity have emerged as promising candidates for mitigating salt stress in crops. The present study evaluated the potential of PGPR isolates in improving salinity tolerance of okra (Abelmoschus esculentus L.). Growth performance, chlorophyll content, and antioxidant enzyme activities-superoxide dismutase (SOD), ascorbate peroxidase (APX), and catalase (CAT)-were assessed under salinity stress conditions. PGPR inoculation significantly enhanced growth attributes, increased chlorophyll content, and improved antioxidant enzyme activity in stressed okra plants compared to uninoculated controls. Among the tested isolates, Caballeronia sp. AS11 showed the most pronounced improvement in plant growth and oxidative stress mitigation. These findings highlight the potential of ACC deaminase-producing PGPR, particularly Caballeronia sp. AS11, as bioinoculants for enhancing salinity tolerance in okra. The application of such beneficial microbes offers a sustainable approach to improve crop productivity in saline-prone environments.
Government Arts College Thiruvananthapuram Kerala 695014 India
Government College Kariavattom Thiruvananthapuram Kerala 695581 India
Zobrazit více v PubMed
Abeles FB, Morgan PW, Salveit MEJ (1992) Ethylene in plant biology, 2nd edn. Academic, San Diego, Calif, USA
Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167. https://doi.org/10.1016/j.plaphy.2014.04.003 PubMed DOI
Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000) Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol 123(3):1047–1056. https://doi.org/10.1104/pp.123.3.1047 PubMed DOI PMC
Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701 PubMed DOI
Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenol oxidase in Beta vulgaris. Plant Physiol 24(1):1–15. https://doi.org/10.1104/pp.24.1.1 PubMed DOI PMC
Batykova Z, Pidlisnyuk V, Kistaubayeva A, Ust’ak S, Savitskaya I, Saidullayeva L, Mamirova A (2025) Isolation and screening of the novel multi-trait strains for future implications in phytotechnology. Microorganisms 13(8):1902. https://doi.org/10.3390/microorganisms13081902 PubMed DOI PMC
Belimov AA, Safronova VI, Sergeyeva TA et al (2001) Characterization of plant growth-promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47(7):642–652. https://doi.org/10.1139/w01-062 PubMed DOI
Ben Gaied R, Brígido C, Sbissi I, Tarhouni M (2024) Sustainable strategy to boost legumes growth under salinity and drought stress in semi-arid and arid regions. Soil Syst 8(3):84. https://doi.org/10.3390/soilsystems8030084 DOI
Bhardwaj I, Sharma R, Kumar A (2025) Evaluation of stress-tolerant Serratia and Enterobacter as plant growth-promoting rhizobacteria for enhancing tomato seedling growth under salinity stress. Front Microbiol 14:2154. https://doi.org/10.3390/plants14142154 DOI
Buqori DMAI, Sugiharto B, Suherman et al (2025) Mitigating drought stress by application of drought-tolerant Bacillus spp. Enhanced root architecture, growth, antioxidant and photosynthetic genes expression in sugarcane. Sci Rep 15:5259. https://doi.org/10.1038/s41598-025-89457-4 PubMed DOI PMC
Cerdá A, Pardines J, Botella MA, Martinez V (1995) Effect of potassium on growth, water relations, and the inorganic and organic solute contents for two maize cultivars grown under saline conditions. J Plant Nutr 18(4):839–851. https://doi.org/10.1080/01904169509364942 DOI
Cheng Z, Woody OZ, McConkey BJ, Glick BR (2012) Combined effects of the plant growth-promoting bacterium Pseudomonas Putida UW4 and salinity stress on the Brassica Napus proteome. Appl Soil Ecol 61:255–263. https://doi.org/10.1016/j.apsoil.2011.10.006 DOI
Dudley LM, Ben-Gal A, Shani U (2008) Influence of plant, soil, and water on the leaching fraction. Vadose Zone J 7(2):420–425. https://doi.org/10.2136/vzj2007.0103 DOI
Egamberdieva D, Wirth S, Bellingrath-Kimura SD, Mishra J, Arora NK (2019) Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Front Microbiol 10:2791. https://doi.org/10.3389/fmicb.2019.02791 PubMed DOI PMC
Escolà G, Bollmann-Giolai A, Bellegrandi G, Giolai M, Malone J, Poschenrieder C, Yant L, Busoms S, Bianucci E (2025) Rhizosphere microbiome and plant growth-promoting bacteria isolates enhance salinity tolerance in brassicaceae species. SSRN. https://doi.org/10.2139/ssrn.5440475
Foreman J, Demidchik V, Bothwell JHF et al (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422(6930):442–446. https://doi.org/10.1038/nature01485 PubMed DOI
Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251(1):1–7. https://doi.org/10.1016/j.femsle.2005.07.030 PubMed DOI
Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190(1):63–68. https://doi.org/10.1006/jtbi.1997.0532 PubMed DOI
Gupta A, Rai S, Bano A et al (2022) ACC deaminase produced by PGPR mitigates osmotic and salinity stresses in Pisum sativum via antioxidant modulation. Plants 11:3419. https://doi.org/10.3390/plants11243419 PubMed DOI PMC
Habib SH, Kausar H, Halimi MS (2016) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. Biomed Res Inter (1–4):1–10. https://doi.org/10.1155/2016/6284547
Jaleel CA, Riadh K, Gopi R (2009) Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiol Plant 31(3):427–436. https://doi.org/10.1007/s11738-009-0275-6 DOI
Jamil M, Rha ES (2004) Effect of salinity (NaCl) on germination and seedling growth of sugar beet (Beta vulgaris L.) and cabbage (Brassica Oleracea L). Plant Res 7(3):226–232
Jasso-Arreola DA, García-Romero E, Martínez-Romero E et al (2025) Field evaluation of Pantoea sp. RCa62 enhances drought tolerance in coffee. Microb Ecol 90:345–358. https://doi.org/10.3390/plants14071084 DOI
Jose C, Subramaniyan S, Sandhia GS (2025) Isolation and characterization of plant growth-promoting bacteria exhibiting ACC deaminase production in soil samples. Proc Indian Natn Sci Acad 91:1–10. https://doi.org/10.1007/s43538-025-00537-5 DOI
Kafi M, Goldani M (2001) Effect of water potential and type of osmoticum on seed germination of three crop species of wheat, sugarbeet, and chickpea. Agric Sci Technol 15(1):121–133
Kamaluldeen J, Yunusa IAM, Zerihun A, Bruhl JJ, Kristiansen P (2014) Uptake and distribution of ions reveal contrasting tolerance mechanisms for soil and water salinity in Okra (Abelmoschus esculentus) and tomato (Solanum esculentum). Agric Water Manage 146:95–104. https://doi.org/10.1016/j.agwat.2014.07.027 DOI
Kohler J, Caravaca F, Roldán A (2009) Microbial activity and plant growth promotion by Pseudomonas and Bacillus under stress. Appl Soil Ecol 41:91–98. https://doi.org/10.1016/j.apsoil.2009.03.007 DOI
Kumar P (2022) Measurement of ascorbate peroxidase activity in sorghum. Bio-protocol 12(20):e4531. https://doi.org/10.21769/BioProtoc.4531 PubMed DOI PMC
Lin T, Haider FU, Liu T, Li S, Zhang P, Zhao C, Li X (2025) Salt tolerance induced by plant growth-promoting rhizobacteria is associated with modulations of the photosynthetic characteristics, antioxidant system, and rhizosphere microbial diversity in soybean (Glycine max (L.) Merr). Agronomy 15(2):341. https://doi.org/10.3390/agronomy15020341 DOI
Lloyd J, Kriedemann PE, Aspinall D (1989) Comparative sensitivity of ‘Prior lisbon’ lemon and ‘Valencia’ orange trees to foliar sodium and chloride concentrations. Plant Cell Environ 12(5):529–540. https://doi.org/10.1111/j.1365-3040.1989.tb02126.x DOI
Misra HP, Fridovich I (1972) The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem 247:3170–3175. https://doi.org/10.1016/S0021-9258(19)45228-9 PubMed DOI
Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7(9):405–410. https://doi.org/10.1016/S1360-1385(02)02312-9 PubMed DOI
Moran JF, James EK, Rubio MC, Sarath G, Klucas RV, Becana M (2003) Functional characterization and expression of a cytosolic iron-superoxide dismutase from cowpea root nodules. Plant Physio 133(2):773–782. https://doi.org/10.1104/pp.103.023010 DOI
Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–250. https://doi.org/10.1046/j.0016-8025.2001.00808.x PubMed DOI
Ogata M, Iwata K, Nishikawa Y, Sugiyama K (1962) Catalase activity in animal tissues. J Biochem 52:79–85. https://doi.org/10.1093/oxfordjournals.jbchem.a127729 DOI
Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68(8):3795–3801. https://doi.org/10.1128/aem.68.8.3795-3801.2002 PubMed DOI PMC
Rajwade YA, Chandel NS, Chandel AK, Singh SK, Dubey K, Subeesh A, Chaudhary VP, Ramanna Rao KV, Manjhi M (2024) Thermal–RGB imagery and computer vision for water stress identification of Okra (Abelmoschus esculentus L). Appl Sci 14(13):5623. https://doi.org/10.3390/app14135623 DOI
Rashid S, Charles TC, Glick BR (2012) Isolation and characterization of new plant growth-promoting bacterial endophytes. Appl Soil Ecol 61:217–224. https://doi.org/10.1016/j.apsoil.2011.09.011 DOI
Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102(5):1283–1292. https://doi.org/10.1111/j.1365-2672.2006.03179.x PubMed DOI
Sridhar D, Alheswairini SS, Barasarathi J, Enshasy HAE, Lalitha S, Mir SH, Nithyapriya S, Sayyed R (2025) Halophilic rhizobacteria promote growth, physiology and salinity tolerance in Sesamum indicum L. grown under salt stress. Front Microbiol 16:1590854. https://doi.org/10.3389/fmicb.2025.1590854 PubMed DOI PMC
Stearns JC, Glick BR (2003) Transgenic plants with altered ethylene biosynthesis or perception. Biotechnol Adv 21(3):193–210. https://doi.org/10.1016/s0734-9750(03)00024-7 PubMed DOI
Sun Y, Cheng Z, Glick BR (2009) The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phytofirmans PsJN. FEMS Microbiol Lett 296(1):131–136 PubMed DOI