Thiosulfonate-Derived BODIPY "Stick and Glue" Strategy for Fluorescent Thiol Labeling

. 2026 Feb 02 ; 65 (6) : e15338. [epub] 20251102

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41178184

Grantová podpora
22-20319S Czech Science Foundation

Fluorescent thiol labeling is a powerful technique for investigating peptide and protein functions, interactions, and cellular localization, offering minimal structural disruption due to the low natural abundance of cysteine residues. The high nucleophilicity of cysteine thiol groups further facilitates efficient and selective labeling. However, existing thiol-labeling strategies, most commonly involving iodoacetamides, maleimides, or methanethiosulfonates (MTS), often suffer from limited selectivity, undesirable side reactions, and the instability of the resulting conjugates. To overcome these limitations, we developed three spectrally orthogonal MTS-derived fluorescent labeling agents based on coumarin and BODIPY photoremovable protecting groups and a BODIPY thiosulfate water-soluble analogue. Using conventional MTS chemistry, these agents form disulfide-linked conjugates with thiols, which are subsequently converted into stable thioethers upon light-induced sulfur extrusion. This two-step approach significantly improves the stability of labeled conjugates, providing a robust and permanent method for fluorescent labeling of small molecules, peptides, and proteins. Our findings offer a promising strategy for precise fluorescent labeling in biological applications.

Zobrazit více v PubMed

Taraska J. W., Zagotta W. N., Neuron 2010, 66, 170–189, 10.1016/j.neuron.2010.02.002. PubMed DOI PMC

Yuan Y., Wang X., Mei B., Zhang D., Tang A., An L., He X., Jiang J., Liang G., Sci. Rep. 2013, 3, 3523, 10.1038/srep03523. PubMed DOI PMC

Kuiper J. M., Pluta R., Huibers W. H. C., Fusetti F., Geertsma E. R., Poolman B., Protein Sci. 2009, 18, 1033–1041, 10.1002/pro.113. PubMed DOI PMC

Hong V., Kislukhin A. A., Finn M. G., J. Am. Chem. Soc. 2009, 131, 9986–9994, 10.1021/ja809345d. PubMed DOI PMC

Miseta A., Csutora P., Mol. Biol. Evol. 2000, 17, 1232–1239, 10.1093/oxfordjournals.molbev.a026406. PubMed DOI

dos Santos A. P. A., da Silva J. K., Neri J. M., Neves A. C. O., de Lima D. F., Menezes F. G., Org. Biomol. Chem. 2020, 18, 9398–9427, 10.1039/D0OB01754J. PubMed DOI

Thiol‐Reactive Probe Labeling Protocol – CZ,″ can be found under https://www.thermofisher.com/uk/en/home/references/protocols/cell‐and‐tissue‐analysis/labeling‐chemistry‐protocols/thiol‐reactive‐probe‐labeling‐protocol.html, n.d.

Lang S., Spratt D. E., Guillemette J. G., Palmer M., Anal. Biochem. 2005, 342, 271–279, 10.1016/j.ab.2005.04.036. PubMed DOI

Jullien M., Garel J. R., Biochemistry 1981, 20, 7021–7026, 10.1021/bi00527a038. PubMed DOI

Alley S. C., Benjamin D. R., Jeffrey S. C., Okeley N. M., Meyer D. L., Sanderson R. J., Senter P. D., Bioconjug. Chem. 2008, 19, 759–765, 10.1021/bc7004329. PubMed DOI

Lewis M. R., Shively J. E., Bioconjug. Chem. 1998, 9, 72–86, 10.1021/bc970136v. PubMed DOI

Gober I. N., Riemen A. J., Villain M., J. Pept. Sci. Off. Publ. Eur. Pept. Soc. 2021, 27, e3323. PubMed PMC

Mthembu S. N., Sharma A., Albericio F., de la Torre B. G., ChemBioChem 2020, 21, 1947–1954, 10.1002/cbic.202000092. PubMed DOI

Wohlrábová L., Okoročenkova J., Palao E., Kužmová E., Chalupský K., Klán P., Slanina T., Org. Lett. 2023, 25, 6705–6709, 10.1021/acs.orglett.3c02511. PubMed DOI PMC

Slanina T., Shrestha P., Palao E., Kand D., Peterson J. A., Dutton A. S., Rubinstein N., Weinstain R., Winter A. H., Klán P., J. Am. Chem. Soc. 2017, 139, 15168–15175, 10.1021/jacs.7b08532. PubMed DOI

Poljak M., Wohlrábová L., Palao E., Nociarová J., Míšek J., Slanina T., Klán P., Chem. Commun. 2022, 58, 6389–6392, 10.1039/D2CC02016E. PubMed DOI

Caspar J. V., Meyer T. J., J. Phys. Chem. 1983, 87, 952–957, 10.1021/j100229a010. DOI

Toohey J. I., Cooper A. J. L., Molecules 2014, 19, 12789–12813, 10.3390/molecules190812789. PubMed DOI PMC

Steudel R., Drozdova Y., Miaskiewicz K., Hertwig R. H., Koch W., J. Am. Chem. Soc. 1997, 119, 1990–1996.

Schilling D., Barayeu U., Steimbach R. R., Talwar D., Miller A. K., Dick T. P., Angew. Chem. Int. Ed. 2022, 61, e202203684, 10.1002/anie.202203684. PubMed DOI PMC

Gerbaux P., Salpin J.‐Y., Bouchoux G., Flammang R., Int. J. Mass Spectrom. 2000, 195–196, 239–249, 10.1016/S1387-3806(99)00227-4. DOI

Duez Q., Marek L., Váňa J., Hanusek J., Roithová J., Chem. – Eur. J. 2024, 30, e202303619. PubMed

Toohey J. I., Cooper A. J. L., Molecules 2014, 19, 12789–12813, 10.3390/molecules190812789. PubMed DOI PMC

Kessler D., FEMS Microbiol. Rev. 2006, 30, 825–840, 10.1111/j.1574-6976.2006.00036.x. PubMed DOI

Ásgeirsson V., Birgisson B. O., Bjornsson R., Becker U., Neese F., Riplinger C., Jónsson H., J. Chem. Theory Comput. 2021, 17, 4929–4945, 10.1021/acs.jctc.1c00462. PubMed DOI

Cline J. D., Limnol. Oceanogr. 1969, 14, 454–458, 10.4319/lo.1969.14.3.0454. DOI

Liu C., Chen W., Shi W., Peng B., Zhao Y., Ma H., Xian M., J. Am. Chem. Soc. 2014, 136, 7257–7260, 10.1021/ja502968x. PubMed DOI PMC

Kutney G. W., Turnbull K., Chem. Rev. 1982, 82, 333–357, 10.1021/cr00050a001. DOI

Kawaguchi M., Yoshino K., Ida T., Moriyama H., Ieda N., Ohta Y., Kasamatsu S., Ihara H., Nakagawa H., J. Am. Chem. Soc. 2025, 147, 12627–12634, 10.1021/jacs.5c00196. PubMed DOI PMC

Akimoto M., Yamamoto Y., Watanabe S., Yamaga H., Yoshida K., Wakabayashi K., Tahara Y., Horie N., Fujimoto K., Kusakari K., Kamiya K., Kojima K., Kawakami T., Kojima H., Ono A., Kasahara T., Fujita M., J. Appl. Toxicol. JAT 2020, 40, 843–854, 10.1002/jat.3948. PubMed DOI

Poryvai A., Galkin M., Shvadchak V., Slanina T., Angew. Chem. Int. Ed. 2022, 61, e202205855, 10.1002/anie.202205855. PubMed DOI

Potocky T. B., Menon A. K., Gellman S. H., J. Biol. Chem. 2003, 278, 50188–50194, 10.1074/jbc.M308719200. PubMed DOI

Grimme S., Ehrlich S., Goerigk L., J. Comput. Chem. 2011, 32, 1456–1465, 10.1002/jcc.21759. PubMed DOI

Wu Y., Peng X., Guo B., Fan J., Zhang Z., Wang J., Cui A., Gao Y., Org. Biomol. Chem. 2005, 3, 1387–1392, 10.1039/b501795e. PubMed DOI

Krumova K., Cosa G., J. Am. Chem. Soc. 2010, 132, 17560–17569, 10.1021/ja1075663. PubMed DOI

Winter A. H., Beck C. L., Mahoney K. M., Albright T. R., Goswami P. P., 2016, US2016228845A1.

Peterson J. A., Wijesooriya C., Gehrmann E. J., Mahoney K. M., Goswami P. P., Albright T. R., Syed A., Dutton A. S., Smith E. A., Winter A. H., J. Am. Chem. Soc. 2018, 140, 7343–7346, 10.1021/jacs.8b04040. PubMed DOI

Reinfelds M., Hermanns V., Halbritter T., Wachtveitl J., Braun M., Slanina T., Heckel A., ChemPhotoChem 2019, 3, 441–449, 10.1002/cptc.201900010. DOI

H. Scientific, Recording Fluorescence Quantum Yields. https://www.horiba.com/cze/scientific/applications/material‐sciences/pages/recording‐fluorescence‐quantum‐yields/ (accessed: October 2025).

Neese F., Wennmohs F., Becker U., Riplinger C., J. Chem. Phys. 2020, 152, 224108. PubMed

Pracht P., Bohle F., Grimme S., Phys. Chem. Chem. Phys. 2020, 22, 7169–7192, 10.1039/C9CP06869D. PubMed DOI

Weigend F., Ahlrichs R., Phys. Chem. Chem. Phys. 2005, 7, 3297–3305, 10.1039/b508541a. PubMed DOI

Grimme S., Antony J., Ehrlich S., Krieg H., J. Chem. Phys. 2010, 132, 154104, 10.1063/1.3382344. PubMed DOI

Garcia‐Ratés M., Neese F., J. Comput. Chem. 2020, 41, 922–939, 10.1002/jcc.26139. PubMed DOI

Izsák R., Neese F., J. Chem. Phys. 2011, 135, 144105, 10.1063/1.3646921. PubMed DOI

Weigend F., Phys. Chem. Chem. Phys. 2006, 8, 1057, 10.1039/b515623h. PubMed DOI

Liakos D. G., Neese F., J. Chem. Theory Comput. 2015, 11, 4054–4063, 10.1021/acs.jctc.5b00359. PubMed DOI

Guo Y., Riplinger C., Liakos D. G., Becker U., Saitow M., Neese F., J. Chem. Phys. 2020, 152, 024116, 10.1063/1.5127550. PubMed DOI

Becke A. D., J. Chem. Phys. 1993, 98, 5648–5652, 10.1063/1.464913. DOI

Bannwarth C., Ehlert S., Grimme S., J. Chem. Theory Comput. 2019, 15, 1652–1671, 10.1021/acs.jctc.8b01176. PubMed DOI

Garcia‐Ratés M., Neese F., J. Comput. Chem. 2019, 40, 1816–1828, 10.1002/jcc.25833. PubMed DOI

Ásgeirsson V., Birgisson B. O., Bjornsson R., Becker U., Neese F., Riplinger C., Jónsson H., J. Chem. Theory Comput. 2021, 17, 4929–4945, 10.1021/acs.jctc.1c00462. PubMed DOI

Li Z., Suo B., Liu W., J. Chem. Phys. 2014, 141, 244105, 10.1063/1.4903986. PubMed DOI

Fatehi S., Alguire E., Shao Y., Subotnik J. E., J. Chem. Phys. 2011, 135, 234105, 10.1063/1.3665031. PubMed DOI

Hoefle G., Baldwin J. E., J. Am. Chem. Soc. 1971, 93, 6307–6308, 10.1021/ja00752a073. DOI

Brandt G. a. R., Emeléus H. J., Haszeldine R. N., J. Chem. Soc. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...