Thiosulfonate-Derived BODIPY "Stick and Glue" Strategy for Fluorescent Thiol Labeling
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
22-20319S
Czech Science Foundation
PubMed
41178184
PubMed Central
PMC12865270
DOI
10.1002/anie.202515338
Knihovny.cz E-zdroje
- Klíčová slova
- BODIPY, Fluorescent labels, Peptides, Rearrangement, Thiols,
- MeSH
- fluorescenční barviva * chemie MeSH
- lidé MeSH
- molekulární struktura MeSH
- sloučeniny boru * chemie MeSH
- sulfhydrylové sloučeniny * chemie MeSH
- thiosírany * chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene MeSH Prohlížeč
- fluorescenční barviva * MeSH
- sloučeniny boru * MeSH
- sulfhydrylové sloučeniny * MeSH
- thiosírany * MeSH
Fluorescent thiol labeling is a powerful technique for investigating peptide and protein functions, interactions, and cellular localization, offering minimal structural disruption due to the low natural abundance of cysteine residues. The high nucleophilicity of cysteine thiol groups further facilitates efficient and selective labeling. However, existing thiol-labeling strategies, most commonly involving iodoacetamides, maleimides, or methanethiosulfonates (MTS), often suffer from limited selectivity, undesirable side reactions, and the instability of the resulting conjugates. To overcome these limitations, we developed three spectrally orthogonal MTS-derived fluorescent labeling agents based on coumarin and BODIPY photoremovable protecting groups and a BODIPY thiosulfate water-soluble analogue. Using conventional MTS chemistry, these agents form disulfide-linked conjugates with thiols, which are subsequently converted into stable thioethers upon light-induced sulfur extrusion. This two-step approach significantly improves the stability of labeled conjugates, providing a robust and permanent method for fluorescent labeling of small molecules, peptides, and proteins. Our findings offer a promising strategy for precise fluorescent labeling in biological applications.
Zobrazit více v PubMed
Taraska J. W., Zagotta W. N., Neuron 2010, 66, 170–189, 10.1016/j.neuron.2010.02.002. PubMed DOI PMC
Yuan Y., Wang X., Mei B., Zhang D., Tang A., An L., He X., Jiang J., Liang G., Sci. Rep. 2013, 3, 3523, 10.1038/srep03523. PubMed DOI PMC
Kuiper J. M., Pluta R., Huibers W. H. C., Fusetti F., Geertsma E. R., Poolman B., Protein Sci. 2009, 18, 1033–1041, 10.1002/pro.113. PubMed DOI PMC
Hong V., Kislukhin A. A., Finn M. G., J. Am. Chem. Soc. 2009, 131, 9986–9994, 10.1021/ja809345d. PubMed DOI PMC
Miseta A., Csutora P., Mol. Biol. Evol. 2000, 17, 1232–1239, 10.1093/oxfordjournals.molbev.a026406. PubMed DOI
dos Santos A. P. A., da Silva J. K., Neri J. M., Neves A. C. O., de Lima D. F., Menezes F. G., Org. Biomol. Chem. 2020, 18, 9398–9427, 10.1039/D0OB01754J. PubMed DOI
Thiol‐Reactive Probe Labeling Protocol – CZ,″ can be found under https://www.thermofisher.com/uk/en/home/references/protocols/cell‐and‐tissue‐analysis/labeling‐chemistry‐protocols/thiol‐reactive‐probe‐labeling‐protocol.html, n.d.
Lang S., Spratt D. E., Guillemette J. G., Palmer M., Anal. Biochem. 2005, 342, 271–279, 10.1016/j.ab.2005.04.036. PubMed DOI
Jullien M., Garel J. R., Biochemistry 1981, 20, 7021–7026, 10.1021/bi00527a038. PubMed DOI
Alley S. C., Benjamin D. R., Jeffrey S. C., Okeley N. M., Meyer D. L., Sanderson R. J., Senter P. D., Bioconjug. Chem. 2008, 19, 759–765, 10.1021/bc7004329. PubMed DOI
Lewis M. R., Shively J. E., Bioconjug. Chem. 1998, 9, 72–86, 10.1021/bc970136v. PubMed DOI
Gober I. N., Riemen A. J., Villain M., J. Pept. Sci. Off. Publ. Eur. Pept. Soc. 2021, 27, e3323. PubMed PMC
Mthembu S. N., Sharma A., Albericio F., de la Torre B. G., ChemBioChem 2020, 21, 1947–1954, 10.1002/cbic.202000092. PubMed DOI
Wohlrábová L., Okoročenkova J., Palao E., Kužmová E., Chalupský K., Klán P., Slanina T., Org. Lett. 2023, 25, 6705–6709, 10.1021/acs.orglett.3c02511. PubMed DOI PMC
Slanina T., Shrestha P., Palao E., Kand D., Peterson J. A., Dutton A. S., Rubinstein N., Weinstain R., Winter A. H., Klán P., J. Am. Chem. Soc. 2017, 139, 15168–15175, 10.1021/jacs.7b08532. PubMed DOI
Poljak M., Wohlrábová L., Palao E., Nociarová J., Míšek J., Slanina T., Klán P., Chem. Commun. 2022, 58, 6389–6392, 10.1039/D2CC02016E. PubMed DOI
Caspar J. V., Meyer T. J., J. Phys. Chem. 1983, 87, 952–957, 10.1021/j100229a010. DOI
Toohey J. I., Cooper A. J. L., Molecules 2014, 19, 12789–12813, 10.3390/molecules190812789. PubMed DOI PMC
Steudel R., Drozdova Y., Miaskiewicz K., Hertwig R. H., Koch W., J. Am. Chem. Soc. 1997, 119, 1990–1996.
Schilling D., Barayeu U., Steimbach R. R., Talwar D., Miller A. K., Dick T. P., Angew. Chem. Int. Ed. 2022, 61, e202203684, 10.1002/anie.202203684. PubMed DOI PMC
Gerbaux P., Salpin J.‐Y., Bouchoux G., Flammang R., Int. J. Mass Spectrom. 2000, 195–196, 239–249, 10.1016/S1387-3806(99)00227-4. DOI
Duez Q., Marek L., Váňa J., Hanusek J., Roithová J., Chem. – Eur. J. 2024, 30, e202303619. PubMed
Toohey J. I., Cooper A. J. L., Molecules 2014, 19, 12789–12813, 10.3390/molecules190812789. PubMed DOI PMC
Kessler D., FEMS Microbiol. Rev. 2006, 30, 825–840, 10.1111/j.1574-6976.2006.00036.x. PubMed DOI
Ásgeirsson V., Birgisson B. O., Bjornsson R., Becker U., Neese F., Riplinger C., Jónsson H., J. Chem. Theory Comput. 2021, 17, 4929–4945, 10.1021/acs.jctc.1c00462. PubMed DOI
Cline J. D., Limnol. Oceanogr. 1969, 14, 454–458, 10.4319/lo.1969.14.3.0454. DOI
Liu C., Chen W., Shi W., Peng B., Zhao Y., Ma H., Xian M., J. Am. Chem. Soc. 2014, 136, 7257–7260, 10.1021/ja502968x. PubMed DOI PMC
Kutney G. W., Turnbull K., Chem. Rev. 1982, 82, 333–357, 10.1021/cr00050a001. DOI
Kawaguchi M., Yoshino K., Ida T., Moriyama H., Ieda N., Ohta Y., Kasamatsu S., Ihara H., Nakagawa H., J. Am. Chem. Soc. 2025, 147, 12627–12634, 10.1021/jacs.5c00196. PubMed DOI PMC
Akimoto M., Yamamoto Y., Watanabe S., Yamaga H., Yoshida K., Wakabayashi K., Tahara Y., Horie N., Fujimoto K., Kusakari K., Kamiya K., Kojima K., Kawakami T., Kojima H., Ono A., Kasahara T., Fujita M., J. Appl. Toxicol. JAT 2020, 40, 843–854, 10.1002/jat.3948. PubMed DOI
Poryvai A., Galkin M., Shvadchak V., Slanina T., Angew. Chem. Int. Ed. 2022, 61, e202205855, 10.1002/anie.202205855. PubMed DOI
Potocky T. B., Menon A. K., Gellman S. H., J. Biol. Chem. 2003, 278, 50188–50194, 10.1074/jbc.M308719200. PubMed DOI
Grimme S., Ehrlich S., Goerigk L., J. Comput. Chem. 2011, 32, 1456–1465, 10.1002/jcc.21759. PubMed DOI
Wu Y., Peng X., Guo B., Fan J., Zhang Z., Wang J., Cui A., Gao Y., Org. Biomol. Chem. 2005, 3, 1387–1392, 10.1039/b501795e. PubMed DOI
Krumova K., Cosa G., J. Am. Chem. Soc. 2010, 132, 17560–17569, 10.1021/ja1075663. PubMed DOI
Winter A. H., Beck C. L., Mahoney K. M., Albright T. R., Goswami P. P., 2016, US2016228845A1.
Peterson J. A., Wijesooriya C., Gehrmann E. J., Mahoney K. M., Goswami P. P., Albright T. R., Syed A., Dutton A. S., Smith E. A., Winter A. H., J. Am. Chem. Soc. 2018, 140, 7343–7346, 10.1021/jacs.8b04040. PubMed DOI
Reinfelds M., Hermanns V., Halbritter T., Wachtveitl J., Braun M., Slanina T., Heckel A., ChemPhotoChem 2019, 3, 441–449, 10.1002/cptc.201900010. DOI
H. Scientific, Recording Fluorescence Quantum Yields. https://www.horiba.com/cze/scientific/applications/material‐sciences/pages/recording‐fluorescence‐quantum‐yields/ (accessed: October 2025).
Neese F., Wennmohs F., Becker U., Riplinger C., J. Chem. Phys. 2020, 152, 224108. PubMed
Pracht P., Bohle F., Grimme S., Phys. Chem. Chem. Phys. 2020, 22, 7169–7192, 10.1039/C9CP06869D. PubMed DOI
Weigend F., Ahlrichs R., Phys. Chem. Chem. Phys. 2005, 7, 3297–3305, 10.1039/b508541a. PubMed DOI
Grimme S., Antony J., Ehrlich S., Krieg H., J. Chem. Phys. 2010, 132, 154104, 10.1063/1.3382344. PubMed DOI
Garcia‐Ratés M., Neese F., J. Comput. Chem. 2020, 41, 922–939, 10.1002/jcc.26139. PubMed DOI
Izsák R., Neese F., J. Chem. Phys. 2011, 135, 144105, 10.1063/1.3646921. PubMed DOI
Weigend F., Phys. Chem. Chem. Phys. 2006, 8, 1057, 10.1039/b515623h. PubMed DOI
Liakos D. G., Neese F., J. Chem. Theory Comput. 2015, 11, 4054–4063, 10.1021/acs.jctc.5b00359. PubMed DOI
Guo Y., Riplinger C., Liakos D. G., Becker U., Saitow M., Neese F., J. Chem. Phys. 2020, 152, 024116, 10.1063/1.5127550. PubMed DOI
Becke A. D., J. Chem. Phys. 1993, 98, 5648–5652, 10.1063/1.464913. DOI
Bannwarth C., Ehlert S., Grimme S., J. Chem. Theory Comput. 2019, 15, 1652–1671, 10.1021/acs.jctc.8b01176. PubMed DOI
Garcia‐Ratés M., Neese F., J. Comput. Chem. 2019, 40, 1816–1828, 10.1002/jcc.25833. PubMed DOI
Ásgeirsson V., Birgisson B. O., Bjornsson R., Becker U., Neese F., Riplinger C., Jónsson H., J. Chem. Theory Comput. 2021, 17, 4929–4945, 10.1021/acs.jctc.1c00462. PubMed DOI
Li Z., Suo B., Liu W., J. Chem. Phys. 2014, 141, 244105, 10.1063/1.4903986. PubMed DOI
Fatehi S., Alguire E., Shao Y., Subotnik J. E., J. Chem. Phys. 2011, 135, 234105, 10.1063/1.3665031. PubMed DOI
Hoefle G., Baldwin J. E., J. Am. Chem. Soc. 1971, 93, 6307–6308, 10.1021/ja00752a073. DOI
Brandt G. a. R., Emeléus H. J., Haszeldine R. N., J. Chem. Soc. DOI