Seasonal variation rather than ectoparasitic fungi infection affects hemolymph parameters, thermal stress tolerance, and movement performance of an invasive ladybird
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2025B0026
Fakulta Životního Prostředí, Česká Zemědělská Univerzita v Praze
PubMed
41186768
DOI
10.1007/s00442-025-05822-0
PII: 10.1007/s00442-025-05822-0
Knihovny.cz E-zdroje
- Klíčová slova
- Host-parasite interaction, Immune response, Insect, Invasive species, Thermal stress tolerance,
- MeSH
- brouci * mikrobiologie fyziologie MeSH
- hemolymfa MeSH
- roční období MeSH
- zavlečené druhy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Despite the prevalence of both Harmonia axyridis and its fungal ectoparasite Hesperomyces harmoniae across the globe, few studies have explored the impact of Hesperomyces harmoniae on the immune system and thermal performance of Harmonia axyridis, both of which are important traits for the continued geographic range expansion of this invasive species. Since He. harmoniae does impose a cost on Ha. axyridis (overwintering survival), we predicted that infected ladybirds collected from the field would have an increased immune response and decreased phenotypic performance compared to uninfected ladybirds. Moreover, these effects would depend on the season in which ladybirds were collected (summer growing vs autumn pre-overwintering season). In general, collection season had a significant effect on all physiological traits we assayed. All hemolymph parameters significantly decreased from summer to autumn. Ladybird movement activity and range of utilized temperatures increased from summer to autumn, whereas, average preferred temperature decreased from summer to autumn. Unsurprisingly, summer ladybirds were more heat tolerant and autumn ladybirds were more cold tolerant. He. harmoniae infection had almost no impact on any of the investigated traits. The only exception to this was with respect to cold tolerance, He. harmoniae infected ladybirds being less cold tolerant than uninfected ladybirds. Therefore, infection by this fungus does not appear to be physiologically severe enough to elicit a whole-body negative effect on its host ladybird, but instead, may deplete specific internal resources that negatively impact cold tolerance.
Zobrazit více v PubMed
Adamo SA, Lovett MME (2011) Some like it hot: the effects of climate change on reproduction, immune function and disease resistance in the cricket Gryllus texensis. J Exp Biol 214:1997–2004. https://doi.org/10.1242/jeb.056531 PubMed DOI
Angilletta MJ (2009) Thermal adaptation: a theoretical and empirical synthesis. New York, NY
Arnold PA, White CR, Johnson KN (2015) Drosophila melanogaster does not exhibit a behavioural fever response when infected with Drosophila C virus. J Gen Virol 96:3667–3671. https://doi.org/10.1099/jgv.0.000296 PubMed DOI
Awad M, Piálková R, Haelewaters D, Nedvěd O (2023) Infection patterns of Harmonia axyridis (Coleoptera: Coccinellidae) by ectoparasitic microfungi and endosymbiotic bacteria. J Invertebr Pathol. https://doi.org/10.1016/j.jip.2023.107887 PubMed DOI
Awde DN, Fowler TE, Pérez-Gálvez F et al (2020) High-throughput assays of critical thermal limits in insects. J vis Exp. https://doi.org/10.3791/61186 PubMed DOI
Awde DN, Řeřicha M, Knapp M (2023) Increased pupal temperature has reversible effects on thermal performance and irreversible effects on immune system and fecundity in adult ladybirds. Commun Biol. https://doi.org/10.1038/s42003-023-05196-0 PubMed DOI
Brooks ME, Kristensen K, van Benthem KJ et al (2017) glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J 9:378–400. https://doi.org/10.32614/rj-2017-066 DOI
Brown PMJ, Thomas CE, Lombaert E et al (2011) The global spread of Harmonia axyridis (Coleoptera: Coccinellidae): distribution, dispersal and routes of invasion. Biocontrol 56:623–641. https://doi.org/10.1007/s10526-011-9379-1 DOI
Buchon N, Silverman N, Cherry S (2014) Immunity in Drosophila melanogaster — from microbial recognition to whole- organism physiology. Physiol Behav 14:796–810. https://doi.org/10.1038/nri3763.Immunity DOI
Bujan J, Roeder KA, Yanoviak SP, Kaspari M (2020) Seasonal plasticity of thermal tolerance in ants. Ecology 101:1–6. https://doi.org/10.1002/ecy.3051 DOI
Castro CF, Almeida LM, Penteado SRC (2011) The impact of temperature on biological aspects and life table of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae). Florida Entomol 94:923–932. https://doi.org/10.1653/024.094.0429 DOI
Catalán A, Hutter S, Parsch J (2012) Population and sex differences in Drosophila melanogaster brain gene expression. BMC Genomics. https://doi.org/10.1186/1471-2164-13-654 PubMed DOI
Clancy LM, Jones R, Cooper AL et al (2018) Dose-dependent behavioural fever responses in desert locusts challenged with the entomopathogenic fungus Metarhizium acridum. Sci Rep 8:6–13. https://doi.org/10.1038/s41598-018-32524-w DOI
Colinet H, Hoffmann AA (2012) Comparing phenotypic effects and molecular correlates of developmental, gradual and rapid cold acclimation responses in Drosophila melanogaster. Funct Ecol 26:84–93. https://doi.org/10.1111/j.1365-2435.2011.01898.x DOI
Costaz TPM, de Jong PW, Harvey JA et al (2023) Temperature affects the outcome of competition between two sympatric endoparasitoids. Anim Behav 203:11–20. https://doi.org/10.1016/j.anbehav.2023.06.003 DOI
de Bekker C, Beckerson WC, Elya C (2021) Mechanisms behind the madness: how do zombie-making fungal entomopathogens affect host behavior to increase transmission? Mbio. https://doi.org/10.1128/mBio.01872-21 PubMed DOI
De Kesel A (2011) Hesperomyces (Laboulbeniales) and coccinellid hosts. Sterbeeckia 30:32–37
Dillon ME, Wang G, Garrity PA, Huey RB (2009) Thermal preference in Drosophila. J Therm Biol 34:109–119. https://doi.org/10.1016/j.jtherbio.2008.11.007 PubMed DOI
Dowd WW, King FA, Denny MW (2015) Thermal variation, thermal extremes and the physiological performance of individuals. J Exp Biol 218:1956–1967. https://doi.org/10.1242/jeb.114926 PubMed DOI
Eleftherianos I, Heryanto C, Bassal T et al (2021) Haemocyte-mediated immunity in insects: cells, processes and associated components in the fight against pathogens and parasites. Immunology 164:401–432. https://doi.org/10.1111/imm.13390 PubMed DOI
El-Saadi MI, MacMillan HA, Ferguson LV (2023) Cold-induced immune activation in chill-susceptible insects. Curr Opin Insect Sci 58:101054. https://doi.org/10.1016/j.cois.2023.101054 PubMed DOI
Ferguson LV, Adamo SA (2023) From perplexing to predictive: are we ready to forecast insect disease susceptibility in a warming world? J Exp Biol. https://doi.org/10.1242/jeb.244911 PubMed DOI
Ferguson LV, Sinclair BJ (2017) Insect immunity varies idiosyncratically during overwintering. J Exp Zool A Ecol Integr Physiol 327:222–234. https://doi.org/10.1002/jez.2067 PubMed DOI
Ferguson LV, Heinrichs DE, Sinclair BJ (2016) Paradoxical acclimation responses in the thermal performance of insect immunity. Oecologia 181:77–85. https://doi.org/10.1007/s00442-015-3529-6 PubMed DOI
Ferguson LV, Kortet R, Sinclair BJ (2018) Eco-immunology in the cold: the role of immunity in shaping the overwintering survival of ectotherms. J Exp Biol 221:1–8. https://doi.org/10.1242/jeb.163873 DOI
Fiedler L, Nedvěd O (2019) Fifty shades of the harlequin ladybird and a sexually transmitted fungus. J Insect Sci. https://doi.org/10.1093/jisesa/iez107 PubMed DOI
Firlej A, Girard PA, Brehlin M et al (2012) Immune response of Harmonia axyridis (Coleoptera: Coccinellidae) supports the enemy release hypothesis in North America. Ann Entomol Soc Am 105:328–338. https://doi.org/10.1603/AN11026 DOI
Fox J, Weisberg S (2019) An R companion to applied regression, 3rd edn. Sage, Thousand Oaks, CA
Grez AA, Zaviezo T, Ríos M (2005) Ladybird (Coleoptera: Coccinellidae) dispersal in experimental fragmented alfalfa landscapes. Eur J Entomol 102:209–216. https://doi.org/10.14411/eje.2005.033 DOI
Haelewaters D, Zhao SY, Clusella-Trullas S et al (2017) Parasites of Harmonia axyridis: current research and perspectives. Biocontrol 62:355–371. https://doi.org/10.1007/s10526-016-9766-8 DOI
Haelewaters D, De Kesel A, Pfister DH (2018) Integrative taxonomy reveals hidden species within a common fungal parasite of ladybirds. Sci Rep 8:1–16. https://doi.org/10.1038/s41598-018-34319-5 DOI
Haelewaters D, Hiller T, Kemp EA et al (2020) Mortality of native and invasive ladybirds co-infected by ectoparasitic and entomopathogenic fungi. PeerJ 8:1–16. https://doi.org/10.7717/peerj.10110 DOI
Haelewaters D, Hiller T, Ceryngier P et al (2022) Do biotic and abiotic factors influence the prevalence of a common parasite of the invasive alien ladybird Harmonia axyridis? Front Ecol Evol 10:1–8. https://doi.org/10.3389/fevo.2022.773423 DOI
Hahn DA, Denlinger DL (2007) Meeting the energetic demands of insect diapause: nutrient storage and utilization. J Insect Physiol 53:760–773. https://doi.org/10.1016/j.jinsphys.2007.03.018 PubMed DOI
Jiang H, Vilcinskas A, Kanost MR (2010) Immunity in Lepidopteran insects. In: Söderhäll K (ed) Invertebrate inmunity. Springer, New York, pp 181–194 DOI
Karl I, Stoks R, De Block M et al (2011) Temperature extremes and butterfly fitness: conflicting evidence from life history and immune function. Glob Chang Biol 17:676–687. https://doi.org/10.1111/j.1365-2486.2010.02277.x DOI
Khan MK, Rolff J (2024) Insect immunity in the anthropocene. Biol Rev. https://doi.org/10.1111/brv.13158 PubMed DOI
Knapp M, Dobeš P, Řeřicha M, Hyršl P (2018) Puncture vs. reflex bleeding: haemolymph composition reveals significant differences among ladybird species (Coleoptera: Coccinellidae), but not between sampling methods. Eur J Entomol 115:1–6. https://doi.org/10.14411/eje.2018.001 DOI
Knapp M, Řeřicha M, Haelewaters D, González E (2022) Fungal ectoparasites increase winter mortality of ladybird hosts despite limited effects on their immune system. Proc R Soc Lond B Biol Sci. https://doi.org/10.1098/rspb.2021.2538 DOI
Krstevska B, Hoffmann AA (1994) The effects of acclimation and rearing conditions on the response of tropical and temperate populations of Drosophila melanogaster and D. simulans to a temperature gradient (Diptera: Drosophilidae). J Insect Behav 7:279–288. https://doi.org/10.1007/BF01989735 DOI
Lachenicht MW, Clusella-Trullas S, Boardman L et al (2010) Effects of acclimation temperature on thermal tolerance, locomotion performance and respiratory metabolism in Acheta domesticus L. (Orthoptera: Gryllidae). J Insect Physiol 56:822–830. https://doi.org/10.1016/j.jinsphys.2010.02.010 PubMed DOI
Lecheta MC, Awde DN, O’Leary TS et al (2020) Integrating GWAS and transcriptomics to identify the molecular underpinnings of thermal stress responses in Drosophila melanogaster. Front Genet 11:1–17. https://doi.org/10.3389/fgene.2020.00658 DOI
Lemaitre B, Reichhart JM, Hoffmann JA (1997) Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc Natl Acad Sci U S A 94:14614–14619. https://doi.org/10.1073/pnas.94.26.14614 PubMed DOI
Li H, Peng Y, Wang Y, Summerhays B, Shu X, Vasquez Y, Vansant H, Grenier C, Gonzalez N, Kansagra K, Cartmill R, Sujii ER, Meng L, Zhou X, Lövei GL, Obrycki JJ, Sethuraman LB (2023) Global patterns of genomic and phenotypic variation in the invasive harlequin ladybird. BMC Biol 21:141. https://doi.org/10.1186/s12915-023-01638-7 PubMed DOI
Littler AS, Garcia MJ, Teets NM (2021) Laboratory diet influences cold tolerance in a genotype-dependent manner in Drosophila melanogaster. Comp Biochem Physiol-Part A Mol Integr Physiol 257:110948. https://doi.org/10.1016/j.cbpa.2021.110948 DOI
Liu X, Reitz SR, Lei Z, Wang H (2019) Thermoregulatory response of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) to infection by Beauveria bassiana, and its effect on survivorship and reproductive success. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-49950-z DOI
Lüdecke D, Ben-Shachar M, Patil I et al (2021) Performance: an R package for assessment, comparison and testing of statistical models. J Open Source Softw 6(60):3139. https://doi.org/10.21105/joss.03139 DOI
Marshall KE, Sinclair BJ (2015) The relative importance of number, duration and intensity of cold stress events in determining survival and energetics of an overwintering insect. Funct Ecol 29:357–366. https://doi.org/10.1111/1365-2435.12328 DOI
Murphy BF (1986) The effect of acclimation temperature and the removal of peripheral temperature receptors on body temperature preference in the cockroach (Periplaneta americana). J Therm Biol 11:209–212 DOI
Nakamura A, Miyado K, Takezawa Y et al (2011) Innate immune system still works at diapause, a physiological state of dormancy in insects. Biochem Biophys Res Commun 410:351–357. https://doi.org/10.1016/j.bbrc.2011.06.015 PubMed DOI
Nyamukondiwa C, Terblanche JS (2009) Thermal tolerance in adult Mediterranean and Natal fruit flies (Ceratitis capitata and Ceratitis rosa): effects of age, gender and feeding status. J Therm Biol 34:406–414. https://doi.org/10.1016/j.jtherbio.2009.09.002 DOI
Ouedraogo RM, Cusson M, Goettel MS, Brodeur J (2003) Inhibition of fungal growth in thermoregulating locusts, Locusta migratoria, infected by the fungus Metarhizium anisopliae var acridum. J Invertebr Pathol 82:103–109. https://doi.org/10.1016/S0022-2011(02)00185-4 PubMed DOI
Ouedraogo RM, Goettel MS, Brodeur J (2004) Behavioral thermoregulation in the migratory locust: a therapy to overcome fungal infection. Oecologia 138:312–319. https://doi.org/10.1007/s00442-003-1431-0 PubMed DOI
Oyen KJ, Dillon ME (2018) Critical thermal limits of bumblebees (Bombus impatiens) are marked by stereotypical behaviors and are unchanged by acclimation, age or feeding status. J Exp Biol. https://doi.org/10.1242/jeb.165589 PubMed DOI
Perez-Galvez FR, Wilson AC, Zhou S et al (2023) Scoring thermal limits in small insects using open-source, computer assisted motion detection. J Exp Biol. https://doi.org/10.1242/jeb.246548 PubMed DOI
Pijpe J, Brakefield PM, Zwaan BJ (2007) Phenotypic plasticity of starvation resistance in the butterfly Bicyclus anynana. Evol Ecol 21:589–600. https://doi.org/10.1007/s10682-006-9137-5 DOI
Pincebourde S, Dillon ME, Woods HA (2021) Body size determines the thermal coupling between insects and plant surfaces. Funct Ecol 35:1424–1436. https://doi.org/10.1111/1365-2435.13801 DOI
Porras MF, Agudelo-Cantero GA, Santiago-Martínez MG et al (2021) Fungal infections lead to shifts in thermal tolerance and voluntary exposure to extreme temperatures in both prey and predator insects. Sci Rep 11:1–9. https://doi.org/10.1038/s41598-021-00248-z DOI
Porras MF, Navas CA, Agudelo-Cantero GA et al (2023) Extreme heat alters the performance of hosts and pathogen. Front Ecol Evol 11:1–12. https://doi.org/10.3389/fevo.2023.1186452 DOI
R Core Team (2021) R: a language and environment for statistical computing
Ragonese IG, Sarkar MR, Hall RJ, Altizer S (2024) Extreme heat reduces host and parasite performance in a butterfly-parasite interaction. Proc R Soc Lond B Biol Sci. https://doi.org/10.1098/rspb.2023.2305 DOI
Řeřicha M, Dobeš P, Hyršl P, Knapp M (2018) Ontogeny of protein concentration, haemocyte concentration and antimicrobial activity against Escherichia coli in haemolymph of the invasive harlequin ladybird Harmonia axyridis (Coleoptera: Coccinellidae). Physiol Entomol 43:51–59. https://doi.org/10.1111/phen.12224 DOI
Řeřicha M, Dobeš P, Knapp M (2021) Changes in haemolymph parameters and insect ability to respond to immune challenge during overwintering. Ecol Evol 11:4267–4275. https://doi.org/10.1002/ece3.7323 PubMed DOI
Röhrich CR, Ngwa CJ, Wiesner J et al (2012) Harmonine, a defence compound from the harlequin ladybird, inhibits mycobacterial growth and demonstrates multi-stage antimalarial activity. Biol Lett 8:308–311. https://doi.org/10.1098/rsbl.2011.0760 PubMed DOI
Roy HE, Brown PMJ, Rothery P et al (2007) Interactions between the fungal pathogen Beauveria bassiana and three species of coccinellid: Harmonia axyridis, Coccinella septempunctata and Adalia bipunctata. Biological control to invasion: the ladybird Harmonia axyridis as a model species. Springer, Dordrecht
Sgrò CM, Terblanche JS, Hoffmann AA (2016) What can plasticity contribute to insect responses to climate change? Annu Rev Entomol 61:433–451. https://doi.org/10.1146/annurev-ento-010715-023859 PubMed DOI
Sloggett JJ (2021) Aphidophagous ladybirds (Coleoptera: Coccinellidae) and climate change: a review. Insect Conserv Divers 14:709–722. https://doi.org/10.1111/icad.12527 DOI
St. Leger RJ (2021) Insects and their pathogens in a changing climate. J Invertebr Pathol 184:107644. https://doi.org/10.1016/j.jip.2021.107644 PubMed DOI
Tarapacki P, Jørgensen LB, Sørensen JG et al (2021) Acclimation, duration and intensity of cold exposure determine the rate of cold stress accumulation and mortality in Drosophila suzukii. J Insect Physiol. https://doi.org/10.1016/j.jinsphys.2021.104323 PubMed DOI
Teets NM, Denlinger DL (2013) Physiological mechanisms of seasonal and rapid cold-hardening in insects. Physiol Entomol 38:105–116. https://doi.org/10.1111/phen.12019 DOI
Thomas MB, Blanford S (2003) Thermal biology in insect-parasite interactions. Trends Ecol Evol 18:344–350. https://doi.org/10.1016/S0169-5347(03)00069-7 DOI
Verheggen FJ, Vogel H, Vilcinskas A (2017) Behavioral and immunological features promoting the invasive performance of the harlequin ladybird Harmonia axyridis. Front Ecol Evol 5:1–11. https://doi.org/10.3389/fevo.2017.00156 DOI
Vilcinskas A, Mukherjee K, Vogel H (2013) Expansion of the antimicrobial peptide repertoire in the invasive ladybird Harmonia axyridis. Proc R Soc Lond B Biol Sci. https://doi.org/10.1098/rspb.2012.2113 DOI
Vojtek L, Dobeš P, Büyükgüzel E et al (2014) Bioluminescent assay for evaluating antimicrobial activity in insect haemolymph. Eur J Entomol 111:335–340. https://doi.org/10.14411/eje.2014.045 DOI
Wickham H (2016) ggplot2. Springer, Cham DOI
Zhang Q, Wei X, Fang W et al (2024a) The secretory protein COA1 enables Metarhizium robertsii to evade insect immune recognition during cuticle penetration. Commun Biol 7:1220. https://doi.org/10.1038/s42003-024-06827-w PubMed DOI
Zhang W, Chen X, Eleftherianos I et al (2024b) Cross-talk between immunity and behavior: insights from entomopathogenic fungi and their insect hosts. FEMS Microbiol Rev. https://doi.org/10.1093/femsre/fuae003 PubMed DOI