Solvation strategies for free-energy calculations in a halogen-bonded complex: implicit, explicit, and machine learning approaches
Status Publisher Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41190181
PubMed Central
PMC12581015
DOI
10.1039/d5sc06336a
PII: d5sc06336a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In pursuit of an efficient solvation approach for the halogen bonded complex between molecular iodine and tetramethylthiourea that reliably reproduces experimental trends, we investigated a range of solvent models, from implicit representations to periodic metadynamics simulations alongside micro-solvation and ONIOM-based methods as robust alternatives. Implicit solvent models fail to describe halogen-bonded complexes in high-polar solvents but provide surprisingly accurate estimates of binding free energies in all low to moderately polar solvents. For accurate and reliable modeling, especially in polar media, explicit solvent representations are essential. Periodic metadynamics simulations typically provide enhanced accuracy in calculating free energy differences, particularly for systems with complex solvation behavior. However, they are computationally demanding and restricted to generalized gradient approximation functionals (GGA). To overcome this limitation and improve accuracy, we employed the machine learning perturbation theory technique, enabling the estimation of free energies at levels of theory beyond the GGA.
Zobrazit více v PubMed
Halogen bonding I: Impact on materials chemistry and life sciences, ed. P. Metrangolo and G. Resnati, Springer, Switzerland, 2015
Halogen Bonding, Fundamentals and Applications, ed. P. Metrangolo and G. Resnati, Springer-Verlag, Berlin, Heidelberg, 2008, https://link.springer.com/book/10.1007/978-3-540-74330-9
Politzer P. Lane P. Concha M. C. Ma Y. Murray J. S. J. Mol. Model. 2007;13:305–311. PubMed
Bissantz C. Kuhn B. Stahl M. J. Med. Chem. 2010;53:5061–5084. PubMed PMC
Lu Y. Liu Y. Xu Z. Li H. Liu H. Zhu W. Expert Opin. Drug Discovery. 2012;7:375–383. PubMed
Scholfield M. R. Zanden C. M. V. Carter M. Ho P. S. Protein Sci. 2013;22(2):139–152. PubMed PMC
Gilday L. C. Robinson S. W. Barendt T. A. Langton M. J. Mullaney B. R. Beer P. D. Chem. Rev. 2015;115:7118–7195. PubMed
Cavallo G. Metrangolo P. Milani R. Pilati T. Priimagi A. Resnati G. Terraneo G. Chem. Rev. 2016;116:2478–2601. PubMed PMC
Li B. Zang S.-Q. Wang L.-Y. Mak T. C. W. Coord. Chem. Rev. 2016;308:1–21.
Manna D. Lo R. Vacek J. Miriyala V. M. Bouř P. Wu T. Osifová Z. Nachtigallová D. Dračínský M. Hobza P. Angew. Chem., Int. Ed. 2024;63:e202403218. PubMed
Lo R. Manna D. Vacek J. Bouř P. Wu T. Osifová Z. Socha O. Dračínský M. Hobza P. Angew. Chem., Int. Ed. 2025;64:e202422594. PubMed PMC
Driver M. D. Williamson M. J. Cook J. L. Hunter C. A. Chem. Sci. 2020;11:4456–4466. PubMed PMC
Cook J. L. Hunter C. A. Low C. M. R. Perez-Velasco A. Vinter J. G. Angew. Chem., Int. Ed. 2007;46:3706–3709. PubMed
Aquino A. J. A. Tunega D. Haberhauer G. Gerzabek M. H. Lischka H. J. Phys. Chem. A. 2002;106:1862–1871.
Robertson C. C. Wright J. S. Carrington E. J. Perutz R. N. Hunter C. A. Brammer L. Chem. Sci. 2017;8:5392–5398. PubMed PMC
Hunter C. A. Angew. Chem., Int. Ed. 2004;43:5310–5324. PubMed
Cabot R. Hunter C. A. Chem. Commun. 2009:2005–2007. PubMed
Meredith N. Y. Borsley S. Smolyar I. V. Nichol G. S. Baker C. M. Ling K. B. Cockroft S. L. Angew. Chem., Int. Ed. 2022;61:e202206604. PubMed PMC
Burns R. J. Mati I. K. Muchowska K. B. Adam C. Cockroft S. L. Angew. Chem., Int. Ed. 2020;59:16717–16724. PubMed PMC
Erdélyi M. Chem. Soc. Rev. 2012;41:3547. PubMed
Klaeboe P. J. Am. Chem. Soc. 1967;89:3667–3676.
Sarwar M. G. Dragisic B. Salsberg L. J. Gouliaras C. Taylor M. S. J. Am. Chem. Soc. 2010;132:1646–1653. PubMed
Hawthorne B. Fan-Hagenstein H. Wood E. Smith J. Hanks T. Int. J. Spectrosc. 2013;2013:1–10.
Dumele O. Wu D. Trapp N. Goroff N. Diederich F. Org. Lett. 2014;16:4722–4725. PubMed
Robertson C. C. Perutz R. N. Brammer L. Hunter C. A. Chem. Sci. 2014;5:4179–4183.
Cao J. Yan X. He W. Li X. Li Z. Mo Y. Liu M. Jiang Y.-B. J. Am. Chem. Soc. 2017;139:6605–6610. PubMed
Carlsson A.-C. C., Veiga A. X. and Erdélyi M., Halogen Bonding in Solution, in Halogen Bonding II, ed. P. Metrangolo and G. Resnati, Topics in Current Chemistry, Springer, Cham, 2014, vol. 359, pp. 49–76 PubMed
Lu Y. Li H. Zhu X. Zhu W. Liu H. J. Phys. Chem. A. 2011;115:4467–4475. PubMed
Lu Y. Li H. Zhu X. Liu H. Zhu W. Int. J. Quantum Chem. 2012;112:1421–1430.
Forni A. Rendine S. Pieraccini S. Sironi M. J. Mol. Graphics Modell. 2012;38:31–39. PubMed
Riley K. E. Merz K. M. J. Phys. Chem. A. 2007;111:1688–1694. PubMed
Bauzá A. Quiñonero D. Frontera A. Deyà P. M. Phys. Chem. Chem. Phys. 2011;13:20371. PubMed
Li Q. Li R. Zhou Z. Li W. Cheng J. J. Chem. Phys. 2012;136:014302. PubMed
Li Q.-Z. Jing B. Li R. Liu Z.-B. Li W.-Z. Luan F. Cheng J.-B. Gong B.-A. Sun J.-Z. Phys. Chem. Chem. Phys. 2011;13:2266. PubMed
Klamt A. Schüürmann G. J. Chem. Soc., Perkin Trans. 2. 1993;5:799–805.
Marenich A. V. Cramer C. J. Truhlar D. G. J. Phys. Chem. B. 2009;113:6378–6396. PubMed
Cossi M. Rega N. Scalmani G. Barone V. J. Comput. Chem. 2003;24:669–681. PubMed
Zhang J. Zhang H. Wu T. Wang Q. J. Chem. Theory Comput. 2017;13:1034–1043. PubMed
Grimme S. Antony J. Ehrlich S. Krieg H. J. Chem. Phys. 2010;132:154104. PubMed
Perdew J. P. Ernzerhof M. Burke K. J. Chem. Phys. 1996;105:9982–9985.
Ernzerhof M. Scuseria G. E. J. Chem. Phys. 1999;110:5029–5036.
Adamo C. Barone V. J. Chem. Phys. 1999;110:6158–6170.
Weigend F. Ahlrichs R. Phys. Chem. Chem. Phys. 2005;7:3297. PubMed
Weigend F. Phys. Chem. Chem. Phys. 2006;8:1057. PubMed
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery Jr J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B. and Fox D. J., Gaussian 16 Revision C.01, Gaussian Inc., Wallingford CT, 2016
Mardirossian N. Head-Gordon M. J. Chem. Phys. 2016;144:214110. PubMed
Neese F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2012;2:73–78.
Neese F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2025;15:e70019.
Grimme S. Chem.–Eur. J. 2012;18:9955–9964. PubMed
Hirshfeld F. L. Theor. Chim. Acta. 1977;44:129–138.
Löwdin P.-O. J. Chem. Phys. 1950;18:365–375.
Löwdin P.-O., On the Nonorthogonality Problem, in Advances in Quantum Chemistry, Elsevier, 1970, vol. 5, pp. 185–199
Sunoj R. B. Anand M. Phys. Chem. Chem. Phys. 2012;14:12715–12736. PubMed
Hadad C. Florez E. Acelas N. Merino G. Restreppo A. Int. J. Quantum Chem. 2019;119:e25766.
Simm G. N. Türtscher P. L. Reiher M. J. Comput. Chem. 2020;41:1144–1145. PubMed
Basdogan Y. Groenenboom M. C. Henderson E. De S. Rempe S. B. Keith J. A. J. Chem. Theory Comput. 2020;16:633–642. PubMed
Svensson M. Humbel S. Froese R. D. J. Matsubara T. Sieber S. Morokuma K. J. Phys. Chem. 1996;100:19357–19363.
Stewart J. J. P. J. Mol. Model. 2013;19:1–32. PubMed PMC
Schneider J. Hamaekers J. Chill S. T. Smidstrup S. Bulin J. Thesen R. Blom A. Stokbro K. Model. Simul. Mater. Sci. Eng. 2017;25:085007.
Smidstrup S. Markussen T. Vancraeyveld P. Wellendorff J. Schneider J. Gunst T. Verstichel B. Stradi D. Khomyakov P. A. Vej-Hansen U. G. Lee M.-E. Chill S. T. Rasmussen F. Penazzi G. Corsetti F. Ojanperä A. Jensen K. Palsgaard M. L. N. Martinez U. Blom A. Brandbyge M. Stokbro K. J. Phys.: Condens. Matter. 2020;32:015901. PubMed
Martyna G. J. Tobias D. J. Klein M. L. J. Chem. Phys. 1994;101:4177–4189.
Kresse G. Hafner J. Phys. Rev. B: Condens. Matter Mater. Phys. 1993;47:558–561. PubMed
Kresse G. Furthmüller J. Comput. Mater. Sci. 1996;6:15–50.
Kresse G. Furthmüller J. Phys. Rev. B: Condens. Matter Mater. Phys. 1996;54:11169–11186. PubMed
Parrinello M. Rahman A. Phys. Rev. Lett. 1980;45:1196–1199.
Parrinello M. Rahman A. J. Appl. Phys. 1981;52:7182–7190.
Nosé S. J. Chem. Phys. 1984;81:511–519.
Nosé S. Prog. Theor. Phys. Suppl. 1991;103:1–46.
Hoover W. G. Phys. Rev. A: At., Mol., Opt. Phys. 1985;31:1695–1697. PubMed
Frenkel D. and Smit B., Understanding Molecular Simulation: From Algorithms to Applications, Computational science series, Academic Press, San Diego, 2nd edn, 2002
Perdew J. P. Burke K. Ernzerhof M. Phys. Rev. Lett. 1996;77:3865–3868. PubMed
Grimme S. Ehrlich S. Goerigk L. J. Comput. Chem. 2011;32:1456–1465. PubMed
Blöchl P. E. Phys. Rev. B: Condens. Matter Mater. Phys. 1994;50:17953–17979. PubMed
Kresse G. Joubert D. Phys. Rev. B: Condens. Matter Mater. Phys. 1999;59:1758–1775.
Schiferl S. K. Wallace D. C. J. Chem. Phys. 1985;83:5203–5209.
Laio A. Parrinello M. Proc. Natl. Acad. Sci. U. S. A. 2002;99:12562–12566. PubMed PMC
Iannuzzi M. Laio A. Parrinello M. Phys. Rev. Lett. 2003;90:238302. PubMed
Flyvbjerg H. Petersen H. J. Chem. Phys. 1989;91:461–466.
Chehaibou B. Badawi M. Bučko T. Bazhirov T. Rocca D. J. Chem. Theory Comput. 2019;15:6333–6342. PubMed
Bučko T. Gešvandtnerová M. Rocca D. J. Chem. Theory Comput. 2020;16:6049–6060. PubMed
Herzog B. Chagas da Silva M. Casier B. Badawi M. Pascale F. Bučko T. Lebègue S. Rocca D. J. Chem. Theory Comput. 2022;18:1382. PubMed
Ramakrishnan R. Dral P. O. Rupp M. von Lilienfeld O. A. J. Chem. Theory Comput. 2015;11:2087–2096. PubMed
Pohorille A. Jarzynski C. Chipot C. J. Phys. Chem. B. 2010;114:10235–10253. PubMed
Perdew J. P. Schmidt K. AIP Conf. Proc. 2001;577:1.
Krukau A. V. Vydrov O. A. Izmaylov A. F. Scuseria G. E. J. Chem. Phys. 2006;125:224106–224111. PubMed
Herzog B. Gallo A. Hummel F. Badawi M. Bučko T. Lebègue S. Grüneis A. Rocca D. npj Comput. Mater. 2024;10:68.
Rey J. Gomez A. Raybaud P. Chizallet C. Bučko T. J. Catal. 2019;373:361–373.
Vrška D. Pitoňák M. Bučko T. J. Chem. Phys. 2024;160:174106. PubMed
Gešvandtnerová M. Rocca D. Bučko T. J. Catal. 2021;396:166.
Chipot C. and Pohorille A., Calculating free energy differences using perturbation theory, in Free Energy Calculations Theory and Applications in Chemistry and Biology, Springer, Berlin, Heidelberg, 2007
Rupp M. Int. J. Quantum Chem. 2015;115:1058–1073.
De S. Bartók A. P. Csányi G. Ceriotti M. Phys. Chem. Chem. Phys. 2016;18:13754. PubMed
Bartók A. P. Kondor R. Csányi G. Phys. Rev. B: Condens. Matter Mater. Phys. 2013;87:184115.
Himanen L. Jäger M. O. Morooka E. V. Federici Canova F. Ranawat Y. S. Gao D. Z. Rinke P. Foster A. S. Comput. Phys. Commun. 2020;247:106949.
Pedregosa F. Varoquaux G. Gramfort A. Michel V. Thirion B. Grisel O. Blondel M. Prettenhofer P. Weiss R. Dubourg V. Vanderplas J. Passos A. Cournapeau D. Brucher M. Perrot M. Duchesnay E. J. Mach. Learn. Res. 2011;12:2825–2830.
Lo R. Mašínová A. Lamanec M. Nachtigallová D. Hobza P. J. Comput. Chem. 2023;44:329. PubMed