Nanomedicines for Delivery of Cytarabine: Effect of Carrier Structure and Spacer on the Anti-Lymphoma Efficacy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
LX22NPO5102
National Institute for Cancer Research
NU22-08-00148
Ministry of Health of the Czech Republic
PubMed
41228599
PubMed Central
PMC12610423
DOI
10.3390/polym17212837
PII: polym17212837
Knihovny.cz E-zdroje
- Klíčová slova
- HPMA copolymer, cytarabine, drug delivery, mantle cell lymphoma, nanotherapeutics,
- Publikační typ
- časopisecké články MeSH
High-dose therapy with cytarabine (araC) is a standard treatment for aggressive non-Hodgkin lymphomas, but its efficacy is limited by rapid enzymatic degradation. To overcome this, araC was conjugated to N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers to form linear and star-like nanomedicines using six different spacers: 3-aminopropanoyl, 5-pentanoyl, 6-aminohexanoyl, 4-aminobenzoyl, glycyl, and diglycyl. The conjugates contained 12.5-14.7 wt% araC and exhibited distinct hydrolytic release profiles at pH 7.4. LC1 (3-aminopropanoyl) and LC6 (diglycyl) released the drug most rapidly (~80% bound after 72 h), and LC2, LC3, and the star conjugate SC1 showed intermediate stability (~90%), while LC4 (4-aminobenzoyl) was most stable (~95%). In vivo, all conjugates markedly suppressed tumor growth in patient-derived xenograft models of mantle cell and Burkitt lymphoma compared with free araC. LC1 and LC2 provided the most durable tumor control, delaying regrowth beyond 40 days, and SC1 achieved comparable efficacy at a reduced araC-equivalent dose (2 mg/mouse vs. 3 mg/mouse for linear conjugates). These results demonstrate that spacer structure critically influences drug release and identify LC1 and LC2 as promising candidates for further development in lymphoma therapy.
Zobrazit více v PubMed
Minko T., Dharap S.S., Pakunlu R.I., Wang Y. Molecular targeting of drug delivery systems to cancer. Curr. Drug Targets. 2004;5:389–406. doi: 10.2174/1389450043345443. PubMed DOI
Nan A., Ghandehari H., Hebert C., Siavash H., Nikitakis N., Reynolds M., Sauk J.J. Water-soluble polymers for targeted drug delivery to human squamous carcinoma of head and neck. J. Drug Target. 2005;13:189–197. doi: 10.1080/10611860500065187. PubMed DOI
Etrych T., Kovář L., Strohalm J., Chytil P., Ríhová B. Ulbrich. Biodegradable star HPMA polymer-drug conjugates: Biodegradability, distribution and anti-tumor efficacy. J. Control. Release. 2011;154:241–248. doi: 10.1016/j.jconrel.2011.06.015. PubMed DOI
Pechar M., Pola R., Studenovský M., Bláhová M., Grosmanová E., Dydowiczová A., Filipová M., Islam R., Gao S., Fang J., et al. Polymer nanomedicines with enzymatically triggered activation: A comparative study of in vitro and in vivo anti-cancer efficacy related to the spacer structure. Nanomed. Nanotechnol. Biol. Med. 2022;46:102597. doi: 10.1016/j.nano.2022.102597. PubMed DOI
Zhang R., Luo K., Yang J., Sima M., Sun Y., Janát-Amsbury M.M., Kopeček J. Synthesis and evaluation of a backbone biodegradable multiblock HPMA copolymer nanocarrier for the systemic delivery of paclitaxel. J. Control. Release. 2013;166:66–74. doi: 10.1016/j.jconrel.2012.12.009. PubMed DOI PMC
Zhou P., Li Z., Chau Y. Synthesis, characterization, and in vivo evaluation of poly(ethylene oxide-co-glycidol)-platinate conjugate. Eur. J. Pharm. Sci. 2010;41:464–472. doi: 10.1016/j.ejps.2010.07.014. PubMed DOI
Nichifor M., Schacht E.H., Seymour L.W., Anderson D., Shoaibi M. Cytotoxicity and anticancer activity of macromolecular prodrugs of 5-fluorouracil. J. Bioact. Compat. Polym. 1997;12:265–281. doi: 10.1177/088391159701200401. DOI
Takemoto H., Inaba T., Nomoto T., Matsui M., Liu X., Toyoda M., Honda Y., Taniwaki K., Yamada N., Kim J., et al. Polymeric modification of gemcitabine via cyclic acetal linkage for enhanced anticancer potency with negligible side effects. Biomaterials. 2020;235:119804. doi: 10.1016/j.biomaterials.2020.119804. PubMed DOI
Kopeček J., Yang J. Polymer nanomedicines. Adv. Drug Deliv. Rev. 2020;156:40–64. doi: 10.1016/j.addr.2020.07.020. PubMed DOI PMC
Kantarjian H., Barlogie B., Plunkett W., Velasquez W., McLaughlin P., Riggs S., Cabanillas F. High-dose cytosine arabinoside in non-Hodgkin’s lymphoma. J. Clin. Oncol. 1983;1:689–694. doi: 10.1200/JCO.1983.1.11.689. PubMed DOI
Abraham A., Varatharajan S., Abbas S., Zhang W., Shaji R.V., Ahmed R., Abraham A., George B., Srivastava A., Chandy M., et al. Cytidine deaminase genetic variants influence RNA expression and cytarabine cytotoxicity in acute myeloid leukemia. Pharmacogenomics. 2012;13:269–282. doi: 10.2217/pgs.11.149. PubMed DOI
Chamberlain M.C. Neurotoxicity of intra-CSF liposomal cytarabine (DepoCyt) administered for the treatment of leptomeningeal metastases: A retrospective case series. J. Neuro-Oncology. 2012;108:495–502. doi: 10.1007/s11060-012-0880-x. PubMed DOI
Ostermann K., Pels H., Kowoll A., Kuhnhenn J., Schlegel U. Neurologic complications after intrathecal liposomal cytarabine in combination with systemic polychemotherapy in primary CNS lymphoma. J. Neuro-Oncology. 2011;103:635–640. doi: 10.1007/s11060-010-0435-y. PubMed DOI
Salehi B., Selamoglu Z., Mileski K.S., Pezzani R., Redaelli M., Cho W.C., Kobarfard F., Rajabi S., Martorell M., Kumar P., et al. Liposomal cytarabine as cancer therapy: From chemistry to clinical applications. Biomolecules. 2019;9:773. doi: 10.3390/biom9120773. PubMed DOI PMC
Chhikara B.S., Parang K. Development of cytarabine prodrugs and delivery systems for leukemia treatment. Expert Opin. Drug Deliv. 2010;7:1225–1238. doi: 10.1517/17425247.2010.527330. PubMed DOI
Liu R., Zhang J., Zhang D., Wang K., Luan Y. Self-assembling nanoparticles based on cytarabine prodrugs: Synthesis, characterization and antitumor evaluation. J. Mol. Liq. 2018;251:178–184. doi: 10.1016/j.molliq.2017.12.086. DOI
Pola R., Pokorná E., Vočková P., Böhmová E., Pechar M., Karolová J., Pankrác J., Šefc L., Helman K., Trněný M., et al. Cytarabine nanotherapeutics with increased stability and enhanced lymphoma uptake for tailored highly effective therapy of mantle cell lymphoma. Acta Biomater. 2021;119:349–359. doi: 10.1016/j.actbio.2020.11.014. PubMed DOI
Ulbrich K., Šubr V., Strohalm J., Plocová D., Jelınková M., Řıhová B. Polymeric drugs based on conjugates of synthetic and natural macromolecules: I. Synthesis and physico-chemical characterisation. J. Control. Release. 2000;64:63–79. doi: 10.1016/S0168-3659(99)00141-8. PubMed DOI
Pola R., Laga R., Ulbrich K., Sieglová I., Král V., Fábry M., Kabešová M., Kovář M., Pechar M. Polymer Therapeutics with a Coiled Coil Motif Targeted against Murine BCL1 Leukemia. Biomacromolecules. 2013;14:881–889. doi: 10.1021/bm3019592. PubMed DOI
Pola R., Janoušková O., Etrych T. Etrych. The pH-Dependent and Enzymatic Release of Cytarabine From Hydrophilic Polymer Conjugates. Physiol. Res. 2016;65:S225–S232. doi: 10.33549/physiolres.933424. PubMed DOI
Perrier S., Takolpuckdee P., Mars C.A. Reversible Addition−Fragmentation Chain Transfer Polymerization: End Group Modification for Functionalized Polymers and Chain Transfer Agent Recovery. Macromolecules. 2005;38:2033–2036. doi: 10.1021/ma047611m. DOI
Lidický O., Renešová N., Kudláčová J., Filipová M., Běláková T., Kovaříková P., Manakov D., Pankrác J., Dolníková A., Pokorná E., et al. Antibody polymer drug conjugates with increased drug to antibody ratio: CD38-targeting nanomedicines for innovative therapy of relapsed lymphomas. J. Control. Release. 2025;384:113876. doi: 10.1016/j.jconrel.2025.113876. PubMed DOI
Jakša R., Karolová J., Svatoň M., Kazantsev D., Grajciarová M., Pokorná E., Tonar Z., Klánová M., Winkowska L., Maláriková D., et al. Complex genetic and histopathological study of 15 patient-derived xenografts of aggressive lymphomas. Lab. Investig. 2022;102:957–965. doi: 10.1038/s41374-022-00784-w. PubMed DOI PMC
Willig F., Greiner I., Stork H., Schmidt F.H. Leucinaminopeptidase-(Arylamidase-) Aktivität im Serum: Bestimmung mit Leucin-p-nitroanilid als Substrat. Klin. Wochenschr. 1967;45:474–481. doi: 10.1007/BF01717434. PubMed DOI
Laizure S.C., Herring V., Hu Z., Witbrodt K., Parker R.B. The role of human carboxylesterases in drug metabolism: Have we overlooked their importance? Pharmacotherapy. 2013;33:210–222. doi: 10.1002/phar.1194. PubMed DOI PMC
Jasiecki J., Szczoczarz A., Cysewski D., Lewandowski K., Skowron P., Waleron K., Wasąg B. Butyrylcholinesterase–Protein Interactions in Human Serum. Int. J. Mol. Sci. 2021;22:10662. doi: 10.3390/ijms221910662. PubMed DOI PMC