Integrated multi-omics profiling uncovers miRNA-guided regulatory networks after spinal cord injury in rats

. 2025 Dec 09 ; 36 (4) : 102746. [epub] 20251016

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41245488
Odkazy

PubMed 41245488
PubMed Central PMC12617769
DOI 10.1016/j.omtn.2025.102746
PII: S2162-2531(25)00300-2
Knihovny.cz E-zdroje

Spinal cord injury (SCI) is a debilitating condition with no effective treatment. The injury triggers a complex cascade of molecular and cellular events that drive both damage and repair processes. To explore these mechanisms, we performed a comprehensive multi-omics analysis in a rat compression model of SCI, focusing on the acute phase. Transcriptomic profiling revealed extensive gene dysregulation, highlighting early inflammation, neuronal death, and synaptic dysfunction, followed by the initiation of reparative processes. Cell type composition analysis showed a rapid infiltration of peripheral immune cells; activation of microglia; and loss of neurons, astrocytes, and oligodendrocytes. Importantly, we provide experimental support for predicted microRNA (miRNA)-mRNA-protein interactions, offering a foundation for further mechanistic studies. miRNA profiling uncovered a highly dysregulated miRNA landscape, with the miR-17∼92 cluster emerging as a key regulator of neurogenesis, synaptic activity, and cell survival. Integrative miRNA-mRNA-protein analysis identified potential therapeutic targets, including miR-20a, whose inhibition in vitro supported neurogenesis and reduced apoptosis under oxidative stress. Our findings provide new insights into the molecular mechanisms of SCI and highlight miRNAs as potential targets for therapeutic intervention.

Zobrazit více v PubMed

Ding W., Hu S., Wang P., Kang H., Peng R., Dong Y., Li F. Spinal Cord Injury: The Global Incidence, Prevalence, and Disability From the Global Burden of Disease Study 2019. Spine. 2022;47:1532–1540. doi: 10.1097/BRS.0000000000004417. PubMed DOI PMC

Merritt C.H., Taylor M.A., Yelton C.J., Ray S.K. Economic Impact of Traumatic Spinal Cord Injuries in the United States. Neuroimmunol. Neuroinflamm. 2019;6 doi: 10.20517/2347-8659.2019.15. PubMed DOI PMC

Ramer L.M., Ramer M.S., Bradbury E.J. Restoring Function after Spinal Cord Injury: Towards Clinical Translation of Experimental Strategies. Lancet Neurol. 2014;13:1241–1256. doi: 10.1016/S1474-4422(14)70144-9. PubMed DOI

Carmel J.B., Galante A., Soteropoulos P., Tolias P., Recce M., Young W., Hart R.P. Gene Expression Profiling of Acute Spinal Cord Injury Reveals Spreading Inflammatory Signals and Neuron Loss. Physiol. Genomics. 2001;7:201–213. doi: 10.1152/physiolgenomics.00074.2001. PubMed DOI

Chamankhah M., Eftekharpour E., Karimi-Abdolrezaee S., Boutros P.C., San-Marina S., Fehlings M.G. Genome-Wide Gene Expression Profiling of Stress Response in a Spinal Cord Clip Compression Injury Model. BMC Genom. 2013;14:583. doi: 10.1186/1471-2164-14-583. PubMed DOI PMC

Chen K., Deng S., Lu H., Zheng Y., Yang G., Kim D., Cao Q., Wu J.Q. RNA-Seq Characterization of Spinal Cord Injury Transcriptome in Acute/Subacute Phases: A Resource for Understanding the Pathology at the Systems Level. PLoS One. 2013;8 doi: 10.1371/journal.pone.0072567. PubMed DOI PMC

De Biase A., Knoblach S.M., Di Giovanni S., Fan C., Molon A., Hoffman E.P., Faden A.I. Gene Expression Profiling of Experimental Traumatic Spinal Cord Injury as a Function of Distance from Impact Site and Injury Severity. Physiol. Genomics. 2005;22:368–381. doi: 10.1152/physiolgenomics.00081.2005. PubMed DOI

Milich L.M., Choi J.S., Ryan C., Cerqueira S.R., Benavides S., Yahn S.L., Tsoulfas P., Lee J.K. Single-Cell Analysis of the Cellular Heterogeneity and Interactions in the Injured Mouse Spinal Cord. J. Exp. Med. 2021;218:e20210040–e20212504. doi: 10.1084/jem.20210040. PubMed DOI PMC

Matson K.J.E., Russ D.E., Kathe C., Hua I., Maric D., Ding Y., Krynitsky J., Pursley R., Sathyamurthy A., Squair J.W., et al. Single Cell Atlas of Spinal Cord Injury in Mice Reveals a Pro-Regenerative Signature in Spinocerebellar Neurons. Nat. Commun. 2022;13 doi: 10.1038/s41467-022-33184-1. PubMed DOI PMC

Matson K.J.E., Russ D.E., Kathe C., Maric D., Hua I., Krynitsky J., Pursley R., Sathyamurthy A., Squair J.W., Courtine G., Levine A.J. A Single Cell Atlas of Spared Tissue Below a Spinal Cord Injury Reveals Cellular Mechanisms of Repair. bioRxiv. 2021 doi: 10.1101/2021.04.28.441862. Preprint at. DOI

Chakraborty C., Sharma A.R., Sharma G., Lee S.S. Therapeutic Advances of MiRNAs: A Preclinical and Clinical Update. J. Adv. Res. 2021;28:127–138. doi: 10.1016/J.JARE.2020.08.012. PubMed DOI PMC

Rupaimoole R., Slack F.J. MicroRNA Therapeutics: Towards a New Era for the Management of Cancer and Other Diseases. Nat. Rev. Drug Discov. 2017;16:203–222. doi: 10.1038/nrd.2016.246. PubMed DOI

Kim T., Croce C.M. MicroRNA: Trends in Clinical Trials of Cancer Diagnosis and Therapy Strategies. Exp. Mol. Med. 2023;55:1314–1321. doi: 10.1038/s12276-023-01050-9. PubMed DOI PMC

Wang W., Li J., Zhang Z., Ma H., Li Q., Yang H., Li M., Liu L. Genome-Wide Analysis of Acute Traumatic Spinal Cord Injury-Related RNA Expression Profiles and Uncovering of a Regulatory Axis in Spinal Fibrotic Scars. Cell Prolif. 2021;54:e12951-15. doi: 10.1111/cpr.12951. PubMed DOI PMC

Peng P., Zhang B., Huang J., Xing C., Liu W., Sun C., Guo W., Yao S., Ruan W., Ning G., et al. Identification of a CircRNA-MiRNA-MRNA Network to Explore the Effects of CircRNAs on Pathogenesis and Treatment of Spinal Cord Injury. Life Sci. 2020;257 doi: 10.1016/j.lfs.2020.118039. PubMed DOI

Basso D.M., Beattie M.S., Bresnahan J.C. A Sensitive and Reliable Locomotor Rating Scale for Open Field Testing in Rats. J. Neurotrauma. 1995;12:1–21. doi: 10.1089/neu.1995.12.1. PubMed DOI

Hunter M., Spiller K.J., Dominique M.A., Xu H., Hunter F.W., Fang T.C., Canter R.G., Roberts C.J., Ransohoff R.M., Trojanowski J.Q., Lee V.M.Y. Microglial Transcriptome Analysis in the RNLS8 Mouse Model of TDP-43 Proteinopathy Reveals Discrete Expression Profiles Associated with Neurodegenerative Progression and Recovery. Acta Neuropathol. Commun. 2021;9:140. doi: 10.1186/s40478-021-01239-x. PubMed DOI PMC

Shin D., Howng S.Y.B., Ptáček L.J., Fu Y.H. MiR-32 and Its Target SLC45A3 Regulate the Lipid Metabolism of Oligodendrocytes and Myelin. Neuroscience. 2012;213:29–37. doi: 10.1016/j.neuroscience.2012.03.054. PubMed DOI PMC

Reimand J., Isserlin R., Voisin V., Kucera M., Tannus-Lopes C., Rostamianfar A., Wadi L., Meyer M., Wong J., Xu C., et al. Pathway Enrichment Analysis and Visualization of Omics Data Using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat. Protoc. 2019;14:482–517. doi: 10.1038/s41596-018-0103-9. PubMed DOI PMC

Yuan H., Zhang B., Ma J., Zhang Y., Tuo Y., Li X. Analysis of Gene Expression Profiles in Two Spinal Cord Injury Models. Eur. J. Med. Res. 2022;27:156. doi: 10.1186/S40001-022-00785-X/TABLES/2. PubMed DOI PMC

Li Y., Chen Y., Li X., Wu J., Pan J.Y., Cai R.X., Yang R.Y., Wang X.D. RNA Sequencing Screening of Differentially Expressed Genes after Spinal Cord Injury. Neural Regen. Res. 2019;14:1583–1593. doi: 10.4103/1673-5374.255994. PubMed DOI PMC

Shi L.L., Zhang N., Xie X.M., Chen Y.J., Wang R., Shen L., Zhou J.S., Hu J.G., Lü H.Z. Transcriptome Profile of Rat Genes in Injured Spinal Cord at Different Stages by RNA-Sequencing. BMC Genom. 2017;18:173. doi: 10.1186/s12864-017-3532-x. PubMed DOI PMC

Squair J.W., Tigchelaar S., Moon K.M., Liu J., Tetzlaff W., Kwon B.K., Krassioukov A.V., West C.R., Foster L.J., Skinnider M.A. Integrated Systems Analysis Reveals Conserved Gene Networks Underlying Response to Spinal Cord Injury. eLife. 2018;7:e39188-23. doi: 10.7554/eLife.39188. PubMed DOI PMC

Newman A.M., Steen C.B., Liu C.L., Gentles A.J., Chaudhuri A.A., Scherer F., Khodadoust M.S., Esfahani M.S., Luca B.A., Steiner D., et al. Determining Cell Type Abundance and Expression from Bulk Tissues with Digital Cytometry. Nat. Biotechnol. 2019;37:773–782. doi: 10.1038/s41587-019-0114-2. PubMed DOI PMC

Franzén O., Gan L.M., Björkegren J.L.M. PanglaoDB: A Web Server for Exploration of Mouse and Human Single-Cell RNA Sequencing Data. Database. 2019;2019:46. doi: 10.1093/database/baz046. PubMed DOI PMC

Langfelder P., Horvath S. WGCNA: An R Package for Weighted Correlation Network Analysis. BMC Bioinf. 2008;9:559. doi: 10.1186/1471-2105-9-559. PubMed DOI PMC

Barberán-Soler S., Vo J.M., Hogans R.E., Dallas A., Johnston B.H., Kazakov S.A. Decreasing MiRNA Sequencing Bias Using a Single Adapter and Circularization Approach. Genome Biol. 2018;19:1–9. doi: 10.1186/S13059-018-1488-Z/FIGURES/5. PubMed DOI PMC

Sticht C., De La Torre C., Parveen A., Gretz N. MiRWalk: An Online Resource for Prediction of MicroRNA Binding Sites. PLoS One. 2018;13 doi: 10.1371/JOURNAL.PONE.0206239. PubMed DOI PMC

Plotnikov A., Zehorai E., Procaccia S., Seger R. The MAPK Cascades: Signaling Components, Nuclear Roles and Mechanisms of Nuclear Translocation. Biochim. Biophys. Acta. 2011;1813:1619–1633. doi: 10.1016/J.BBAMCR.2010.12.012. PubMed DOI

Zhou Y., Wang Z., Li J., Li X., Xiao J. Fibroblast Growth Factors in the Management of Spinal Cord Injury. J. Cell Mol. Med. 2018;22:25–37. doi: 10.1111/jcmm.13353. PubMed DOI PMC

Ponomarev E.D., Veremeyko T., Barteneva N., Krichevsky A.M., Weiner H.L. MicroRNA-124 Promotes Microglia Quiescence and Suppresses EAE by Deactivating Macrophages via the C/EBP-α-PU.1 Pathway. Nat. Med. 2011;17:64–70. doi: 10.1038/nm.2266. PubMed DOI PMC

Zhang C., Talifu Z., Xu X., Liu W., Ke H., Pan Y., Li Y., Bai F., Jing Y., Li Z., et al. MicroRNAs in Spinal Cord Injury: A Narrative Review. Front. Mol. Neurosci. 2023;16 doi: 10.3389/FNMOL.2023.1099256/BIBTEX. PubMed DOI PMC

Wei J., Wang J., Zhou Y., Yan S., Li K., Lin H. MicroRNA-146a Contributes to SCI Recovery via Regulating TRAF6 and IRAK1 Expression. BioMed Res. Int. 2016;2016 doi: 10.1155/2016/4013487. PubMed DOI PMC

Yang P., Cai L., Zhang G., Bian Z., Han G. The Role of the MiR-17–92 Cluster in Neurogenesis and Angiogenesis in the Central Nervous System of Adults. J. Neurosci. Res. 2017;95:1574–1581. doi: 10.1002/JNR.23991. PubMed DOI

Pan W.L., Chopp M., Fan B., Zhang R., Wang X., Hu J., Zhang X.M., Zhang Z.G., Liu X.S. Ablation of the MicroRNA-17-92 Cluster in Neural Stem Cells Diminishes Adult Hippocampal Neurogenesis and Cognitive Function. FASEB J. 2019;33:5257–5267. doi: 10.1096/FJ.201801019R. PubMed DOI PMC

Amemori T., Romanyuk N., Jendelova P., Herynek V., Turnovcova K., Prochazka P., Kapcalova M., Cocks G., Price J., Sykova E. Human Conditionally Immortalized Neural Stem Cells Improve Locomotor Function after Spinal Cord Injury in the Rat. Stem Cell Res. Ther. 2013;4:68. doi: 10.1186/SCRT219/FIGURES/7. PubMed DOI PMC

Ruzicka J., Machova-Urdzikova L., Gillick J., Amemori T., Romanyuk N., Karova K., Zaviskova K., Dubisova J., Kubinova S., Murali R., et al. A Comparative Study of Three Different Types of Stem Cells for Treatment of Rat Spinal Cord Injury. Cell Transplant. 2017;26:585–603. doi: 10.3727/096368916X693671. PubMed DOI PMC

Romanyuk N., Amemori T., Turnovcova K., Prochazka P., Onteniente B., Sykova E., Jendelova P. Beneficial Effect of Human Induced Pluripotent Stem Cell-Derived Neural Precursors in Spinal Cord Injury Repair. Cell Transplant. 2015;24:1781–1797. doi: 10.3727/096368914X684042. PubMed DOI

Ruzicka J., Romanyuk N., Jirakova K., Hejcl A., Janouskova O., Machova L.U., Bochin M., Pradny M., Vargova L., Jendelova P. The Effect of IPS-Derived Neural Progenitors Seeded on Laminin-Coated PHEMA-MOETACl Hydrogel with Dual Porosity in a Rat Model of Chronic Spinal Cord Injury. Cell Transplant. 2019;28:400–412. doi: 10.1177/0963689718823705. PubMed DOI PMC

Amemori T., Ruzicka J., Romanyuk N., Jhanwar-Uniyal M., Sykova E., Jendelova P. Comparison of Intraspinal and Intrathecal Implantation of Induced Pluripotent Stem Cell-Derived Neural Precursors for the Treatment of Spinal Cord Injury in Rats. Stem Cell Res. Ther. 2015;6:257. doi: 10.1186/S13287-015-0255-2/FIGURES/4. PubMed DOI PMC

Ruzicka J., Romanyuk N., Hejcl A., Vetrik M., Hruby M., Cocks G., Cihlar J., Pradny M., Price J., Sykova E., et al. Treating Spinal Cord Injury in Rats with a Combination of Human Fetal Neural Stem Cells and Hydrogels Modified with Serotonin. Acta Neurobiol. Exp. 2013;73:102–115. doi: 10.55782/ane-2013-1925. PubMed DOI

Wertz M.H., Winden K., Neveu P., Ng S.Y., Ercan E., Sahin M. Cell-Type-Specific MiR-431 Dysregulation in a Motor Neuron Model of Spinal Muscular Atrophy. Hum. Mol. Genet. 2016;25:2168–2181. doi: 10.1093/HMG/DDW084. PubMed DOI PMC

Niu X., Zhu H.L., Liu Q., Yan J.F., Li M.L. MiR-194-5p Serves as a Potential Biomarker and Regulates the Proliferation and Apoptosis of Hippocampus Neuron in Children with Temporal Lobe Epilepsy. J. Chin. Med. Assoc. 2021;84:510–516. doi: 10.1097/JCMA.0000000000000518. PubMed DOI

Konrad K.D., Song J.L. MicroRNA-124 Regulates Notch and NeuroD1 to Mediate Transition States of Neuronal Development. Dev. Neurobiol. 2023;83:3–27. doi: 10.1002/DNEU.22902. PubMed DOI PMC

Ziu M., Fletcher L., Rana S., Jimenez D.F., Digicaylioglu M. Temporal Differences in MicroRNA Expression Patterns in Astrocytes and Neurons after Ischemic Injury. PLoS One. 2011;6 doi: 10.1371/JOURNAL.PONE.0014724. PubMed DOI PMC

Xu D., Guo Q. MiR-26a Improves Microglial Activation and Neuronal Apoptosis in a Rat Model of Cerebral Infarction by Regulating the TREM1-TLR4/MyD88/NF-ΚB Axis. Dev. Neurosci. 2024;46:221–236. doi: 10.1159/000533813. PubMed DOI

Ma Q., Zhao H., Tao Z., Wang R., Liu P., Han Z., Ma S., Luo Y., Jia J. MicroRNA-181c Exacerbates Brain Injury in Acute Ischemic Stroke. Aging Dis. 2016;7:705–714. doi: 10.14336/AD.2016.0320. PubMed DOI PMC

Jiao P., Wang X.P., Luoreng Z.M., Yang J., Jia L., Ma Y., Wei D.W. Mir-223: An Effective Regulator of Immune Cell Differentiation and Inflammation. Int. J. Biol. Sci. 2021;17:2308–2322. doi: 10.7150/ijbs.59876. PubMed DOI PMC

Tigchelaar S., Streijger F., Sinha S., Flibotte S., Manouchehri N., So K., Shortt K., Okon E., Rizzuto M.A., Malenica I., et al. Serum MicroRNAs Reflect Injury Severity in a Large Animal Model of Thoracic Spinal Cord Injury. Sci. Rep. 2017;7:1376. doi: 10.1038/s41598-017-01299-x. PubMed DOI PMC

Leem K.H., Kim S., Kim H.W., Park H.J. Downregulation of MicroRNA-330-5p Induces Manic-like Behaviors in REM Sleep-deprived Rats by Enhancing Tyrosine Hydroxylase Expression. CNS Neurosci. Ther. 2023;29:1525–1536. doi: 10.1111/CNS.14121. PubMed DOI PMC

Madathil S.K., Nelson P.T., Saatman K.E., Wilfred B.R. MicroRNAs in CNS Injury: Potential Roles and Therapeutic Implications. Bioessays. 2011;33:21–26. doi: 10.1002/BIES.201000069. PubMed DOI PMC

Kamal M.A., Mushtaq G., Greig N.H. Current Update on Synopsis of MiRNA Dysregulation in Neurological Disorders. CNS Neurol. Disord.: Drug Targets. 2015;14:492–501. doi: 10.2174/1871527314666150225143637. PubMed DOI PMC

Liu N.K., Wang X.F., Lu Q.B., Xu X.M. Altered MicroRNA Expression Following Traumatic Spinal Cord Injury. Exp. Neurol. 2009;219:424–429. doi: 10.1016/j.expneurol.2009.06.015. PubMed DOI PMC

Strickland E.R., Hook M.A., Balaraman S., Huie J.R., Grau J.W., Miranda R.C. MicroRNA Dysregulation Following Spinal Cord Contusion: Implications for Neural Plasticity and Repair. Neuroscience. 2011;186:146–160. doi: 10.1016/j.neuroscience.2011.03.063. PubMed DOI PMC

Yunta M., Nieto-Díaz M., Esteban F.J., Caballero-López M., Navarro-Ruíz R., Reigada D., Pita-Thomas D.W., del Águila A., Muñoz-Galdeano T., Maza R.M. MicroRNA Dysregulation in the Spinal Cord Following Traumatic Injury. PLoS One. 2012;7 doi: 10.1371/journal.pone.0034534. PubMed DOI PMC

Jee M.K., Jung J.S., Im Y.B., Jung S.J., Kang S.K. Silencing of MiR20a Is Crucial for Ngn1-Mediated Neuroprotection in Injured Spinal Cord. Hum. Gene Ther. 2012;23:508–520. doi: 10.1089/hum.2011.121. PubMed DOI

Gao Z., Ure K., Ables J.L., Lagace D.C., Nave K.A., Goebbels S., Eisch A.J., Hsieh J. Neurod1 Is Essential for the Survival and Maturation of Adult-Born Neurons. Nat. Neurosci. 2009;12:1090–1092. doi: 10.1038/nn.2385. PubMed DOI PMC

Puls B., Ding Y., Zhang F., Pan M., Lei Z., Pei Z., Jiang M., Bai Y., Forsyth C., Metzger M., et al. Regeneration of Functional Neurons After Spinal Cord Injury via in Situ NeuroD1-Mediated Astrocyte-to-Neuron Conversion. Front. Cell Dev. Biol. 2020;8 doi: 10.3389/FCELL.2020.591883/BIBTEX. PubMed DOI PMC

Hunt D., Coffin R.S., Prinjha R.K., Campbell G., Anderson P.N. Nogo-A Expression in the Intact and Injured Nervous System. Mol. Cell. Neurosci. 2003;24:1083–1102. doi: 10.1016/j.mcn.2003.09.002. PubMed DOI

Schweigreiter R., Bandtlow C.E. Nogo in the Injured Spinal Cord. J. Neurotrauma. 2006;23:384–396. doi: 10.1089/NEU.2006.23.384. PubMed DOI

Cafferty W.B.J., Duffy P., Huebner E., Strittmatter S.M. MAG and OMgp Synergize with Nogo-A to Restrict Axonal Growth and Neurological Recovery after Spinal Cord Trauma. J. Neurosci. 2010;30:6825–6837. doi: 10.1523/JNEUROSCI.6239-09.2010. PubMed DOI PMC

Cheng X., Yu Z., Xu J., Quan D., Long H. Pathophysiological Changes and the Role of Notch-1 Activation After Decompression in a Compressive Spinal Cord Injury Rat Model. Front. Neurosci. 2021;15 doi: 10.3389/FNINS.2021.579431/BIBTEX. PubMed DOI PMC

Tan Z., Qin S., Yuan Y., Hu X., Huang X., Liu H., Pu Y., He C., Su Z. NOTCH1 Signaling Regulates the Latent Neurogenic Program in Adult Reactive Astrocytes after Spinal Cord Injury. Theranostics. 2022;12:4548–4563. doi: 10.7150/THNO.71378. PubMed DOI PMC

Peng Z., Li X., Fu M., Zhu K., Long L., Zhao X., Chen Q., Deng D.Y.B., Wan Y. Inhibition of Notch1 Signaling Promotes Neuronal Differentiation and Improves Functional Recovery in Spinal Cord Injury through Suppressing the Activation of Ras Homolog Family Member A. J. Neurochem. 2019;150:709–722. doi: 10.1111/JNC.14833. PubMed DOI

Kakinohana M., Kida K., Minamishima S., Atochin D.N., Huang P.L., Kaneki M., Ichinose F. Delayed Paraplegia after Spinal Cord Ischemic Injury Requires Caspase-3 Activation in Mice. Stroke. 2011;42:2302–2307. doi: 10.1161/STROKEAHA.110.600429. PubMed DOI PMC

Citron B.A., Arnold P.M., Sebastian C., Qin F., Malladi S., Ameenuddin S., Landis M.E., Festoff B.W. Rapid Upregulation of Caspase-3 in Rat Spinal Cord after Injury: MRNA, Protein, and Cellular Localization Correlates with Apoptotic Cell Death. Exp. Neurol. 2000;166:213–226. doi: 10.1006/exnr.2000.7523. PubMed DOI

DeGiosio R.A., Grubisha M.J., MacDonald M.L., McKinney B.C., Camacho C.J., Sweet R.A. More than a Marker: Potential Pathogenic Functions of MAP2. Front. Mol. Neurosci. 2022;15 doi: 10.3389/FNMOL.2022.974890/XML. PubMed DOI PMC

Papasozomenos S.C., Binder L.I., Bender P.K., Payne M.R. Microtubule-Associated Protein 2 within Axons of Spinal Motor Neurons: Associations with Microtubules and Neurofilaments in Normal and β,β’-Iminodipropionitrile-Treated Axons. J. Cell Biol. 1985;100:74–85. doi: 10.1083/JCB.100.1.74. PubMed DOI PMC

Urdzikova L., Urdzikova U., Vanicky I. Post-Traumatic Moderate Systemic Hyperthermia Worsens Behavioural Outcome after Spinal Cord Injury in the Rat. Spinal Cord. 2006;44:113–119. doi: 10.1038/sj.sc.3101792. PubMed DOI

Ferrier J., Marchand F., Balayssac D. Assessment of Mechanical Allodynia in Rats Using the Electronic Von Frey Test. Bio. Protoc. 2016;6 doi: 10.21769/BIOPROTOC.1933. DOI

Martinov T., Mack M., Sykes A., Chatterjea D. Measuring Changes in Tactile Sensitivity in the Hind Paw of Mice Using an Electronic von Frey Apparatus. J. Vis. Exp. 2013;2013 doi: 10.3791/51212. PubMed DOI PMC

Bolger A.M., Lohse M., Usadel B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Kopylova E., Noé L., Touzet H. SortMeRNA: Fast and Accurate Filtering of Ribosomal RNAs in Metatranscriptomic Data. Bioinformatics. 2012;28:3211–3217. doi: 10.1093/bioinformatics/bts611. PubMed DOI

Dobin A., Davis C.A., Schlesinger F., Drenkow J., Zaleski C., Jha S., Batut P., Chaisson M., Gingeras T.R. STAR: Ultrafast Universal RNA-Seq Aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC

Anders S., Pyl P.T., Huber W. HTSeq-A Python Framework to Work with High-Throughput Sequencing Data. Bioinformatics. 2015;31:166–169. doi: 10.1093/bioinformatics/btu638. PubMed DOI PMC

Martin M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet. J. 2011;17:10. doi: 10.14806/ej.17.1.200. DOI

Langmead B., Trapnell C., Pop M., Salzberg S.L. Ultrafast and Memory-Efficient Alignment of Short DNA Sequences to the Human Genome. Genome Biol. 2009;10:R25. doi: 10.1186/GB-2009-10-3-R25/TABLES/5. PubMed DOI PMC

Kozomara A., Birgaoanu M., Griffiths-Jones S. MiRBase: From MicroRNA Sequences to Function. Nucleic Acids Res. 2019;47:D155–D162. doi: 10.1093/nar/gky1141. PubMed DOI PMC

Love M.I., Huber W., Anders S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Subramanian A., Tamayo P., Mootha V.K., Mukherjee S., Ebert B.L., Gillette M.A., Paulovich A., Pomeroy S.L., Golub T.R., Lander E.S., Mesirov J.P. Gene Set Enrichment Analysis: A Knowledge-Based Approach for Interpreting Genome-Wide Expression Profiles. Proc. Natl. Acad. Sci. USA. 2005;102:15545–15550. doi: 10.1073/PNAS.0506580102. PubMed DOI PMC

Shannon P., Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003;13:2498–2504. doi: 10.1101/GR.1239303. PubMed DOI PMC

Hao Y., Hao S., Andersen-Nissen E., Mauck W.M., Zheng S., Butler A., Lee M.J., Wilk A.J., Darby C., Zager M., et al. Integrated Analysis of Multimodal Single-Cell Data. Cell. 2021;184:3573–3587.e29. doi: 10.1016/j.cell.2021.04.048. PubMed DOI PMC

Hughes C.S., Moggridge S., Müller T., Sorensen P.H., Morin G.B., Krijgsveld J. Single-Pot, Solid-Phase-Enhanced Sample Preparation for Proteomics Experiments. Nat. Protoc. 2018;14:68–85. doi: 10.1038/s41596-018-0082-x. PubMed DOI

Rappsilber J., Mann M., Ishihama Y. Protocol for Micro-Purification, Enrichment, Pre-Fractionation and Storage of Peptides for Proteomics Using StageTips. Nat. Protoc. 2007;2:1896–1906. doi: 10.1038/NPROT.2007.261. PubMed DOI

Hebert A.S., Richards A.L., Bailey D.J., Ulbrich A., Coughlin E.E., Westphall M.S., Coon J.J. The One Hour Yeast Proteome. Mol. Cell. Proteomics. 2014;13:339–347. doi: 10.1074/MCP.M113.034769. PubMed DOI PMC

Cox J., Mann M. MaxQuant Enables High Peptide Identification Rates, Individualized p.p.b.-Range Mass Accuracies and Proteome-Wide Protein Quantification. Nat. Biotechnol. 2008;26:1367–1372. doi: 10.1038/nbt.1511. PubMed DOI

Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M.Y., Geiger T., Mann M., Cox J. The Perseus Computational Platform for Comprehensive Analysis of (Prote)Omics Data. Nat. Methods. 2016;13:731–740. doi: 10.1038/nmeth.3901. PubMed DOI

Wei R., Wang J., Su M., Jia E., Chen S., Chen T., Ni Y. Missing Value Imputation Approach for Mass Spectrometry-Based Metabolomics Data. Sci. Rep. 2018;8:663. doi: 10.1038/s41598-017-19120-0. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...