Needle- and Canopy-Level Genetic Variation in Scots Pine (Pinus sylvestris L.) Revealed by Hyperspectral Phenotyping Across Sites and Seasons
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41245522
PubMed Central
PMC12612600
DOI
10.1111/eva.70176
PII: EVA70176
Knihovny.cz E-zdroje
- Klíčová slova
- UAV, clonal seed orchards, genetic correlations, heritability, needle functional traits, spectral reflectance,
- Publikační typ
- časopisecké články MeSH
As an essential species across European forests, Scots pine (Pinus sylvestris L.) plays a vital ecological and economic role, yet its physiological variability underlying its adaptive potential remains underexplored. Understanding this intraspecific variability is crucial for uncovering the genetic basis of adaptation. Traditional genetic evaluations require large sample sizes and are time-consuming, whereas hyperspectral sensing/imaging enables rapid, nondestructive assessment of physiological traits across many individuals, facilitating more efficient exploration of adaptive variation. We assessed needle functional traits (NFTs) linked to foliar structure, water content, and pigment composition in clonal seed orchards over two seasons, integrating hyperspectral measurements at needle and canopy levels with genotyping using a new 50 K single-nucleotide polymorphism (SNP) array. Linear mixed models revealed substantial genetic variation, with the carotenoid-to-total-chlorophyll ratio showing the highest heritability (0.29) among pigment traits, and structural/water-related traits reaching heritability values up to 0.38. Significant genetic correlations were observed between stress-related traits (pigment content, equivalent water thickness) and reflectance, suggesting that spectral traits could serve as proxies for indirect selection of adaptive traits or in breeding programs. Low genotype-by-environment interaction and stable clonal performance across years further underscore the reliability of these traits for identifying resilient genotypes. Overall, our findings highlight hyperspectral phenotyping and NFTs as promising tools for accelerating climate-adaptive breeding in Scots pine.
Biospheric Sciences Laboratory NASA Goddard Space Flight Center Greenbelt Maryland USA
Department of Experimental Plant Biology Faculty of Science Charles University Prague Czech Republic
Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Czech Republic
Zobrazit více v PubMed
Abdullah, H. , Skidmore A. K., Darvishzadeh R., and Heurich M.. 2019. “Timing of Red‐Edge and Shortwave Infrared Reflectance Critical for Early Stress Detection Induced by Bark Beetle ( DOI
Ahern, F. J. 1988. “The Effects of Bark Beetle Stress on the Foliar Spectral Reflectance of Lodgepole Pine.” International Journal of Remote Sensing 9: 1451–1468. 10.1080/01431168808954952. DOI
Al‐Ashkar, I. , Al‐Suhaibani N., Abdella K., Sallam M., Alotaibi M., and Seleiman M. F.. 2021. “Combining Genetic and Multidimensional Analyses to Identify Interpretive Traits Related to Water Shortage Tolerance as an Indirect Selection Tool for Detecting Genotypes of Drought Tolerance in Wheat Breeding.” Plants 10: 931. 10.3390/plants10050931. PubMed DOI PMC
Amadeu, R. R. , Cellon C., Olmstead J. W., Garcia A. A. F., Resende M. F. R., and Muñoz P. R.. 2016. “AGHmatrix: R Package to Construct Relationship Matrices for Autotetraploid and Diploid Species: A Blueberry Example.” Plant Genome 9: plantgenome2016.01.0009. 10.3835/plantgenome2016.01.0009. PubMed DOI
Arroyo‐Mora, J. P. , Kalacska M., Løke T., et al. 2021. “Assessing the Impact of Illumination on UAV Pushbroom Hyperspectral Imagery Collected Under Various Cloud Cover Conditions.” Remote Sensing of Environment 258: 112396. 10.1016/j.rse.2021.112396. DOI
Bachofen, C. , Perret‐Gentil A., Wohlgemuth T., Vollenweider P., and Moser B.. 2021. “Phenotypic Plasticity Versus Ecotypic Differentiation Under Recurrent Summer Drought in Two Drought‐Tolerant Pine Species.” Journal of Ecology 109: 3861–3876. 10.1111/1365-2745.13762. DOI
Bhat, S. S. , Singh N. B., Sankhyan H. P., and Sharma K. R.. 2016. “Variability Studies for Needle and Wood Traits of Different Half Sib Progenies of PubMed DOI PMC
Bhusal, N. , Lee M., Lee H., et al. 2021. “Evaluation of Morphological, Physiological, and Biochemical Traits for Assessing Drought Resistance in Eleven Tree Species.” Science of the Total Environment 779: 146466. 10.1016/j.scitotenv.2021.146466. PubMed DOI
Bian, L. , Zhang H., Ge Y., Čepl J., Stejskal J., and EL‐Kassaby Y. A.. 2022. “Closing the Gap Between Phenotyping and Genotyping: Review of Advanced, Image‐Based Phenotyping Technologies in Forestry.” Annals of Forest Science 79: 22. 10.1186/s13595-022-01143-x. DOI
Bloom, C. K. , Koch T. L., Meusburger K., et al. 2025. “Towards Near Real‐Time Drought Stress Assessment in Europe's Temperate Forests—Comparing Remote Sensing Time Series With Continuous In‐Situ Tree‐Level Measurements.” Ecological Indicators 177: 113757. 10.1016/j.ecolind.2025.113757. DOI
Brichta, J. , Vacek S., Vacek Z., et al. 2023. “Importance and Potential of Scots Pine ( DOI
Buraczyk, W. , Tulik M., Konecka A., Szeligowski H., Czacharowski M., and Będkowski M.. 2022. “Does Leaf Mass Per Area (LMA) Discriminate Natural Pine Populations of Different Origins?” European Journal of Forest Research 141: 1177–1187. 10.1007/s10342-022-01500-5. DOI
Buras, A. , and Menzel A.. 2019. “Projecting Tree Species Composition Changes of European Forests for 2061–2090 Under RCP 4.5 and RCP 8.5 Scenarios.” Frontiers in Plant Science 9: 1986. 10.3389/fpls.2018.01986. PubMed DOI PMC
Burdon, R. 1977. “Burdon RD. Genetic Correlation as a Concept for Studying Genotype‐Environment Interaction in Forest Tree Breeding.” Silvae Genetica 26: 168–175.
Buschmann, C. , Lenk S., and Lichtenthaler H. K.. 2012. “Reflectance Spectra and Images of Green Leaves With Different Tissue Structure and Chlorophyll Content.” Israel Journal of Plant Sciences 60: 49–64. 10.1560/IJPS.60.1-2.49. DOI
Butler, D. , Cullis B., Gilmour A., Gogel B., and Thompson R.. 2017. ASReml‐R Reference Manual Version 4. VSN International Ltd.
Butler, D. G. , Cullis B. R., Gilmour A. R., and Gogel B. J.. 2009. “ASReml Estimates Variance Components Under a General Linear Mixed Model by Residual Maximum Likelihood (REML).”
Calleja‐Rodriguez, A. , Andersson Gull B., Wu H. X., Mullin T. J., and Persson T.. 2019. “Genotype‐By‐Environment Interactions and the Dynamic Relationship Between Tree Vitality and Height in Northern DOI
Campbell, P. K. E. , Huemmrich K. F., Middleton E. M., et al. 2019. “Diurnal and Seasonal Variations in Chlorophyll Fluorescence Associated With Photosynthesis at Leaf and Canopy Scales.” Remote Sensing 11: 488. 10.3390/rs11050488. DOI
Cavender‐Bares, J. , Gamon J. A., and Townsend P. A., eds. 2020. Remote Sensing of Plant Biodiversity. Springer International Publishing. 10.1007/978-3-030-33157-3. DOI
Čepl, J. , Holá D., Stejskal J., et al. 2016. “Genetic Variability and Heritability of Chlorophyll a Fluorescence Parameters in Scots Pine ( PubMed DOI
Čepl, J. , Stejskal J., Lhotáková Z., et al. 2018. “Heritable Variation in Needle Spectral Reflectance of Scots Pine ( DOI
Corbin, J. P. M. , Best R. J., Garthwaite I. J., et al. 2024. “Hyperspectral Leaf Reflectance Detects Interactive Genetic and Environmental Effects on Tree Phenotypes, Enabling Large‐Scale Monitoring and Restoration Planning Under Climate Change.” Plant, Cell & Environment 48, no. 3: 1842–1857. 10.1111/pce.15263. PubMed DOI PMC
Coupel‐Ledru, A. , Pallas B., Delalande M., et al. 2019. “Multi‐Scale High‐Throughput Phenotyping of Apple Architectural and Functional Traits in Orchard Reveals Genotypic Variability Under Contrasted Watering Regimes.” Horticulture Research 6: 52. 10.1038/s41438-019-0137-3. PubMed DOI PMC
Curran, P. J. 1989. “Remote Sensing of Foliar Chemistry.” Remote Sensing of Environment 30: 271–278. 10.1016/0034-4257(89)90069-2. DOI
Curran, P. J. , Windham W. R., and Gholz H. L.. 1995. “Exploring the Relationship Between Reflectance Red Edge and Chlorophyll Concentration in Slash Pine Leaves.” Tree Physiology 15: 203–206. 10.1093/treephys/15.3.203. PubMed DOI
Danusevicius, D. , Masaitis G., and Mozgeris G.. 2014. “Visible and Near Infrared Hyperspectral Imaging Reveals Significant Differences in Needle Reflectance Among Scots Pine Provenances.” Silvae Genetica 63: 169–180. 10.1515/sg-2014-0022. DOI
De Los Campos, G. , Sorensen D., and Gianola D.. 2015. “Genomic Heritability: What Is It?” PLoS Genetics 11: e1005048. 10.1371/journal.pgen.1005048. PubMed DOI PMC
Demmig‐Adams, B. , and Adams W. I.. 1996. “Chlorophyll and Carotenoid Composition in Leaves of DOI
Dengel, S. , Grace J., Aakala T., Hari P., Newberry S. L., and Mizunuma T.. 2013. “Spectral Characteristics of Pine Needles at the Limit of Tree Growth in Subarctic Finland.” Plant Ecology and Diversity 6: 31–44. 10.1080/17550874.2012.754512. DOI
D'Odorico, P. , Schuman M. C., Kurz M., and Csilléry K.. 2023. “Discerning Oriental From European Beech by Leaf Spectroscopy: Operational and Physiological Implications.” Forest Ecology and Management 541: 121056. 10.1016/j.foreco.2023.121056. DOI
Donnelly, K. , Cavers S., Cottrell J. E., and Ennos R. A.. 2016. “Genetic Variation for Needle Traits in Scots Pine ( DOI
Dutkowski, G. W. , Silva J. C. E., Gilmour A. R., and Lopez G. A.. 2002. “Spatial Analysis Methods for Forest Genetic Trials.” Canadian Journal of Forest Research 32: 2201–2214. 10.1139/x02-111. DOI
Eitel, J. U. H. , Vierling L. A., Litvak M. E., et al. 2011. “Broadband, Red‐Edge Information From Satellites Improves Early Stress Detection in a New Mexico Conifer Woodland.” Remote Sensing of Environment 115: 3640–3646. 10.1016/j.rse.2011.09.002. DOI
El‐Hendawy, S. , Al‐Suhaibani N., Al‐Ashkar I., et al. 2020. “Combining Genetic Analysis and Multivariate Modeling to Evaluate Spectral Reflectance Indices as Indirect Selection Tools in Wheat Breeding Under Water Deficit Stress Conditions.” Remote Sensing 12: 1480. 10.3390/rs12091480. DOI
El‐Hendawy, S. , Al‐Suhaibani N., Mubushar M., et al. 2022. “Combining Hyperspectral Reflectance and Multivariate Regression Models to Estimate Plant Biomass of Advanced Spring Wheat Lines in Diverse Phenological Stages Under Salinity Conditions.” Applied Sciences 12: 1983. 10.3390/app12041983. DOI
Feduck, C. , McDermid G., and Castilla G.. 2018. “Detection of Coniferous Seedlings in UAV Imagery.” Forests 9: 432. 10.3390/f9070432. DOI
Feng, H. , Guo Z., Yang W., et al. 2017. “An Integrated Hyperspectral Imaging and Genome‐Wide Association Analysis Platform Provides Spectral and Genetic Insights Into the Natural Variation in Rice.” Scientific Reports 7: 4401. 10.1038/s41598-017-04668-8. PubMed DOI PMC
Féret, J.‐B. , Le Maire G., Jay S., et al. 2019. “Estimating Leaf Mass Per Area and Equivalent Water Thickness Based on Leaf Optical Properties: Potential and Limitations of Physical Modeling and Machine Learning.” Remote Sensing of Environment 231: 110959. 10.1016/j.rse.2018.11.002. DOI
Gamon, J. A. , Huemmrich K. F., Wong C. Y. S., et al. 2016. “A Remotely Sensed Pigment Index Reveals Photosynthetic Phenology in Evergreen Conifers.” Proceedings of the National Academy of Sciences of the United States of America 113: 13087–13092. 10.1073/pnas.1606162113. PubMed DOI PMC
García‐Plazaola, J. I. , Esteban R., Fernández‐Marín B., Kranner I., and Porcar‐Castell A.. 2012. “Thermal Energy Dissipation and Xanthophyll Cycles Beyond the Arabidopsis Model.” Photosynthesis Research 113: 89–103. 10.1007/s11120-012-9760-7. PubMed DOI
Gitelson, A. 2020. “Towards a Generic Approach to Remote Non‐Invasive Estimation of Foliar Carotenoid‐To‐Chlorophyll Ratio | Elsevier Enhanced Reader.” Journal of Plant Physiology 252: 153227. 10.1016/j.jplph.2020.153227. PubMed DOI
Gitelson, A. A. , and Solovchenko A.. 2018. “Non‐Invasive Quantification of Foliar Pigments: Possibilities and Limitations of Reflectance‐ and Absorbance‐Based Approaches.” Journal of Photochemistry and Photobiology, B: Biology 178: 537–544. 10.1016/j.jphotobiol.2017.11.023. PubMed DOI
Granlund, L. , Keski‐Saari S., Kumpula T., Oksanen E., and Keinänen M.. 2018. “Imaging Lichen Water Content With Visible to Mid‐Wave Infrared (400–5500 Nm) Spectroscopy.” Remote Sensing of Environment 216: 301–310. 10.1016/j.rse.2018.06.041. DOI
Grattapaglia, D. , and Resende M. D. V.. 2011. “Genomic Selection in Forest Tree Breeding.” Tree Genetics & Genomes 7: 241–255. 10.1007/s11295-010-0328-4. DOI
Grattapaglia, D. , Silva‐Junior O. B., Resende R. T., et al. 2018. “Quantitative Genetics and Genomics Converge to Accelerate Forest Tree Breeding.” Frontiers in Plant Science 9: 1693. 10.3389/fpls.2018.01693. PubMed DOI PMC
Grubinger, S. , Coops N. C., and O'Neill G. A.. 2023. “Picturing Local Adaptation: Spectral and Structural Traits From Drone Remote Sensing Reveal Clinal Responses to Climate Transfer in Common‐Garden Trials of Interior Spruce ( PubMed DOI
Grubinger, S. , Coops N. C., O'Neill G. A., et al. 2025. “Seasonal Vegetation Dynamics for Phenotyping Using Multispectral Drone Imagery: Genetic Differentiation, Climate Adaptation, and Hybridization in a Common‐Garden Trial of Interior Spruce ( DOI
Hejtmánek, J. , Stejskal J., Čepl J., et al. 2022. “Revealing the Complex Relationship Among Hyperspectral Reflectance, Photosynthetic Pigments, and Growth in Norway Spruce Ecotypes.” Frontiers in Plant Science 13: 721064. 10.3389/fpls.2022.721064. PubMed DOI PMC
Hejtmánek, J. , Stejskal J., Provazník D., and Čepl J.. 2023. “Understanding the Role of Ecotypic Factors in the Early Growth of DOI
Holliday, J. A. , Aitken S. N., Cooke J. E. K., et al. 2017. “Advances in Ecological Genomics in Forest Trees and Applications to Genetic Resources Conservation and Breeding.” Molecular Ecology 26: 706–717. 10.1111/mec.13963. PubMed DOI
Hong, Z. , Fries A., and Wu H. X.. 2015. “Age Trend of Heritability, Genetic Correlation, and Efficiency of Early Selection for Wood Quality Traits in Scots Pine.” Canadian Journal of Forest Research 45: 817–825. 10.1139/cjfr-2014-0465. DOI
Houminer, N. , Riov J., Moshelion M., Osem Y., and David‐Schwartz R.. 2022. “Comparison of Morphological and Physiological Traits Between DOI
Jin, X. 2012. “Segmentation‐Based Image Processing System.” U.S. Patent 8,260,048.
Kastally, C. , Niskanen A. K., Perry A., et al. 2022. “Taming the Massive Genome of Scots Pine With PiSy50k, a New Genotyping Array for Conifer Research.” Plant Journal 109: 1337–1350. 10.1111/tpj.15628. PubMed DOI PMC
Kattenborn, T. , Schiefer F., Zarco‐Tejada P., and Schmidtlein S.. 2019. “Advantages of Retrieving Pigment Content [μg/cm DOI
Kopačková‐Strnadová, V. , Koucká L., Jelének J., Lhotáková Z., and Oulehle F.. 2021. “Canopy Top, Height and Photosynthetic Pigment Estimation Using Parrot Sequoia Multispectral Imagery and the Unmanned Aerial Vehicle (UAV).” Remote Sensing 13: 705. 10.3390/rs13040705. DOI
Li, C. , Czyż E. A., Halitschke R., Baldwin I. T., Schaepman M. E., and Schuman M. C.. 2023. “Evaluating Potential of Leaf Reflectance Spectra to Monitor Plant Genetic Variation.” Plant Methods 19: 108. 10.1186/s13007-023-01089-9. PubMed DOI PMC
Li, H. , Yang W., Lei J., She J., and Zhou X.. 2021. “Estimation of Leaf Water Content From Hyperspectral Data of Different Plant Species by Using Three New Spectral Absorption Indices.” PLoS One 16: e0249351. 10.1371/journal.pone.0249351. PubMed DOI PMC
Li, Y. , Yang X., Tong L., et al. 2023. “Phenomic Selection in Slash Pine Multi‐Temporally Using UAV‐Multispectral Imagery.” Frontiers in Plant Science 14: 1156430. 10.3389/fpls.2023.1156430. PubMed DOI PMC
Linder, P. , Elfving B., and Zackrisson O.. 1997. “Stand Structure and Successional Trends in Virgin Boreal Forest Reserves in Sweden.” Forest Ecology and Management 98: 17–33. 10.1016/S0378-1127(97)00076-5. DOI
Marguerit, E. , Bouffier L., Chancerel E., et al. 2014. “The Genetics of Water‐Use Efficiency and Its Relation to Growth in Maritime Pine.” Journal of Experimental Botany 65: 4757–4768. 10.1093/jxb/eru226. PubMed DOI PMC
Mode, C. J. , and Robinson H. F.. 1959. “Pleiotropism and the Genetic Variance and Covariance.” Biometrics 15: 518. 10.2307/2527650. DOI
Montes, C. M. , Fox C., Sanz‐Sáez Á., et al. 2022. “High‐Throughput Characterization, Correlation, and Mapping of Leaf Photosynthetic and Functional Traits in the Soybean ( PubMed DOI PMC
Neale, D. B. , and Kremer A.. 2011. “Forest Tree Genomics: Growing Resources and Applications.” Nature Reviews. Genetics 12: 111–122. 10.1038/nrg2931. PubMed DOI
Neuwirthová, E. , Kuusk A., Lhotáková Z., Kuusk J., Albrechtová J., and Hallik L.. 2021. “Leaf Age Matters in Remote Sensing: Taking Ground Truth for Spectroscopic Studies in Hemiboreal Deciduous Trees With Continuous Leaf Formation.” Remote Sensing 13: 1353. 10.3390/rs13071353. DOI
Ols, C. , and Bontemps J.‐D.. 2021. “Pure and Even‐Aged Forestry of Fast‐Growing Conifers Under Climate Change: On the Need for a Silvicultural Paradigm Shift.” Environmental Research Letters 16: 024030. 10.1088/1748-9326/abd6a7. DOI
Porra, R. , Thompson W., and Kriedemann P.. 1989. “Determination of Accurate Extinction Coefficients and Simultaneous‐Equations for Assaying Chlorophyll‐a and Chlorophyll‐b Extracted With 4 Different Solvents—Verification of the Concentration.” Biochimica et Biophysica Acta 975: 384–394. 10.1016/S0005-2728(89)80347-0. DOI
QGIS Development Team . 2024. “QGIS Geographic Information System.”
Rehschuh, R. , Cecilia A., Zuber M., et al. 2020. “Drought‐Induced Xylem Embolism Limits the Recovery of Leaf Gas Exchange in Scots Pine.” Plant Physiology 184: 852–864. 10.1104/pp.20.00407. PubMed DOI PMC
Resende, M. F. R. , Muñoz P., Acosta J. J., et al. 2012. “Accelerating the Domestication of Trees Using Genomic Selection: Accuracy of Prediction Models Across Ages and Environments.” New Phytologist 193: 617–624. 10.1111/j.1469-8137.2011.03895.x. PubMed DOI
Richardson, A. D. , and Berlyn G. P.. 2002. “Changes in Foliar Spectral Reflectance and Chlorophyll Fluorescence of Four Temperate Species Following Branch Cutting.” Tree Physiology 22: 499–506. 10.1093/treephys/22.7.499. PubMed DOI
Rweyongeza, D. M. , Yeh F. C., Dancik B. P., and Dhir N. K.. 2003. “Genetic Variation in Height, Branch and Needle Lengths of DOI
Seeley, M. M. , Thomson E., Allan G. J., et al. 2024. “Disentangling Heritability and Plasticity Effects on PubMed DOI
Semerci, A. , Semerci H., Çalişkan B., Çiçek N., Ekmekçi Y., and Mencuccini M.. 2017. “Morphological and Physiological Responses to Drought Stress of European Provenances of Scots Pine.” European Journal of Forest Research 136: 91–104. 10.1007/s10342-016-1011-6. DOI
Shoshany, M. , Spond H., and Bar D. E.. 2019. “Overcast Versus Clear‐Sky Remote Sensing: Comparing Surface Reflectance Estimates.” International Journal of Remote Sensing 40: 6737–6751. 10.1080/01431161.2019.1591649. DOI
Sigala, J. A. , Uscola M., Oliet J. A., and Jacobs D. F.. 2020. “Drought Tolerance and Acclimation in PubMed DOI
Sims, D. A. , and Gamon J. A.. 2002. “Relationships Between Leaf Pigment Content and Spectral Reflectance Across a Wide Range of Species, Leaf Structures and Developmental Stages.” Remote Sensing of Environment 81: 337–354. 10.1016/S0034-4257(02)00010-X. DOI
Song, G. , and Wang Q.. 2022. “Developing Hyperspectral Indices for Assessing Seasonal Variations in the Ratio of Chlorophyll to Carotenoid in Deciduous Forests.” Remote Sensing 14: 1324. 10.3390/rs14061324. DOI
Song, Z. , Xu C., Luan Q., and Li Y.. 2024. “Multitemporal UAV Study of Phenolic Compounds in Slash Pine Canopies.” Remote Sensing of Environment 315: 114454. 10.1016/j.rse.2024.114454. DOI
Sonobe, R. , Yamashita H., Mihara H., Morita A., and Ikka T.. 2020. “Estimation of Leaf Chlorophyll a, b and Carotenoid Contents and Their Ratios Using Hyperspectral Reflectance.” Remote Sensing 12: 3265. 10.3390/rs12193265. DOI
Stejskal, J. , Čepl J., Neuwirthová E., et al. 2023. “Making the Genotypic Variation Visible: Hyperspectral Phenotyping in Scots Pine Seedlings.” Plant Phenomics 5: 0111. 10.34133/plantphenomics.0111. PubMed DOI PMC
Stejskal, J. , Klápště J., Čepl J., El‐Kassaby Y. A., and Lstibůrek M.. 2022. “Effect of Clonal Testing on the Efficiency of Genomic Evaluation in Forest Tree Breeding.” Scientific Reports 12: 3033. 10.1038/s41598-022-06952-8. PubMed DOI PMC
Tao, X. , Li Y., Yan W., et al. 2021. “Heritable Variation in Tree Growth and Needle Vegetation Indices of Slash Pine ( DOI
VanRaden, P. M. 2008. “Efficient Methods to Compute Genomic Predictions.” Journal of Dairy Science 91: 4414–4423. 10.3168/jds.2007-0980. PubMed DOI
Virlet, N. , Costes E., Martinez S., Kelner J.‐J., and Regnard J.‐L.. 2015. “Multispectral Airborne Imagery in the Field Reveals Genetic Determinisms of Morphological and Transpiration Traits of an Apple Tree Hybrid Population in Response to Water Deficit.” Journal of Experimental Botany 66: 5453–5465. 10.1093/jxb/erv355. PubMed DOI PMC
Visscher, P. M. , and Goddard M. E.. 2015. “A General Unified Framework to Assess the Sampling Variance of Heritability Estimates Using Pedigree or Marker‐Based Relationships.” Genetics 199: 223–232. 10.1534/genetics.114.171017. PubMed DOI PMC
Wellburn, A. R. 1994. “The Spectral Determination of Chlorophylls a and b, as Well as Total Carotenoids, Using Various Solvents With Spectrophotometers of Different Resolution.” Journal of Plant Physiology 144: 307–313. 10.1016/S0176-1617(11)81192-2. DOI
White, T. L. , Adams W. T., and Neale D. B.. 2007. Forest Genetics. CABI.
Wocher, M. , Berger K., Danner M., Mauser W., and Hank T.. 2018. “Physically‐Based Retrieval of Canopy Equivalent Water Thickness Using Hyperspectral Data.” Remote Sensing 10: 1924. 10.3390/rs10121924. DOI
Wong, C. Y. S. , D'Odorico P., Bhathena Y., Arain M. A., and Ensminger I.. 2019. “Carotenoid Based Vegetation Indices for Accurate Monitoring of the Phenology of Photosynthesis at the Leaf‐Scale in Deciduous and Evergreen Trees.” Remote Sensing of Environment 233: 111407. 10.1016/j.rse.2019.111407. DOI
Yang, J. , Benyamin B., McEvoy B. P., et al. 2010. “Common SNPs Explain a Large Proportion of the Heritability for Human Height.” Nature Genetics 42: 565–569. 10.1038/ng.608. PubMed DOI PMC
Yigit, N. , Öztürk A., Sevik H., Özel H. B., Kshkush F. E. R., and Işık B.. 2023. “Clonal Variation Based on Some Morphological and Micromorphological Characteristics in the Boyabat (Sinop/Turkey) Black Pine ( DOI
Zhang, Y. , Migliavacca M., Penuelas J., and Ju W.. 2021. “Advances in Hyperspectral Remote Sensing of Vegetation Traits and Functions.” Remote Sensing of Environment 252: 112121. 10.1016/j.rse.2020.112121. DOI
Zhang, Y. , Wu J., and Wang A.. 2022. “Comparison of Various Approaches for Estimating Leaf Water Content and Stomatal Conductance in Different Plant Species Using Hyperspectral Data.” Ecological Indicators 142: 109278. 10.1016/j.ecolind.2022.109278. DOI
Zobel, B. , and Talbert J.. 1984. Applied Forest Tree Improvement. Wiley.
figshare
10.6084/m9.figshare.27134907.v2