Weight Trajectories Among Youths Following Residential Relocation
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
PubMed
41252170
PubMed Central
PMC12628102
DOI
10.1001/jamanetworkopen.2025.44164
PII: 2841544
Knihovny.cz E-zdroje
- MeSH
- charakteristiky bydlení MeSH
- dítě MeSH
- hmotnostní křivka * MeSH
- index tělesné hmotnosti MeSH
- lidé MeSH
- longitudinální studie MeSH
- mladiství MeSH
- mladý dospělý MeSH
- obezita dětí a dospívajících * epidemiologie MeSH
- předškolní dítě MeSH
- socioekonomické faktory MeSH
- vystavení vlivu životního prostředí * škodlivé účinky MeSH
- vytvořené prostředí statistika a číselné údaje MeSH
- znečištění ovzduší * škodlivé účinky statistika a číselné údaje MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Nizozemsko epidemiologie MeSH
- Švédsko epidemiologie MeSH
IMPORTANCE: Overweight and obesity affect millions of children and adolescents worldwide, and its prevalence is increasing. OBJECTIVE: To investigate the associations of changes in the surrounding residential environment following relocation on childhood body mass index (BMI), focusing on 3 external exposome domains: air pollution, the built environment, and socioeconomic disadvantage. DESIGN, SETTING, AND PARTICIPANTS: This longitudinal cohort study used harmonized data from birth cohorts from the Netherlands (PIAMA), Sweden (BAMSE), and the Czech Republic (ELSPAC-CZ) participating in the EXPANSE (Exposome Powered Tools for Healthy Living in Urban Settings) project, with birth dates ranging between 1991 and 1997. Participants were youths aged 2 to 24 years who had experienced residential relocation during their follow-up. Analysis focused on within-individual changes resulting from relocation. k Means clustering characterized multiple exposures from the 3 external exposome domains. Fixed-effects linear models estimated associations of exposome changes with changes in age- and sex-standardized body mass index (z-BMI), adjusted for relevant covariates. This study was conducted between July 2023 and January 2025. EXPOSURES: Changes in 3 external exposome domains: (1) ambient air pollution from high-resolution surfaces; (2) the built environment, including green, blue, and gray spaces and light at night; and (3) area-level socioeconomic disadvantage indicators. Domain-specific exposome profiles were characterized as low-, medium-, and high-hazard environments. MAIN OUTCOME AND MEASURES: Changes in z-BMI. RESULTS: The study included 4359 participants (1467 from PIAMA, 1778 from BAMSE, and 1114 from ELSPAC-CZ). A total of 2215 (50.8%) were male. The mean (SD) age at inclusion was 3.0 (1.1) years, and mean (SD) age at moving was 7.7 (4.3) years. Parental education varied across cohorts. Mean (SD) z-BMI was 0.2 (1.1), 0.4 (1.0), and 0.1 (1.2) at baseline and 0.0 (1.0), 0.3 (1.0), and 0.1 (1.1) after moving in PIAMA, BAMSE, and ELSPAC-CZ, respectively. Moving to higher-hazard environments (more polluted, more gray space) was associated with increases in z-BMI for all domains in PIAMA; significant associations were also seen for some domains and exposures in BAMSE and ELSPAC-CZ. Specifically, an association between moving to a more built environment and increase in z-BMI was consistent across cohorts: an IQR increase in gray spaces was associated with increases of 0.04 (95% CI, 0.01-0.06) units and 0.05 (95% CI, 0.01-0.09) units in z-BMI in BAMSE and PIAMA, respectively. An IQR increase in air pollution hazard was associated with increases of 0.07 (95% CI, 0.02-0.12) units and 0.07 (95% CI, 0.01-0.14) units in z-BMI for nitrogen dioxide (NO2) and fine particulate matter (PM2.5), respectively, in PIAMA. Presence of effect modification by parental education and age at moving varied across cohorts. CONCLUSIONS AND RELEVANCE: In this multicountry cohort study of 4359 youths in the Netherlands, Sweden, and the Czech Republic, moving to greener, less urbanized environments was associated with healthy childhood BMI trajectories. Heterogeneity across cohorts highlighted the context-specific influence of external exposome domains on childhood weight.
Centre for Occupational and Environmental Medicine Region Stockholm Stockholm Sweden
Department of Clinical Science and Education Södersjukhuset Karolinska Institutet Stockholm Sweden
Institute for Risk Assessment Sciences Utrecht University Utrecht the Netherlands
Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
National Institute for Public Health and the Environment Bilthoven the Netherlands
RECETOX Faculty of Science Masaryk University Brno Czech Republic
Spanish Consortium for Research on Epidemiology and Public Health Madrid Spain
Swiss Tropical and Public Health Institute Basel Switzerland
Zobrazit více v PubMed
Stanaway JD, et al. ; GBD 2017 Risk Factor Collaborators . Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1923-1994. doi: 10.1016/S0140-6736(18)32225-6 PubMed DOI PMC
World Health Organization. Report on the fifth round of data collection, 2018-2020: WHO European Childhood Obesity Surveillance Initiative (COSI). WHO Regional Office for Europe. 2022. Accessed October 30, 2025. https://www.who.int/europe/publications/i/item/WHO-EURO-2022-6594-46360-67071
NCD Risk Factor Collaboration (NCD-RisC) . Worldwide trends in underweight and obesity from 1990 to 2022: a pooled analysis of 3663 population-representative studies with 222 million school-aged children, adolescents, and adults. Lancet. 2024;403(10431):1027-1050. doi: 10.1016/S0140-6736(23)02750-2 PubMed DOI PMC
Buoncristiano M, Spinelli A, Williams J, et al. Childhood overweight and obesity in Europe: Changes from 2007 to 2017. Obes Rev. 2021;22(suppl 6):e13226. doi: 10.1111/obr.13226 PubMed DOI
World Health Organization . Obesity and overweight. May 7, 2025. Accessed June 4, 2025. https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight
Datar A, Nicosia N, Mahler A, Prados MJ, Ghosh-Dastidar M. Association of place with adolescent obesity. JAMA Pediatr. 2023;177(8):847-855. doi: 10.1001/jamapediatrics.2023.1329 PubMed DOI PMC
Gonçalves Soares A, Santos S, Seyve E, et al. Prenatal urban environment and blood pressure trajectories from childhood to early adulthood. JACC Adv. 2024;3(2):100808. doi: 10.1016/j.jacadv.2023.100808 PubMed DOI PMC
Rachele JN, Kavanagh AM, Brown WJ, Healy AM, Turrell G. Neighborhood disadvantage and body mass index: a study of residential relocation. Am J Epidemiol. 2018;187(8):1696-1703. doi: 10.1093/aje/kwx390 PubMed DOI
An R, Ji M, Yan H, Guan C. Impact of ambient air pollution on obesity: a systematic review. Int J Obes (Lond). 2018;42(6):1112-1126. doi: 10.1038/s41366-018-0089-y PubMed DOI
Dixon BN, Ugwoaba UA, Brockmann AN, Ross KM. Associations between the built environment and dietary intake, physical activity, and obesity: a scoping review of reviews. Obes Rev. 2021;22(4):e13171. doi: 10.1111/obr.13171 PubMed DOI PMC
Wallas A, Ekström S, Bergström A, et al. Traffic noise exposure in relation to adverse birth outcomes and body mass between birth and adolescence. Environ Res. 2019;169:362-367. doi: 10.1016/j.envres.2018.11.039 PubMed DOI
Islam MZ, Johnston J, Sly PD. Green space and early childhood development: a systematic review. Rev Environ Health. 2020;35(2):189-200. doi: 10.1515/reveh-2019-0046 PubMed DOI
Malacarne D, Handakas E, Robinson O, et al. The built environment as determinant of childhood obesity: a systematic literature review. Obes Rev. 2022;23 Suppl 1(Suppl 1):e13385. doi: 10.1111/obr.13385 PubMed DOI PMC
de Bont J, Hughes R, Tilling K, et al. Early life exposure to air pollution, green spaces and built environment, and body mass index growth trajectories during the first 5 years of life: a large longitudinal study. Environ Pollut. 2020;266(Pt 3):115266. doi: 10.1016/j.envpol.2020.115266 PubMed DOI
Seidler AL, Johnson BJ, Golley RK, Hunter KE. The complex quest of preventing obesity in early childhood: describing challenges and solutions through collaboration and innovation. Front Endocrinol (Lausanne). 2022;12:803545. doi: 10.3389/fendo.2021.803545 PubMed DOI PMC
Buszkiewicz JH, Bobb JF, Hurvitz PM, et al. Does the built environment have independent obesogenic power? Urban form and trajectories of weight gain. Int J Obes (Lond). 2021;45(9):1914-1924. doi: 10.1038/s41366-021-00836-z PubMed DOI PMC
Hodder RK, O’Brien KM, Lorien S, et al. Interventions to prevent obesity in school-aged children 6-18 years: an update of a Cochrane systematic review and meta-analysis including studies from 2015-2021. EClinicalMedicine. 2022;54:101635. doi: 10.1016/j.eclinm.2022.101635 PubMed DOI PMC
Chetty R, Hendren N, Katz LF. The effects of exposure to better neighborhoods on children: new evidence from the moving to opportunity experiment. Am Econ Rev. 2016;106(4):855-902. doi: 10.1257/aer.20150572 PubMed DOI
Wild CP. The exposome: from concept to utility. Int J Epidemiol. 2012;41(1):24-32. doi: 10.1093/ije/dyr236 PubMed DOI
Saucy A, Ortega N, Tonne C. Residential relocation to assess impact of changes in the living environment on cardio-respiratory health: a narrative literature review with considerations for exposome research. Environ Res. 2024;244:117890. doi: 10.1016/j.envres.2023.117890 PubMed DOI
von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann Intern Med. 2007;147(8):573-577. doi: 10.7326/0003-4819-147-8-200710160-00010 PubMed DOI
Wijga AH, Kerkhof M, Gehring U, et al. Cohort profile: the prevention and incidence of asthma and mite allergy (PIAMA) birth cohort. Int J Epidemiol. 2014;43(2):527-535. doi: 10.1093/ije/dys231 PubMed DOI
Wickman M, Kull I, Pershagen G, Nordvall SL. The BAMSE project: presentation of a prospective longitudinal birth cohort study. Pediatr Allergy Immunol. 2002;13(s15):11-13. doi: 10.1034/j.1399-3038.13.s.15.10.x PubMed DOI
Piler P, Kandrnal V, Kukla L, et al. Cohort profile: the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) in the Czech Republic. Int J Epidemiol. 2017;46(5):1379-1379f. doi: 10.1093/ije/dyw091 PubMed DOI PMC
Golding J. European longitudinal study of pregnancy and childhood 1 (ELSPAC). Paediatr Perinat Epidemiol. 1989;3(4):460-469. doi:10.1111/j.1365-3016.1989.tb00533.x PubMed DOI
de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85(9):660-667. doi: 10.2471/BLT.07.043497 PubMed DOI PMC
WHO Multicentre Growth Reference Study Group, de Onis M. WHO Child Growth Standards based on length/height, weight and age. Acta Paediatr. 2006;95:76-85. doi: 10.1111/j.1651-2227.2006.tb02378.x PubMed DOI
Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes. 2012;7(4):284-294. doi: 10.1111/j.2047-6310.2012.00064.x PubMed DOI
Dong M, Anda RF, Felitti VJ, et al. Childhood residential mobility and multiple health risks during adolescence and adulthood: the hidden role of adverse childhood experiences. Arch Pediatr Adolesc Med. 2005;159(12):1104-1110. doi: 10.1001/archpedi.159.12.1104 PubMed DOI
Vlaanderen J, de Hoogh K, Hoek G, et al. Developing the building blocks to elucidate the impact of the urban exposome on cardiometabolic-pulmonary disease: the EU EXPANSE project. Environ Epidemiol. 2021;5(4):e162. doi: 10.1097/EE9.0000000000000162 PubMed DOI PMC
Central Bureau of Statistics (CBS) . District and neighbourhood map 2015. The Netherlands. 2022. Accessed October 13, 2025. https://opendata.cbs.nl/#/CBS/nl/dataset/85984NED/table
Bajekal M, Jan S, Jarman B. The Swedish UPA score: an administrative tool for identification of underprivileged areas. Scand J Soc Med. 1996;24(3):177-184. doi: 10.1177/140349489602400309 PubMed DOI
Hartigan JA, Wong MA. Algorithm AS 136: a K-means clustering algorithm. Appl Stat. 1979;28:100. doi: 10.2307/2346830 DOI
Saucy A, Gehring U, Olmos S, et al. Effect of residential relocation on environmental exposures in European cohorts: an exposome-wide approach. Environ Int. 2023;173:107849. doi: 10.1016/j.envint.2023.107849 PubMed DOI
Gunasekara FI, Richardson K, Carter K, Blakely T. Fixed effects analysis of repeated measures data. Int J Epidemiol. 2014;43(1):264-269. doi: 10.1093/ije/dyt221 PubMed DOI
Strumpf EC, Harper S, Kaufman JS. Fixed effects and difference-in-differences. In: Oakes JM, Kaufman JS, eds. Methods in Social Epidemiology. John Wiley & Sons; 2017:341-368.
Firebaugh G, Warner C, Massoglia M. Fixed effects, random effects, and hybrid models for causal analysis. In: Morgan SL, ed. DOI
Thomson EM. Air pollution, stress, and allostatic load: linking systemic and central nervous system impacts. J Alzheimers Dis. 2019;69(3):597-614. doi: 10.3233/JAD-190015 PubMed DOI PMC
Roe JJ, Thompson CW, Aspinall PA, et al. Green space and stress: evidence from cortisol measures in deprived urban communities. Int J Environ Res Public Health. 2013;10(9):4086-4103. doi: 10.3390/ijerph10094086 PubMed DOI PMC
Lai KY, Kumari S, Gallacher J, Webster C, Sarkar C. Nexus between residential air pollution and physiological stress is moderated by greenness. Nature Cities. 2024;1:225-237. doi: 10.1038/s44284-024-00036-6 DOI
De Vos J, Cheng L, Kamruzzaman M, Witlox F. The indirect effect of the built environment on travel mode choice: a focus on recent movers. J Transp Geogr. 2021;91:102983. doi: 10.1016/j.jtrangeo.2021.102983 DOI
Ramezani S, Hasanzadeh K, Rinne T, Kajosaari A, Kyttä M. Residential relocation and travel behavior change: investigating the effects of changes in the built environment, activity space dispersion, car and bike ownership, and travel attitudes. Transp Res Part A Policy Pract. 2021;147:28-48. doi: 10.1016/j.tra.2021.02.016 DOI
Coogan PF, White LF, Adler TJ, Hathaway KM, Palmer JR, Rosenberg L. Prospective study of urban form and physical activity in the Black Women’s Health Study. Am J Epidemiol. 2009;170(9):1105-1117. doi: 10.1093/aje/kwp264 PubMed DOI PMC
Bivoltsis A, Trapp G, Knuiman M, Hooper P, Ambrosini GL. The influence of the local food environment on diet following residential relocation: longitudinal results from RESIDential Environments (RESIDE). Public Health Nutr. 2020;23(12):2132-2144. doi: 10.1017/S1368980019005111 PubMed DOI PMC
Laraia BA, Downing JM, Zhang YT, et al. Food environment and weight change: does residential mobility matter? the diabetes study of northern California (DISTANCE). Am J Epidemiol. 2017;185(9):743-750. doi: 10.1093/aje/kww167 PubMed DOI PMC
Villanueva R, Albaladejo R, Astasio P, Ortega P, Santos J, Regidor E. Socio-economic environment, area facilities and obesity and physical inactivity among children. Eur J Public Health. 2016;26(2):267-271. doi: 10.1093/eurpub/ckv215 PubMed DOI
Jones M, Hockey R, Mishra GD, Dobson A. Visualising and modelling changes in categorical variables in longitudinal studies. BMC Med Res Methodol. Published online February 27, 2014. doi: 10.1186/1471-2288-14-32 PubMed DOI PMC
Warkentin S, de Bont J, Abellan A, et al. Changes in air pollution exposure after residential relocation and body mass index in children and adolescents: a natural experiment study. Environ Pollut. 2023;334:122217. doi: 10.1016/j.envpol.2023.122217 PubMed DOI
Ludwig J, Sanbonmatsu L, Gennetian L, et al. Neighborhoods, obesity, and diabetes–a randomized social experiment. N Engl J Med. 2011;365(16):1509-1519. doi: 10.1056/NEJMsa1103216 PubMed DOI PMC
Laraia BA, Karter AJ, Warton EM, Schillinger D, Moffet HH, Adler N. Place matters: neighborhood deprivation and cardiometabolic risk factors in the Diabetes Study of Northern California (DISTANCE). Soc Sci Med. 2012;74(7):1082-1090. doi: 10.1016/j.socscimed.2011.11.036 PubMed DOI PMC
Joost S, Duruz S, Marquez-Vidal P, et al. Persistent spatial clusters of high body mass index in a Swiss urban population as revealed by the 5-year GeoCoLaus longitudinal study. BMJ Open. 2016;6(1):e010145. doi: 10.1136/bmjopen-2015-010145 PubMed DOI PMC
Drewnowski A, Arterburn D, Zane J, et al. The Moving to Health (M2H) approach to natural experiment research: a paradigm shift for studies on built environment and health. SSM Popul Health. 2018;7:100345. doi: 10.1016/j.ssmph.2018.100345 PubMed DOI PMC
Suglia SF, Shelton RC, Hsiao A, Wang YC, Rundle A, Link BG. Why the neighborhood social environment is critical in obesity prevention. J Urban Health. 2016;93(1):206-212. doi: 10.1007/s11524-015-0017-6 PubMed DOI PMC
Kim Y, Landgraf A, Colabianchi N. Living in high-SES neighborhoods is protective against obesity among higher-income children but not low-income children: results from the Healthy Communities Study. J Urban Health. 2020;97(2):175-190. doi: 10.1007/s11524-020-00427-9 PubMed DOI PMC
Vineis P. Invited perspective: the mysterious case of social determinants of health. Environ Health Perspect. 2022;130(11):111303. doi: 10.1289/EHP12030 PubMed DOI PMC
Jelleyman T, Spencer N. Residential mobility in childhood and health outcomes: a systematic review. J Epidemiol Community Health. 2008;62(7):584-592. doi: 10.1136/jech.2007.060103 PubMed DOI