Ultrastable Polypyrrole Stabilized by Hyper-Cross-Linked Poly(styrene-co-divinylbenzene) for Long-Cycle Supercapacitor Applications

. 2025 Nov 14 ; 7 (21) : 15026-15040. [epub] 20251104

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41262591

Polypyrrole (PPy) is a promising conducting polymer for supercapacitor electrodes, but its structural degradation during repeated cycling limits its long-term stability. Here, we report the design of a composite based on PPy chemically stabilized by hyper-cross-linked poly-(styrene-co-divinylbenzene) (HPStDVB) microparticles (PPy/HPStDVB) working as a scaffold. This composite possesses a more compact structure, preventing interruptions in the conjugation of PPy. As a result, the PPy/HPStDVB electrode exhibits remarkable electrochemical durability, maintaining its capacitance over 20,000 charge-discharge cycles and demonstrating a dominant capacitive contribution (77.3%) in the hybrid supercapacitor cell. These more stable electrochemical properties of PPy on HPStDVB arise from the interactions of the HPStDVB backbone with PPy, resulting in a more stable structure due to less dynamic functional groups. This study introduces a simple yet efficient strategy for mechanically reinforced conducting-polymer electrodes, providing a new route toward durable, high-performance supercapacitors.

Zobrazit více v PubMed

Gaikwad N., Gadekar P., Kandasubramanian B., Kaka F.. Advanced Polymer-Based Materials and Mesoscale Models to Enhance the Performance of Multifunctional Supercapacitors. J. Energy Storage. 2023;58:106337. doi: 10.1016/j.est.2022.106337. DOI

Bhat M. Y., Hashmi S. A., Khan M., Choi D., Qurashi A.. Frontiers and Recent Developments on Supercapacitor′s Materials, Design, and Applications: Transport and Power System Applications. J. Energy Storage. 2023;58:106104. doi: 10.1016/j.est.2022.106104. DOI

Dong W., Xie M., Zhao S., Qin Q., Huang F.. Materials Design and Preparation for High Energy Density and High Power Density Electrochemical Supercapacitors. Mater. Sci. Eng. R-Rep. 2023;152:100713. doi: 10.1016/j.mser.2022.100713. DOI

Shinde P. A., Abbas Q., Chodankar N. R., Ariga K., Abdelkareem M. A., Olabi A. G.. Strengths, Weakness, Opportunities, and Threats (SWOT) Analysis of Supercapacitors: A Review. J. Energy Chem. 2023;79:611–638. doi: 10.1016/j.jechem.2022.12.030. DOI

Huang J., Xie Y., You Y., Yuan J., Xu Q., Xie H., Chen Y.. Rational Design of Electrode Materials for Advanced Supercapacitors: From Lab Research to Commercialization. Adv. Funct. Mater. 2023;33:2213095. doi: 10.1002/adfm.202213095. DOI

Khoramjah F., Omidvar M., Miresmaieli M. S., Dalvand S., Asghari A., Kambarani M., Mohammadi N.. Defective Mesoporous Carbon Coupled with a Redox Additive Electrolyte for High Performance Supercapacitor. Diam. Relat. Mater. 2023;132:109590. doi: 10.1016/j.diamond.2022.109590. DOI

Acharya U., Bober P., Trchová M., Zhigunov A., Stejskal J., Pfleger J.. Synergistic Conductivity Increase in Polypyrrole/Molybdenum Disulfide Composite. Polymer. 2018;150:130–137. doi: 10.1016/j.polymer.2018.07.004. DOI

Suranshe S. S., Patil A., Deshmukh T., Chavhan J.. One Step Electrode Fabrication of Thin Film Graphene Oxide-Polypyrrole Composite by Electrodeposition Using Cyclic Voltammetry for Hybrid Type Supercapacitor Application. Electrochim. Acta. 2023;450:142277. doi: 10.1016/j.electacta.2023.142277. DOI

Melkiyur I., Rathinam Y., Kumar P. S., Sankaiya A., Pitchaiya S., Ganesan R., Velauthapillai D.. A Comprehensive Review on Novel Quaternary Metal Oxide and Sulphide Electrode Materials for Supercapacitor: Origin, Fundamentals, Present Perspectives and Future Aspects. Renew. Sust. Energy Rev. 2023;173:113106. doi: 10.1016/j.rser.2022.113106. DOI

Gaikar P. S., Kadu K. S., Tehare K. K., Wadhawa G. C., Mahmood S. H., Lambat T. L.. Recent Developments in Polypyrrole/Manganese Oxide-Based Nanocomposites for Thin Film Electrodes in Supercapacitors: A Minireview. Nanoscale Adv. 2022;4:5245–5252. doi: 10.1039/D2NA00654E. PubMed DOI PMC

Alam S., Jadoon S., Iqbal M. Z., Hegazy H. H., Ahmad Z., Yahia I. S.. Recent Progress in Polypyrrole and its Composites with Carbon, Metal Oxides, Sulfides and Other Conducting Polymers as an Emerging Electrode Material for Asymmetric Supercapacitors. J. Energy Storage. 2024;85:110955. doi: 10.1016/j.est.2024.110955. DOI

Güngör A.. Enhanced Supercapacitor Performance with Cerium-Doped Polypyrrole Nanofibers. J. Mater. Chem. A. 2025;13:18641–18655. doi: 10.1039/D5TA02164B. DOI

Qiang S., Chen J., Huang S., Xu H., Zhuo X., Zhou H., Yuan A., Zhou H., Qiao Y.. Hierarchically Porous CoMn-N-Doped Carbon Nanotubes as Efficient Electrocatalyst for Oxygen Reduction Reaction. J. Colloid Interface Sci. 2026;701:138722. doi: 10.1016/j.jcis.2025.138722. PubMed DOI

Shen Y., He S., Zhuang Y., Huang S., Meng C., Yuan A., Miao W., Zhou H.. Polypyrrole Template-Assisted Synthesis of Tubular Fe-NC Nanostructure-Based Electrocatalysts for Efficient Oxygen Reduction Reaction in Rechargeable Zinc-Air Battery. ACS Appl. Nano Mater. 2023;6:16873–16881. doi: 10.1021/acsanm.3c03056. DOI

Bober P., Li Y., Acharya U., Panthi Y., Pfleger J., Humpolíček P., Trchová M., Stejskal J.. Acid Blue Dyes in Polypyrrole Synthesis: The Control of Polymer Morphology at Nanoscale in the Promotion of High Conductivity and the Reduction of Cytotoxicity. Synth. Met. 2018;237:40–49. doi: 10.1016/j.synthmet.2018.01.010. DOI

Minisy I. M., Bober P., Acharya U., Trchová M., Hromádková J., Pfleger J., Stejskal J.. Cationic Dyes as Morphology-Guiding Agents for One-Dimensional Polypyrrole with Improved Conductivity. Polymer. 2019;174:11–17. doi: 10.1016/j.polymer.2019.04.045. DOI

Minisy I. M., Acharya A., Kobera L., Trchová M., Unterweger X., Breitenbach S., Brus J., Pfleger J., Stejskal J., Bober P.. Highly Conducting 1-D Polypyrrole Prepared in the Presence of Safranin. J. Mater. Chem. C. 2020;8:12140–12147. doi: 10.1039/D0TC02838J. DOI

Karakoti M., Morávková Z., Pop-Georgievski O., Konefał M., Lhotka M., Hromádková J., Bober P.. Exploring the Potential of Cinnamon Bark Derived Carbon Sheets: The Impact of Polypyrrole on its Electrochemical Performance for Supercapacitor. J. Power Sources. 2025;654:237741. doi: 10.1016/j.jpowsour.2025.237741. DOI

Huang J., Turner R.. Hypercrosslinked Polymers: A Review. Polym. Rev. 2018;58:1–41. doi: 10.1080/15583724.2017.1344703. DOI

Tsyurupa M. P., Davankov V. A.. Porous Structures of Hypercrosslinked Polystyrene: State-of-the-Art Mini-Review. React. Funct. Polym. 2006;66:768–779. doi: 10.1016/j.reactfunctpolym.2005.11.004. DOI

Tan L., Tan B.. Hypercrosslinked Porous Polymer Materials: Design, Synthesis, and Applications. Chem. Soc. Rev. 2017;46:3322–3356. doi: 10.1039/C6CS00851H. PubMed DOI

Hašková A., Bashta B., Titlová Š., Brus J., Vagenknechtová A., Vyskočilová E., Sedláček J.. Microporous Hyper-Cross-Linked Polymers with High and Tuneable Content of Pyridine Units: Synthesis and Application for Reversible Sorption of Water and Carbon Dioxide. Macromol. Rapid Commun. 2021;42:2100209. doi: 10.1002/marc.202100209. PubMed DOI

Cai R., You B., Chen M., Wu L.. Metal-Free Core-Shell Structured N-Doped Carbon/Carbon Heterojunction for Efficient CO2 Capture. Carbon. 2019;150:43–51. doi: 10.1016/j.carbon.2019.05.001. DOI

Zhang H. T., Huang J. X., Jiang B. B.. Kinetics of Polymerization and Particle Stabilization Mechanism on Dispersion Copolymerization of Styrene and Divinylbenzene. J. Appl. Polym. Sci. 2002;85:2230–2238. doi: 10.1002/app.10840. DOI

Šálek P., Horák D., Bláha M.. PEG-Modified Magnetic Hypercrosslinked Poly­(Styrene-co-Divinylbenzene) Microspheres to Minimize Sorption of Serum Proteins. React. Funct. Polym. 2013;73:1122–1129. doi: 10.1016/j.reactfunctpolym.2013.05.011. DOI

Mahun M., Abbrent S., Bober P., Brus J., Kobera L.. Effect of Structural Features of Polypyrrole (PPy) on Electrical Conductivity Reflected on 13C ssNMR Parameters. Synth. Met. 2020;259:116250. doi: 10.1016/j.synthmet.2019.116250. DOI

Hong M., Yao X., Jakes K., Huster D.. Investigation of Molecular Motions by Lee-Goldburg Cross-Polarization NMR Spectroscopy. J. Phys. Chem. B. 2002;106:7355–7364. doi: 10.1021/jp0156064. DOI

Brus J.. Heating of Samples Induced by Fast Magic-Angle Spinning. Solid State Nucl. Magn. Reson. 2000;16:151–160. doi: 10.1016/S0926-2040(00)00061-8. PubMed DOI

Karakoti M., Pandey S., Tatrari G., Dhapola P. S., Jangra R., Dhali S., Pathak M., Mahendia S., Sahoo N. G.. A Waste to Energy Approach for the Effective Conversion of Solid Waste Plastics into Graphene Nanosheets Using Different Catalysts for High Performance Supercapacitors: A comparative Study. Mater. Adv. 2022;3:2146–2157. doi: 10.1039/D1MA01136G. DOI

Šálek P., Horák D., Hromádková J.. Novel Preparation of Monodisperse Poly­(styrene-co-divinylbenzene) Microspheres by Controlled Dispersion Polymerization. Polym. Sci. Ser. B. 2018;60:9–15. doi: 10.1134/S1560090418010116. DOI

Lascelles S. F., Armes S. P.. Synthesis and Characterization of Micrometre-Sized, Polypyrrole-Coated Polystyrene Latexes. J. Mater. Chem. 1997;7:1339–1347. doi: 10.1039/a700237h. DOI

Bousalem S., Yassar A., Basinska T., Miksa B., Slomkowski S., Azioune A., Chehimi M. M.. Synthesis, Characterization and Biomedical Applications of Functionalized Polypyrrole-Coated Polystyrene Latex Particles. Polym. Adv. Technol. 2003;14:820–825. doi: 10.1002/pat.401. DOI

Liu Q., Xia B., Huang J., Liao B., Liu H., Ou B., Chen L., Zhou Z.. Hypercrosslinked Polystyrene Microspheres with Ultrahigh Surface Area and Their Application in Gas Storage. Mater. Chem. Phys. 2017;199:616–622. doi: 10.1016/j.matchemphys.2017.07.032. DOI

Burnett G. L., Rohanna J. C., Rosenberg S., Schultz A. K., Read de Alaniz J.. Determination of Methylene Bridge Crosslinking in Chloromethylated PS-DVB Resins. J. Polym. Sci., Polym. Chem. 2016;54:1955–1960. doi: 10.1002/pola.28054. DOI

Joseph R., Ford W. T., Zhang S., Tsyurupa M. P., Pastukhov A. V., Davankov V. A.. Solid-State 13C-NMR Analysis of Hypercrosslinked Polystyrene. J. Polym. Sci., Polym. Chem. 1997;35:695–701. doi: 10.1002/(SICI)1099-0518(199703)35:4<695::AID-POLA12>3.0.CO;2-I. DOI

Brus J., Urbanová M., Strachota A.. Epoxy Networks Reinforced with Polyhedral Oligomeric Silsesquioxanes: Structure and Segmental Dynamics as Studied by Solid-State NMR. Macromolecules. 2008;41:372–386. doi: 10.1021/ma702140g. DOI

Brus J., Czernek J., Urbanova M., Rohlíček J., Plecháček T.. Transferring Lithium Ions in the Nanochannels of Flexible Metal-Organic Frameworks Featuring Superchaotropic Metallacarborane Guests: Mechanism of Ionic Conductivity at Atomic Resolution. ACS Appl. Mater. Interfaces. 2020;12:47447–47456. doi: 10.1021/acsami.0c12293. PubMed DOI

Li B., Su F., Luo H. K., Liang L., Tan B.. Hypercrosslinked Microporous Polymer Networks for Effective Removal of Toxic Ions from Water. Microporous Mesoporous Mater. 2011;138:207–214. doi: 10.1016/j.micromeso.2010.08.023. DOI

Lin H., Yao H., Gao X., Zhang L., Luo Q., Ouyang Y., Xiang B., Liu S., Xiang D.. Efficient and Economical Preparation of Hypercrosslinked Polymers-Palladium Based on Schiff Base as Recyclable Catalyst for Suzuki-Miyaura Reactions. Chem. Lett. 2021;50:1879–1882. doi: 10.1246/cl.210301. DOI

Arjomandi J., Shah A. H. A., Bilal S., Hoang H. V., Holze R.. In situ Raman and UV–Vis Spectroscopic Studies of Polypyrrole and Poly­(Pyrrole-2,6-Dimethyl-β-Cyclodextrin) Spectrochim. Acta, A. 2011;78:1–6. doi: 10.1016/j.saa.2009.12.026. PubMed DOI

Rodríguez I., Scharifker B. R., Mostany J.. In Situ FTIR Study of Redox and Overoxidation Processes in Polypyrrole Films. J. Electroanal. Chem. 2000;491:117–125. doi: 10.1016/S0022-0728(00)00194-7. DOI

An H., Wang Y., Wang X., Zheng L., Wang X., Yi L., Bai L., Zhang X.. Polypyrrole/Carbon Aerogel Composite Materials for Supercapacitor. J. Power Sources. 2010;195:6964–6969. doi: 10.1016/j.jpowsour.2010.04.074. DOI

Li Z., Cai J., Cizek P., Niu H., Du Y., Lin T.. A Self-Supported, Flexible, Binder-Free Pseudo-Supercapacitor Electrode Material with High Capacitance and Cycling Stability from Hollow, Capsular Polypyrrole Fibers. J. Mater. Chem. A. 2015;3:16162–16167. doi: 10.1039/C5TA03585F. DOI

Song Y., Liu T. Y., Feng D. Y., Li Y., Liu X. X.. et al. Pushing the Cycling Stability Stability Limit of Polypyrrole for Supercapacitors. Adv. Funct. Mater. 2015;25:4626–4632. doi: 10.1002/adfm.201501709. DOI

Choudhary N., Li C., Moore J., Nagaiah N., Zhai L., Jung Y., Thomas J.. Asymmetric Supercapacitor Electrodes and Devices. Adv. Mater. 2017;29:1605336. doi: 10.1002/adma.201605336. PubMed DOI

Tumacder D. V., Minisy I. M., Taboubi O., Bober P.. Highly Electroactive Frozen-State Polymerized Polypyrrole Nanostructures for Flexible Supercapacitors. Polymers. 2023;15:4140. doi: 10.3390/polym15204140. PubMed DOI PMC

Raj C. J., Kim B. C., Cho W. J., Lee W. G., Jung S. D., Kim Y. H., Park S. Y., Yu K. H.. Highly Flexible and Planar Supercapacitors Using Graphite Flakes/Polypyrrole in Polymer Lapping Film. ACS ACS Appl. Mater. Interfaces. 2015;7:13405–13414. doi: 10.1021/acsami.5b02070. PubMed DOI

Ali G. A. M., Habeeb O. A., Algarni H., Chong K. F.. CaO Impregnated Highly Porous Honeycomb Activated Carbon from Agriculture Waste: Symmetrical Supercapacitor Study. J. Mater. Sci. 2019;54:683–692. doi: 10.1007/s10853-018-2871-6. DOI

Dey R. S., Hjuler H. A., Chi Q.. Approaching the Theoretical Capacitance of Graphene through Copper Foam Integrated Three-Dimensional Graphene Networks. J. Mater. Chem. A. 2015;3:6324–6329. doi: 10.1039/C5TA01112D. DOI

Tahir M., He L., Li L., Cao Y., Yu X., Lu Z., Liao X., Ma Z., Song Y.. Pushing the Electrochemical Performance Limits of Polypyrrole toward Stable Microelectronic Devices. Nano-Micro Lett. 2023;15:49. doi: 10.1007/s40820-023-01027-3. PubMed DOI PMC

Azam M. A., Radzi M. I., Mupit M., Osman H., Munawar R. F., Samat K. F., Suan M. S. M., Isomura K., Islam M. R.. Cyclic Voltammetry and Galvanostatic Charge-Discharge Analyses of Polyaniline/Graphene Oxide Nanocomposite based Supercapacitor. Malays. J. Compos. Sci. Manuf. 2020;3:14–26. doi: 10.37934/mjcsm.3.1.1426. DOI

Li Z., Hu K., Li Z., Li C., Deng Y.. Polypyrrole-Stabilized Polypeptide for Eco-Friendly Supercapacitors. Int. J. Mol. Sci. 2023;24:2497. doi: 10.3390/ijms24032497. PubMed DOI PMC

Jung H. C., Vinodh R., Gopi C. V. M., Yi M., Kim H. J.. Novel Composite Electrode Material Derived from Hypercross-Linked Polymer of Pyrene and Polyaniline for Symmetric Supercapacitor. Mater. Lett. 2019;257:126732. doi: 10.1016/j.matlet.2019.126732. DOI

Shen K., Ran F., Zhang X., Liu C., Wang N., Niu X., Liu Y., Zhang D., Kong L., Kang L., Chen S.. Supercapacitor Electrodes Based on Nano-Polyaniline Deposited on Hollow Carbon Spheres Derived from Cross-Linked Co-Polymers. Synth. Met. 2015;209:369–376. doi: 10.1016/j.synthmet.2015.08.012. DOI

Sarno M., Castaldo R., Ponticoryo E., Scarpa D., Cocca M., Ambrogi V., Gentile G.. Hyper-Cross-Linked Polymer Loaded with Graphite Nanoplatelets for Supercapacitor Application. Chem. Eng, Trans. 2019;73:121–126. doi: 10.3303/CET1973021. DOI

Kim I., Vinodh R., Gopi C. V. M., Kim H. J., Babu R. S., Deviprasath C., Devendiran M., Kim S.. Novel Porous Carbon Electrode Derived from Hypercross-Linked Polymer of Poly­(Divinylbenzene-co-Vinyl Benzyl Chloride) for Supercapacitor Applications. J. Energy Storage. 2021;43:103287. doi: 10.1016/j.est.2021.103287. DOI

Parayangattil Jyothibasu J., Chen M. Z., Lee R. H.. Polypyrrole/Carbon Nanotube Freestanding Electrode with Excellent Electrochemical Properties for High-Performance All-Solid-State Supercapacitors. ACS Omega. 2020;5:6441–6451. doi: 10.1021/acsomega.9b04029. PubMed DOI PMC

Lan Y., Zhao H., Zong Y., Li X., Sun Y., Feng J., Wang Y., Zheng X., Du Y.. Phosphorization Boosts the Capacitance of Mixed Metal Nanosheet Arrays for High Performance Supercapacitor Electrodes. Nanoscale. 2018;10:11775–11781. doi: 10.1039/C8NR01229F. PubMed DOI

Gogotsi Y., Penner R. M.. Energy Storage in Nanomaterials – Capacitive, Pseudocapacitive, or Battery-like? ACS Nano. 2018;12:2081–2083. doi: 10.1021/acsnano.8b01914. PubMed DOI

Nikitina V. A., Vassiliev S. Y., Stevenson K. J.. Metal-Ion Coupled Electron Transfer Kinetics in Intercalation-Based Transition Metal Oxides. Adv. Energy Mater. 2020;10:1903933. doi: 10.1002/aenm.201903933. DOI

Tatrari G., Tewari C., Pathak M., Bhatt D., Karakoti M., Pandey S., Uniyal D. S., Shah F. U., Sahoo N. G.. 3D-Graphene Hydrogel and Tungsten Trioxide-MnO2 Composite for Ultra-High-Capacity Asymmetric Supercapacitors: A Comparative Study. J. Energy Storage. 2023;68:107830. doi: 10.1016/j.est.2023.107830. DOI

Pervez S., Iqbal M. Z.. Capacitive and Diffusive Contributions in Supercapacitors and Batteries: A Critique of b-Value and the v–v1/2 Model. Small. 2023;19:2305059. doi: 10.1002/smll.202305059. PubMed DOI

Huang Z. H., Liu T. Y., Song Y., Li Y., Liu X. X.. Balancing the Electrical Double Layer Capacitance and Pseudocapacitance of Hetero-Atom Doped Carbon. Nanoscale. 2017;9:13119–13127. doi: 10.1039/C7NR04234E. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...