Microstate in rats' EEG: a proof of concept study
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.01.01/00/22_008/0004643
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
CZ.02.01.01/00/22_008/0004643
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
CZ.02.01.01/00/22_008/0004643
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
CZ.02.01.01/00/22_008/0004643
Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
SGS24/110/OHK4/2T/17
České Vysoké Učení Technické v Praze (Czech Technical University in Prague)
SGS24/110/OHK4/2T/17
České Vysoké Učení Technické v Praze (Czech Technical University in Prague)
PubMed
41271636
PubMed Central
PMC12638752
DOI
10.1038/s41398-025-03702-y
PII: 10.1038/s41398-025-03702-y
Knihovny.cz E-zdroje
- MeSH
- elektroencefalografie * metody MeSH
- krysa rodu Rattus MeSH
- mapování mozku * metody MeSH
- mozek * fyziologie MeSH
- ověření koncepční studie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The electroencephalogram (EEG) reflecting brain activity may be characterised through brief periods of stable neural activity patterns that recur over time and are referred to as microstates. Microstates are related to a range of cognitive processes, and their analysis has become an increasingly popular tool for studying human brain function. While microstates have been extensively studied in humans, their presence and characteristics in animal models have yet to be as thoroughly investigated. This study aims to address this gap by detecting and characterising microstates in EEGs of rats collected using a superficial electrode system corresponding to homological areas of the human 10-20 system. Specifically, we demonstrate the presence of microstates in rats' EEGs, i.e., those that may be captured by the same metrics as in humans. We identified five microstate EEG maps in rats, explaining 71% of the variance in our dataset (N = 30). The explained variance, mean temporal coverage values (0.2), and average duration (0.26 s) are comparable to the human-derived EEG microstates. Via a source localisation technique, the cingulate cortex, precuneus, and insula were found to be associated with the microstates' temporal dynamics. Among the microstates that showed a broadband character, we also found those that showed an association with the theta and alpha bands. These findings have important implications for the use of microstates as a preclinical tool for investigating brain functions, detecting new biomarkers of brain diseases, and translating this knowledge to humans.
3rd Faculty of Medicine Charles University Prague Prague Czech Republic
Clinical Research Program National Institute of Mental Health Klecany Czech Republic
Faculty of Electrical Engineering Czech Technical University Prague Prague Czech Republic
Institute of Biosciences Vilnius University Vilnius Lithuania
Institute of Computer Science Czech Academy of Sciences Prague Czech Republic
Psychedelic Research Centre National Institute of Mental Health Klecany Czech Republic
Sleep and Chronobiology Research Centre National Institute of Mental Health Klecany Czech Republic
Translational Health Research Institute Vilnius University Vilnius Lithuania
Zobrazit více v PubMed
Khanna A, Pascual-Leone A, Michel CM, Farzan F. Microstates in resting-state eeg: current status and future directions. Neurosci Biobehav Rev. 2015;49:105–13. 10.1016/j.neubiorev.2014.12.010. PubMed DOI PMC
Michel CM, Koenig T, Brandeis D, Gianotti LRR, Wackermann J. Electrical neuroimaging. Cambridge: Cambridge University Press, 2009. 10.1017/CBO9780511596889.
Tarailis P, Koenig T, Michel CM, et al. The functional aspects of resting eeg microstates: a systematic review. Brain Topogr. 2024;37:181–217. 10.1007/s10548-023-00958-9. PubMed DOI
Koenig T, Prichep L, Lehmann D, Sosa PV, Braeker E, Kleinlogel H, et al. Millisecond by millisecond, year by year: normative EEGg microstates and developmental stages. NeuroImage. 2002;16:41–48. 10.1006/nimg.2002.1070. PubMed DOI
Kleinert T, Nash K, Koenig T, et al. Normative intercorrelations between EEG microstate characteristics. Brain Topogr. 2024;37:265–9. 10.1007/s10548-023-00988-3. PubMed DOI PMC
Bressler SL, Kelso JA. Cortical coordination dynamics and cognition. Trends Cogn Sci. 2001;5:26–36. 10.1016/s1364-6613(00)01564-3. PubMed DOI
Michel CM, Koenig T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: A review. NeuroImage. 2018;180:577–93. PubMed DOI
Britz J, Van De Ville D, Michel CM. Bold correlates of EEG topography reveal rapid resting-state network dynamics. NeuroImage. 2010;52:1162–70. 10.1016/j.neuroimage.2010.02.052. PubMed DOI
Bréchet L, Michel CM. EEG microstates in altered states of consciousness. Front Psychol. 2022;13:856697. 10.3389/fpsyg.2022.856697. PubMed DOI PMC
Zanesco AP, King BG, Skwara AC, Saron CD. Within and between-person correlates of the temporal dynamics of resting EEG microstates. NeuroImage. 2020;211:116631. 10.1016/j.neuroimage.2020.116631. PubMed DOI
Schiller B, Kleinert T, Teige-Mocigemba S. Temporal dynamics of resting EEG networks are associated with prosociality. Sci Rep. 2022;10:1–10. 10.1038/s41598-020-69999-5. DOI
Kleinert T, Nash K. Trait aggression is reflected by a lower temporal stability of eeg resting networks. Brain Topogr. 2024;37:514–23. 10.1007/s10548-022-00929-6. PubMed DOI PMC
Mégevand P, Quairiaux C, Lascano AL, Kiss JZ, M MC. A mouse model for studying large-scale neuronal networks using eeg mapping techniques. Neuroimage. 2008;42:591–602. 10.1016/j.neuroimage.2008.05.016. PubMed DOI
Mishra A, Marzban N, Cohen MX, Englitz B. Dynamics of neural microstates in the vta–striatal–prefrontal loop during novelty exploration in the rat. J Neurosci. 2021;41:6864–77. 10.1523/JNEUROSCI.2256-20.2021. PubMed DOI PMC
Salagean A, Pasc AM, Ardelean ER, Muresan RC, Moca VV, Dinsoreanu M, et al. Local field potential microstate analysis. IEEE Explore, 2022;221-7. 10.1109/ICCP56966.2022.10053960
Boyce R, Dard RF, Cossart R. Cortical neuronal assemblies coordinate with EEG microstate dynamics during resting wakefulness. Cell Rep. 2023;42:112053. 10.1016/j.celrep.2023.112053. PubMed DOI PMC
Milz P, Pascual-Marqui RD, Achermann P, Kochi K, Faber PL. The EEG microstate topography is predominantly determined by intracortical sources in the alpha band. Neuroimage. 2017;162:353–61. 10.1016/j.neuroimage.2017.08.058. PubMed DOI
Custo A, Van De Ville D, Wells W, Tomescu M, Brunet D, Michel C. EEG resting-state networks: microstates’ source localization. Brain Connect 2017;7:671–82. 10.1089/brain.2016.0476
Paxinos G, Watosn C The rat brain in stereotaxic coordinates. Amsterdam: Academic Press; 2014.
Vejmola Č, Tylš F, Piorecká V, Koudelka V, Kadeřábek L, Novák T, et al. Psilocin, LSD, mescaline, and DOB all induce broadband desynchronization of EEG and disconnection in rats with robust translational validity. Transl psychiatry. 2021;11:506. 10.1038/s41398-021-01603-4. PubMed DOI PMC
Delorme A, Makeig S. Eeglab: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134:9–21. 10.1016/j.jneumeth.2003.10.009. PubMed DOI
Pascual-Marqui RD, Michel CM, Lehmann D. Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Trans Biomed Eng. 1995;42:658–65. 10.1109/10.391164. PubMed DOI
Murray M, Brunet D, Michel C. Topographic erp analyses: a step-by-step tutorial review. Brain Topogr. 2008;20:249–64. 10.1007/s10548-008-0054-5. PubMed DOI
Brunet D, Murray MM, Michel CM. Spatiotemporal analysis of multichannel EEG: Cartool. Computational intelligence and neuroscience 2011 2011. 10.1155/2011/813870
Koenig T. MicrostateAnalysis (Version 1.2) [EEGLAB plugin]. 2018. Available from: https://sccn.ucsd.edu/eeglab/plugin_uploader/plugin_list_all.php
Poulsen A, Pedroni A, Langer N, Hansen L. Microstate EEGLAB toolbox: an introductory guide 2018. 10.1101/289850
Lehmann D, Faber PL, Galderisi S, Herrmann WM, Kinoshita T, Koukkou M, et al. EEG microstate duration and syntax in acute, medication-naive, first-episode schizophrenia: a multi-center study. Psychiatry Res: Neuroimaging. 2005;138:141–56. 10.1016/j.pscychresns.2004.05.007. DOI
Al Zoubi O, Mayeli A, Tsuchiyagaito A, Misaki M, Zotev V, Refai H, et al. EEG microstates temporal dynamics differentiate individuals with mood and anxiety disorders from healthy subjects. Front Hum Neurosci. 2019;13:56. 10.3389/fnhum.2019.00056. PubMed DOI PMC
Milz P, Faber PL, Lehmann D, Koenig T, Kochi K, Pascual-Marqui RD. The functional significance of EEG microstates—associations with modalities of thinking. Neuroimage. 2016;125:643–56. 10.1016/j.neuroimage.2015.08.023. PubMed DOI
Krzanowski WJ, Lai YT. A criterion for determining the number of groups in a data set using sum-of-squares clustering. Biometrics. 1988;44:23–34. 10.2307/2531893. DOI
Brodbeck V, Kuhn A, von Wegner F, Morzelewski A, Tagliazucchi E, Borisov S, et al. EEG microstates of wakefulness and NREM sleep. NeuroImage. 2012;62:2129–39. 10.1016/j.neuroimage.2012.05.060. PubMed DOI
von Wegner F, Knaut P, Laufs H. EEG microstate sequences from different clustering algorithms are information-theoretically invariant. Front Computational Neurosci. 2018;12:70. 10.3389/fncom.2018.00070. DOI
Günther W, Müller N, Trapp W, Haag C, Putz A, Straube A. Quantitative EEG analysis during motor function and music perception in tourette's syndrome. Eur Arch Psychiatry Clin Nuerosci. 1996;246:197–202. 10.1007/BF02188953. DOI
Jiricek S, Koudelka V, Lacik J, Vejmola C, Kuratko D, Wójcik DK, et al. Electrical Source Imaging in Freely Moving Rats: Evaluation of a 12-Electrode Cortical Electroencephalography System. Front Neuroinform. 2021;14:589228. 10.3389/fninf.2020.589228. PubMed DOI PMC
Pascual-Marqui, RD: Discrete, 3d distributed, linear imaging methods of electric neuronal activity part 1: exact, zero error localization. arXiv [Preprint]. 2007 0710.3341. Available from: 10.48550/arXiv.0710.3341
Oostenveld R, Fries P, Maris E, Schoffelen J-M. Fieldtrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computat Intell Neurosci. 2011;2011:156869. 10.1155/2011/156869. DOI
Pascual-Marqui RD, Lehmann D, Faber P, Milz P, Kochi K, Yoshimura M, et al. The resting microstate networks (RMN): cortical distributions, dynamics, and frequency specific information flow. arXiv [Preprint]. 2014 1411.1949. Available from: 10.48550/arXiv.1411.1949
Mishra A, Englitz B, Cohen MX. EEG microstates as a continuous phenomenon. Neuroimage. 2020;208:116454. 10.1016/j.neuroimage.2019.116454. PubMed DOI
Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage. 2009;44:83–98. 10.1016/j.neuroimage.2008.03.061. PubMed DOI
Valdés-Hernández PA, Sumiyoshi A, Nonaka H, Haga R, Aubert- Vásquez E. Ogawa, et al. An in vivo MRI template set for morphometry, tissue segmentation, and fMRI localization in rats. Front neuroinform. 2011;5:26. 10.3389/fninf.2011.00026. PubMed DOI PMC
Zhang K, Shi W, Wang C, Li Y, Liu Z, Liu T, et al. Reliability of EEG microstate analysis at different electrode densities during propofol-induced transitions of brain states. NeuroImage. 2021;231:117861. 10.1016/j.neuroimage.2021.117861. PubMed DOI
Murphy M, Stickgold R, Parr E, Callahan C, Wamsley E. Recurrence of task-related electroencephalographic activity during post-training quiet rest and sleep. Sci Rep. 2018;8:5398. 10.1038/s41598-018-23590-1. PubMed DOI PMC
Vellante F, Ferri F, Baroni G, Croce P, Migliorati D, Pettorruso M, et al. Euthymic bipolar disorder patients and EEG microstates: a neural signature of their abnormal self experience. J Affect Disord. 2020;272:326–34. 10.1016/j.jad.2020.03.175. PubMed DOI
Santarnecchi E, Khanna AR, Musaeus CS, et al. EEG microstate correlates of fluid intelligence and response to cognitive training. Brain Topogr. 2017;30:502–20. 10.1007/s10548-017-0565-z. PubMed DOI
Croce P, Zappasodi F, Capotosto P. Offline stimulation of human parietal cortex differently affects resting EEG microstates. Sci Rep. 2018;8:1–8. 10.1038/s41598-018-19698-z. PubMed DOI PMC
Croce P, Zappasodi F, Spadone S, Capotosto P. Magnetic stimulation selectively affects pre-stimulus EEG microstates. NeuroImage. 2018;176:239–45. 10.1016/j.neuroimage.2018.04.061. PubMed DOI
Zappasodi F, Perrucci M, Saggino A, Croce P, Mercuri P, Romanelli R, et al. EEG microstates distinguish between cognitive components of fluid reasoning. NeuroImage. 2019;189:560–73. 10.1016/j.neuroimage.2019.01.067. PubMed DOI
Gschwind M, Hardmeier M, Van De Ville D, Tomescu MI, Penner I-K, Naegelin Y, et al. Fluctuations of spontaneous EEG topographies predict disease state in relapsing-remitting multiple sclerosis. NeuroImage: Clin. 2016;12:466–77. 10.1016/j.nicl.2016.08.008. PubMed DOI PMC
Hatz F, Hardmeier M, Bousleiman H, Rüegg S, Schindler C, Fuhr P. Reliability of functional connectivity of electroencephalography applying microstate-segmented versus classical calculation of phase lag index. Brain Connect. 2016;6:461–9. 10.1089/brain.2015.0368. PubMed DOI
Zanesco AP. Normative temporal dynamics of resting EEG microstates. Brain Topogr. 2024;37:243–64. 10.1007/s10548-023-01004-4. PubMed DOI
Seitzman BA, Abell M, Bartley SC, Erickson MA, Bolbecker AR, Hetrick WP. Cognitive manipulation of brain electric microstates. Neuroimage. 2017;146:533–43. 10.1016/j.neuroimage.2016.10.002. PubMed DOI PMC
Férat V, Seeber M, Michel CM, Ros T. Beyond broadband: Towards a spectral decomposition of electroencephalography microstates. Hum Brain Mapp. 2022;43:3047–61. 10.1002/hbm.25834. PubMed DOI PMC
Krylova M, Alizadeh S, Izyurov I, Teckentrup V, Chang C, van der Meer J, et al. Evidence for modulation of EEG microstate sequence by vigilance level. NeuroImage. 2021;224:117393. 10.1016/j.neuroimage.2020.117393. PubMed DOI
Bréchet L, Brunet D, Birot G, Gruetter R, Michel CM, Jorge J. Capturing the spatiotemporal dynamics of self-generated, task-initiated thoughts with EEG and fMRI. Neuroimage. 2019;194:82–92. 10.1016/j.neuroimage.2019.03.029. PubMed DOI
da Cruz JR, Favrod O, Roinishvili M, Chkonia E, Brand A, Mohr C, et al. EEG microstates are a candidate endophenotype for schizophrenia. Nat Commun. 2020;11:3089. 10.1038/s41467-020-16914-1. PubMed DOI PMC
Li Y, Yuan S, Liu X, Tang Y, Wang Y, Zhang X. EEG microstates as markers of major depressive disorder: a resting-state study before and after antidepressant treatment. Prog Neuro-psychopharmacol Biol Psychiatry. 2022;116:110514. 10.1016/j.pnpbp.2022.110514. DOI
Berchio C, Kumar SS, Narzisi A, Fabbri-Destro M. EEG microstates in the study of attention-deficit hyperactivity disorder: a review of preliminary evidence. Psychophysiology. 2025;62:e14762. 10.1111/psyp.14762. PubMed DOI
Koenig T, Lehmann D, Merlo MC, Kochi K, Hell D, Koukkou M. A deviant EEG brain microstate in acute, neuroleptic-naive schizophrenics at rest. Eur Arch psychiatry Clin Neurosci. 1999;249:205–11. 10.1007/s004060050088. PubMed DOI
Jajcay N, Hlinka J. Towards a dynamical understanding of microstate analysis of M/EEG data. NeuroImage. 2023;281:120371. 10.1016/j.neuroimage.2023.120371. PubMed DOI
Pascual-Marqui RD, Kochi K, Kinoshita T On the relation between EEG microstates and cross-spectra. arXiv [Preprint]. 2022 2208.02540. Available from: 10.48550/arXiv.2208.02540
van den Heuvel MP, Sporns O. Network hubs in the human brain. Trends Cogn Sci. 2013;17:683–96. 10.1016/j.tics.2013.09.012. PubMed DOI
Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Van Wedeen J, et al. Mapping the structural core of human cerebral cortex. PLoS Biol. 2008;6:1479–93. 10.1371/journal.pbio.0060159. DOI
Collin G, Sporns O, Mandl RCW, Van Den Heuvel MP. Structural and functional aspects relating to cost and benefit of rich club organization in the human cerebral cortex. Cereb Cortex. 2014;24:2258–67. 10.1093/cercor/bht064. PubMed DOI PMC
Musso F, Brinkmeyer J, Mobascher A, Warbrick T, Winterer G. Spontaneous brain activity and EEG microstates. a novel EEG/fMRI analysis approach to explore resting-state networks. Neuroimage. 2010;52:1149–61. 10.1016/j.neuroimage.2010.01.093. PubMed DOI
Rajkumar R, Régio Brambilla C, Veselinović T, et al. Excitatory–inhibitory balance within EEG microstates and resting-state fMRI networks: assessed via simultaneous trimodal PET–MR–EEG imaging. Transl Psychiatry. 2021;11:60. 10.1038/s41398-020-01160-2. PubMed DOI PMC
Hallez H, Vanrumste B, Grech R, Muscat J, De Clercq W, Vergult A, et al. Review on solving the forward problem in EEG source analysis. J Neuroeng rehabil. 2007;4:1–29. 10.1186/1743-0003-4-46. PubMed DOI PMC