Label-Free Rapid Quantification of Abscisic Acid in Xylem Sap Samples Using Surface Plasmon Resonance
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
1S27722N
Research Foundation - Flanders
PubMed
41294736
PubMed Central
PMC12650577
DOI
10.3390/bios15110725
PII: bios15110725
Knihovny.cz E-zdroje
- Klíčová slova
- UPLC-MS/MS, abiotic stress, abscisic acid, direct SPR assay, drought stress, high salinity stress, label-free, non-competitive immunoassay, tomato plant, xylem sap samples,
- MeSH
- biosenzitivní techniky * MeSH
- imunoanalýza MeSH
- kyselina abscisová * analýza MeSH
- povrchová plasmonová rezonance * MeSH
- regulátory růstu rostlin analýza MeSH
- Solanum lycopersicum chemie MeSH
- xylém * chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyselina abscisová * MeSH
- regulátory růstu rostlin MeSH
The phytohormone abscisic acid (ABA) plays a central role in organizing adaptive responses in plants to various abiotic stresses, helping the plant minimize the negative impact on growth and development. Rapid and direct detection of ABA is valuable for investigating plant responses to abiotic stress. In this work, we propose a novel label-free, non-competitive immunoassay for detecting and quantifying ABA easily and rapidly using a surface plasmon resonance (SPR) biosensor. The SPR sensor chip was functionalized with a commercial anti-ABA antibody, characterized for its affinity, binding kinetics, and specificity using the same platform. The direct assay demonstrated high specificity and sensitivity, with a calculated limit of detection of 1.36 ng/mL in buffer. The new immunosensor was applied to determine ABA concentrations directly in xylem sap samples from tomato plants subjected to abiotic stress (drought and high salinity) and was able to accurately reflect ABA levels corresponding to the applied stress. The results were comparable to the reference method, ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS), establishing this new immunosensor as a novel detection method for rapid and reliable monitoring of ABA levels associated with abiotic stress in tomato plants.
Biosensors Group Lammertyn Lab KU Leuven Willem de Croylaan 42 3001 Leuven Belgium
KU Leuven Plant Institute Kasteelpark Arenberg 31 3001 Leuven Belgium
Molecular Plant Hormone Physiology Lab KU Leuven Willem de Croylaan 42 3001 Leuven Belgium
Zobrazit více v PubMed
IPCC Summary for Policymakers . Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC; Geneva, Switzerland: 2023. pp. 1–34.
Skendžić S., Zovko M., Živković I.P., Lešić V., Lemić D. The Impact of Climate Change on Agricultural Insect Pests. Insects. 2021;12:440. doi: 10.3390/insects12050440. PubMed DOI PMC
Lamers J., Van Der Meer T., Testerink C. How Plants Sense and Respond to Stressful Environments. Plant Physiol. 2020;182:1624–1635. doi: 10.1104/pp.19.01464. PubMed DOI PMC
Nadeem S.M., Ahmad M., Zahir Z.A., Kharal M.A. Plant, Soil and Microbes: Volume 2: Mechanisms and Molecular Interactions. Springer International Publishing; Cham, Switzerland: 2016. Role of Phytohormones in Stress Tolerance of Plants; pp. 385–421. DOI
Bari R., Jones J.D.G. Role of Plant Hormones in Plant Defence Responses. Plant Mol. Biol. 2009;69:473–488. doi: 10.1007/s11103-008-9435-0. PubMed DOI
EL Sabagh A., Islam M.S., Hossain A., Iqbal M.A., Mubeen M., Waleed M., Reginato M., Battaglia M., Ahmed S., Rehman A., et al. Phytohormones as Growth Regulators During Abiotic Stress Tolerance in Plants. Front. Agron. 2022;4:765068. doi: 10.3389/fagro.2022.765068. DOI
Chen H., Bullock D.A., Alonso J.M., Stepanova A.N. To Fight or to Grow: The Balancing Role of Ethylene in Plant Abiotic Stress Responses. Plants. 2021;11:33. doi: 10.3390/plants11010033. PubMed DOI PMC
Lim C.W., Baek W., Jung J., Kim J.H., Lee S.C. Function of ABA in Stomatal Defense against Biotic and Drought Stresses. Int. J. Mol. Sci. 2015;16:15251–15270. doi: 10.3390/ijms160715251. PubMed DOI PMC
Rajasheker G., Jawahar G., Jalaja N., Kumar S.A., Kumari P.H., Punita D.L., Karumanchi A.R., Reddy P.S., Rathnagiri P., Sreenivasulu N., et al. Plant Signaling Molecules: Role and Regulation Under Stressful Environments. Elsevier; Amsterdam, The Netherlands: 2019. Role and Regulation of Osmolytes and ABA Interaction in Salt and Drought Stress Tolerance; pp. 417–436. DOI
Singh A., Roychoudhury A. Abscisic Acid in Plants under Abiotic Stress: Crosstalk with Major Phytohormones. Plant Cell Rep. 2023;42:961–974. doi: 10.1007/s00299-023-03013-w. PubMed DOI
Wong A., Bi C., Chi W., Hu N., Gehring C. Amino Acid Motifs for the Identification of Novel Protein Interactants. Comput. Struct. Biotechnol. J. 2022;21:326. doi: 10.1016/j.csbj.2022.12.012. PubMed DOI PMC
Kermode A.R. Role of Abscisic Acid in Seed Dormancy. J. Plant Growth Regul. 2005;24:319–344. doi: 10.1007/s00344-005-0110-2. DOI
Skubacz A., Daszkowska-Golec A., Skubacz A., Daszkowska-Golec A. Phytohormones-Signaling Mechanisms and Crosstalk in Plant Development and Stress Responses. IntechOpen; Rijeka, Croatia: 2017. Seed Dormancy: The Complex Process Regulated by Abscisic Acid, Gibberellins, and Other Phytohormones That Makes Seed Germination Work. DOI
Salem M.A., Zayed A. Liquid Chromatography-Tandem Mass Spectrometry-Based Profiling of Plant Hormones. Methods Mol. Biol. 2022;2462:125–133. doi: 10.1007/978-1-0716-2156-1_10. PubMed DOI
Šimura J., Antoniadi I., Široká J., Tarkowská D., Strnad M., Ljung K., Novák O. Plant Hormonomics: Multiple Phytohormone Profiling by Targeted Metabolomics. Plant Physiol. 2018;177:476–489. doi: 10.1104/pp.18.00293. PubMed DOI PMC
Cai W.J., Ye T.T., Wang Q., Cai B.D., Feng Y.Q. A Rapid Approach to Investigate Spatiotemporal Distribution of Phytohormones in Rice. Plant Methods. 2016;12:47. doi: 10.1186/s13007-016-0147-1. PubMed DOI PMC
Novák O., Floková K. An UHPLC-MS/MS Method for Target Profiling of Stress-Related Phytohormones. Methods Mol. Biol. 2018;1778:183–192. doi: 10.1007/978-1-4939-7819-9_13. PubMed DOI
Pérez-Alonso M.M., Ortiz-García P., Moya-Cuevas J., Pollmann S. Mass Spectrometric Monitoring of Plant Hormone Cross Talk During Biotic Stress Responses in Potato (Solanum tuberosum L.) Methods Mol. Biol. 2021;2354:143–154. doi: 10.1007/978-1-0716-1609-3_7. PubMed DOI
Verslues P.E. Rapid Quantification of Abscisic Acid by GC-MS/MS for Studies of Abiotic Stress Response. Methods Mol. Biol. 2017;1631:325–335. doi: 10.1007/978-1-4939-7136-7_21. PubMed DOI
Salem M.A., Yoshida T., Perez de Souza L., Alseekh S., Bajdzienko K., Fernie A.R., Giavalisco P. An Improved Extraction Method Enables the Comprehensive Analysis of Lipids, Proteins, Metabolites and Phytohormones from a Single Sample of Leaf Tissue under Water-Deficit Stress. Plant J. 2020;103:1614–1632. doi: 10.1111/tpj.14800. PubMed DOI
Turečková V., Novák O., Strnad M. Profiling ABA Metabolites in Nicotiana Tabacum L. Leaves by Ultra-Performance Liquid Chromatography–Electrospray Tandem Mass Spectrometry. Talanta. 2009;80:390–399. doi: 10.1016/j.talanta.2009.06.027. PubMed DOI
Weiler E.W. Radioimmunoassay for the Determination of Free and Conjugated Abscisic Acid. Planta. 1979;144:255–263. doi: 10.1007/BF00388767. PubMed DOI
Asch F. Laboratory Manual on Determination of Abscisic Acid by Indirect Enzyme Linked Immuno Sorbent Assay (ELISA) Royal Veterinary and Agricultural University; Frederiksberg, Denmark: 2000. (Technical Series 1).
Pagter M., Liu F., Jensen C.R., Petersen K.K. Effects of Chilling Temperatures and Short Photoperiod on PSII Function, Sugar Concentrations and Xylem Sap ABA Concentrations in Two Hydrangea Species. Plant Sci. 2008;175:547–555. doi: 10.1016/j.plantsci.2008.06.006. DOI
Piechowiak T. Elucidation of the Mechanism of Elicitation of Edible Sprouts Using UV-C Radiation. Biocatal. Agric. Biotechnol. 2024;57:103081. doi: 10.1016/j.bcab.2024.103081. DOI
Mphande W., Farrell A.D., Vickers L.H., Grove I.G., Kettlewell P.S. Yield Improvement with Antitranspirant Application in Droughted Wheat Associated with Both Reduced Transpiration and Reduced Abscisic Acid. J. Agric. Sci. 2024;162:33–45. doi: 10.1017/S0021859624000157. DOI
Cheng H., Chen X., Fang J., An Z., Hu Y., Huang H. Comparative Transcriptome Analysis Reveals an Early Gene Expression Profile That Contributes to Cold Resistance in Hevea Brasiliensis (the Para Rubber Tree) Tree Physiol. 2018;38:1409–1423. doi: 10.1093/treephys/tpy014. PubMed DOI
Tang L., Zhang Z., Sun L., Gao X., Zhao X., Chen X., Zhu X., Li A., Sun L. In Vivo Detection of Abscisic Acid in Tomato Leaves Based on a Disposable Stainless Steel Electrochemical Immunosensor. J. Agric. Food Chem. 2024;72:17666–17674. doi: 10.1021/acs.jafc.4c03594. PubMed DOI
Garrote B.L., Vegas-García M., Hedberg E., Ribet F., Roxhed N., García-Carmona L., Quijano-López A., García-Pellicer M. Wearable Device for In-Situ Plant Sap Analysis: Electrochemical Lateral Flow (ELF) for Stress Monitoring in Living Plants. Biosens. Bioelectron. 2025;283:117550. doi: 10.1016/j.bios.2025.117550. PubMed DOI
Rowe J., Grangé-Guermente M., Exposito-Rodriguez M., Wimalasekera R., Lenz M.O., Shetty K.N., Cutler S.R., Jones A.M. Next-Generation ABACUS Biosensors Reveal Cellular ABA Dynamics Driving Root Growth at Low Aerial Humidity. Nat. Plants. 2023;9:1103–1115. doi: 10.1038/s41477-023-01447-4. PubMed DOI PMC
Waadt R., Köster P., Andrés Z., Waadt C., Bradamante G., Lampou K., Kudla J., Schumacher K. Dual-Reporting Transcriptionally Linked Genetically Encoded Fluorescent Indicators Resolve the Spatiotemporal Coordination of Cytosolic Abscisic Acid and Second Messenger Dynamics in Arabidopsis. Plant Cell. 2020;32:2582–2601. doi: 10.1105/tpc.19.00892. PubMed DOI PMC
Kim S.W., Alci K., Van Gaever F., Driege Y., Bicalho K., Goeminne G., Libert C., Goossens A., Beyaert R., Staal J. Engineering a Highly Sensitive Biosensor for Abscisic Acid in Mammalian Cells. FEBS Lett. 2022;596:2576–2590. doi: 10.1002/1873-3468.14431. PubMed DOI
Cytiva Biacore. [(accessed on 28 March 2025)]. Available online: https://www.cytivalifesciences.com/en/us/about-us/our-brands/biacore?srsltid=AfmBOopi1j-EcvMVxwWaqY1GXwD27n9UTymEyyucdP2pPoAOlXWaTrxp.
Homola J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev. 2008;108:462–493. doi: 10.1021/cr068107d. PubMed DOI
Homola J. Present and Future of Surface Plasmon Resonance Biosensors. Anal. Bioanal. Chem. 2003;377:528–539. doi: 10.1007/s00216-003-2101-0. PubMed DOI
Scarano S., Mascini M., Turner A.P.F., Minunni M. Surface Plasmon Resonance Imaging for Affinity-Based Biosensors. Biosens. Bioelectron. 2010;25:957–966. doi: 10.1016/j.bios.2009.08.039. PubMed DOI
Ito T., Kondoh Y., Yoshida K., Umezawa T., Shimizu T., Shinozaki K., Osada H. Novel Abscisic Acid Antagonists Identified with Chemical Array Screening. ChemBioChem. 2015;16:2471–2478. doi: 10.1002/cbic.201500429. PubMed DOI
Hao Q., Yin P., Li W., Wang L., Yan C., Lin Z., Wu J.Z., Wang J., Yan S.F., Yan N. The Molecular Basis of ABA-Independent Inhibition of PP2Cs by a Subclass of PYL Proteins. Mol. Cell. 2011;42:662–672. doi: 10.1016/j.molcel.2011.05.011. PubMed DOI
Spinelli S., Begani G., Guida L., Magnone M., Galante D., D’Arrigo C., Scotti C., Iamele L., De Jonge H., Zocchi E., et al. LANCL1 Binds Abscisic Acid and Stimulates Glucose Transport and Mitochondrial Respiration in Muscle Cells via the AMPK/PGC-1α/Sirt1 Pathway. Mol. Metab. 2021;53:101263. doi: 10.1016/j.molmet.2021.101263. PubMed DOI PMC
Miyazono K.I., Miyakawa T., Sawano Y., Kubota K., Kang H.J., Asano A., Miyauchi Y., Takahashi M., Zhi Y., Fujita Y., et al. Structural Basis of Abscisic Acid Signalling. Nature. 2009;462:609–614. doi: 10.1038/nature08583. PubMed DOI
Holsteens K., De Jaegere I., Wynants A., Prinsen E.L.J., Van de Poel B. Mild and Severe Salt Stress Responses Are Age-Dependently Regulated by Abscisic Acid in Tomato. Front. Plant Sci. 2022;13:982622. doi: 10.3389/fpls.2022.982622. PubMed DOI PMC
Feller C., Bleiholder H., Buhr L., Hack H., He M., Klose R., Meier U., Stau R., Van Den Boom T., Weber E. Phänologische Entwicklungsstadien von Gemüsepflanzen II. Fruchtgemüse Und Hülsenfrüchte. Nachr. Dtsch. Pflanzenschutzd. 1995;47:217–232.
BiacoreTM Application Guide. Cytiva; Marlborough, MA, USA: 2022. Cytiva BiacoreTM Sensor Surface.
Biacore Application Guide. Cytiva; Marlborough, MA, USA: 2020. Cytiva Solvent Correction: Principles and Practice.
BiacoreTM Application Guide. Cytiva; Marlborough, MA, USA: 2021. Cytiva Concentration Measurements with BiacoreTM Systems.
Shapiro S.S., Wilk M.B. An Analysis of Variance Test for Normality (Complete Samples) Biometrika. 1965;52:591–611. doi: 10.1093/biomet/52.3-4.591. DOI
Agostino R.D., Pearson E.S. Tests for Departure from Normality. Empirical Results for the Distributions of b 2 And. Biometrika. 1973;60:613–622.
Mann H.B., Whitney D.R. On a Test of Whether One of Two Random Variables Is Stochastically Larger than the Other. Ann. Math. Stat. 1947;18:50–60. doi: 10.1214/aoms/1177730491. DOI
Pearson K. Philosophical Transactions of the Royal Society of London. Volume 187. Royal Society; London, UK: 1896. VII. Mathematical Contributions to the Theory of Evolution.—III. Regression, Heredity, and Panmixia; pp. 253–318. (Series A, Containing Papers of a Mathematical or Physical Character).
Biacore Application Guide. Cytiva; Marlborough, MA, USA: 2020. Cytiva Principles of Kinetics and Affinity Analysis.
Mitchell J. Small Molecule Immunosensing Using Surface Plasmon Resonance. Sensors. 2010;10:7323–7346. doi: 10.3390/s100807323. PubMed DOI PMC
Wang J., Zhou H.S. Aptamer-Based Au Nanoparticles-Enhanced Surface Plasmon Resonance Detection of Small Molecules. Anal. Chem. 2008;80:7174–7178. doi: 10.1021/ac801281c. PubMed DOI
Zeng S., Baillargeat D., Ho H.P., Yong K.T. Nanomaterials Enhanced Surface Plasmon Resonance for Biological and Chemical Sensing Applications. Chem. Soc. Rev. 2014;43:3426–3452. doi: 10.1039/c3cs60479a. PubMed DOI
Li Y.W., Xia K., Wang R.Z., Jiang J.H., Xiao L.T. An Impedance Immunosensor for the Detection of the Phytohormone Abscisic Acid. Anal. Bioanal. Chem. 2008;391:2869–2874. doi: 10.1007/s00216-008-2214-6. PubMed DOI
Carella P., Wilson D.C., Kempthorne C.J., Cameron R.K. Vascular Sap Proteomics: Providing Insight into Long-Distance Signaling during Stress. Front. Plant Sci. 2016;7:198391. doi: 10.3389/fpls.2016.00651. PubMed DOI PMC
De Boer A.H., Volkov V. Logistics of Water and Salt Transport through the Plant: Structure and Functioning of the Xylem. Plant Cell Environ. 2003;26:87–101. doi: 10.1046/j.1365-3040.2003.00930.x. DOI
Lucas W.J., Groover A., Lichtenberger R., Furuta K., Yadav S.R., Helariutta Y., He X.Q., Fukuda H., Kang J., Brady S.M., et al. The Plant Vascular System: Evolution, Development and Functions. J. Integr. Plant Biol. 2013;55:294–388. doi: 10.1111/jipb.12041. PubMed DOI
Bialczyk J., Lechowski Z. Chemical Composition of Xylem Sap of Tomato Grown on Bicarbonate Containing Medium. J. Plant Nutr. 1995;18:2005–2021. doi: 10.1080/01904169509365040. DOI
Pérez-Alfocea F., Balibrea M.E., Alarcón J.J., Bolarín M.C. Composition of Xylem and Phloem Exudates in Relation to the Salt-Tolerance of Domestic and Wild Tomato Species. J. Plant Physiol. 2000;156:367–374. doi: 10.1016/S0176-1617(00)80075-9. DOI
Lowe-Power T.M., Hendrich C.G., von Roepenack-Lahaye E., Li B., Wu D., Mitra R., Dalsing B.L., Ricca P., Naidoo J., Cook D., et al. Metabolomics of Tomato Xylem Sap during Bacterial Wilt Reveals Ralstonia Solanacearum Produces Abundant Putrescine, a Metabolite That Accelerates Wilt Disease. Environ. Microbiol. 2018;20:1330–1349. doi: 10.1111/1462-2920.14020. PubMed DOI PMC
Jiang F., Hartung W. Long-Distance Signalling of Abscisic Acid (ABA): The Factors Regulating the Intensity of the ABA Signal. J. Exp. Bot. 2008;59:37–43. doi: 10.1093/jxb/erm127. PubMed DOI
Schachtman D.P., Goodger J.Q.D. Chemical Root to Shoot Signaling under Drought. Trends Plant Sci. 2008;13:281–287. doi: 10.1016/j.tplants.2008.04.003. PubMed DOI
Moosavi S.M., Ghassabian S., Moosavi S.M., Ghassabian S. Calibration and Validation of Analytical Methods—A Sampling of Current Approaches. InTech Open; Rijeka, Croatia: 2018. Linearity of Calibration Curves for Analytical Methods: A Review of Criteria for Assessment of Method Reliability. DOI
Conrad M., Fechner P., Proll G., Gauglitz G. (R)Evolution of the Standard Addition Procedure for Immunoassays. Biosensors. 2023;13:849. doi: 10.3390/bios13090849. PubMed DOI PMC
Pang S., Cowen S. A Generic Standard Additions Based Method to Determine Endogenous Analyte Concentrations by Immunoassays to Overcome Complex Biological Matrix Interference. Sci. Rep. 2017;7:17542. doi: 10.1038/s41598-017-17823-y. PubMed DOI PMC
Perin E.C., Crizel R.L., Galli V., da Silva Messias R., Rombaldi C.V., Chaves F.C. Extraction and Quantification of Abscisic Acid and Derivatives in Strawberry by LC-MS. Food Anal. Methods. 2018;11:2547–2552. doi: 10.1007/s12161-018-1224-z. DOI
Albacete A., Ghanem M.E., Martínez-Andújar C., Acosta M., Sánchez-Bravo J., Martínez V., Lutts S., Dodd I.C., Pérez-Alfocea F. Hormonal Changes in Relation to Biomass Partitioning and Shoot Growth Impairment in Salinized Tomato (Solanum lycopersicum L.) Plants. J. Exp. Bot. 2008;59:4119–4131. doi: 10.1093/jxb/ern251. PubMed DOI PMC
Kudoyarova G.R., Vysotskaya L.B., Cherkozyanova A., Dodd I.C. Effect of Partial Rootzone Drying on the Concentration of Zeatin-Type Cytokinins in Tomato (Solanum lycopersicum L.) Xylem Sap and Leaves. J. Exp. Bot. 2007;58:161–168. doi: 10.1093/jxb/erl116. PubMed DOI
Guo Y., Liu R., Liu Y., Xiang D., Liu Y., Gui W., Li M., Zhu G. A Non-Competitive Surface Plasmon Resonance Immunosensor for Rapid Detection of Triazophos Residue in Environmental and Agricultural Samples. Sci. Total Environ. 2018;613–614:783–791. doi: 10.1016/j.scitotenv.2017.09.157. PubMed DOI
Qu J.H., Leirs K., Maes W., Imbrechts M., Callewaert N., Lagrou K., Geukens N., Lammertyn J., Spasic D. Innovative FO-SPR Label-Free Strategy for Detecting Anti-RBD Antibodies in COVID-19 Patient Serum and Whole Blood. ACS Sens. 2022;7:477–487. doi: 10.1021/acssensors.1c02215. PubMed DOI
Yildizhan Y., Vajrala V.S., Geeurickx E., Declerck C., Duskunovic N., De Sutter D., Noppen S., Delport F., Schols D., Swinnen J.V., et al. FO-SPR Biosensor Calibrated with Recombinant Extracellular Vesicles Enables Specific and Sensitive Detection Directly in Complex Matrices. J. Extracell. Vesicles. 2021;10:e12059. doi: 10.1002/jev2.12059. PubMed DOI PMC
Goodger J.Q.D., Sharp R.E., Marsh E.L., Schachtman D.P. Relationships between Xylem Sap Constituents and Leaf Conductance of Well-Watered and Water-Stressed Maize across Three Xylem Sap Sampling Techniques. J. Exp. Bot. 2005;56:2389–2400. doi: 10.1093/jxb/eri231. PubMed DOI
Netting A.G., Theobald J.C., Dodd I.C. Xylem Sap Collection and Extraction Methodologies to Determine in Vivo Concentrations of ABA and Its Bound Forms by Gas Chromatography-Mass Spectrometry (GC-MS) Plant Methods. 2012;8:11. doi: 10.1186/1746-4811-8-11. PubMed DOI PMC