Stimuli-Sensitive Platinum-Based Anticancer Polymer Therapeutics: Synthesis and Evaluation In Vitro
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
No. LX22NPO5102
The National Institute for Cancer Research project funded by the European Union, Next Generation
PubMed
41304771
PubMed Central
PMC12655766
DOI
10.3390/pharmaceutics17111433
PII: pharmaceutics17111433
Knihovny.cz E-zdroje
- Klíčová slova
- HPMA copolymer, cancer chemotherapy, cisplatin, polymer conjugates,
- Publikační typ
- časopisecké články MeSH
Background/Objectives: Here, we report the design, synthesis, and in vitro biological evaluation of a novel stimuli-sensitive nanotherapeutics based on cisplatin analog, cis-[PtCl2(NH3)(2-(3-oxobutyl)pyridine)] (Pt-OBP), covalently linked to a N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer via a pH-sensitive hydrazone bond. Methods: Two polymer-drug conjugates, P-Pt-A and P-Pt-B, were synthesized, differing in spacer length between the polymer chain and hydrazone bond, which in turn modulates their drug release kinetics. Results: The spacer based on hydrazone bond demonstrated satisfactory stability under blood-mimicking conditions while enabling selective release of the active drug intracellularly or even in the mildly acidic tumor microenvironment. Pt-OBP exhibits comparable or even superior cytostatic and cytotoxic activity to carboplatin across a panel of murine and human cancer cell lines, with the highest potency observed in FaDu cells representing human head and neck squamous cell carcinoma. Mechanistically, Pt-OBP induced significant phosphorylation of γ-H2AX and activation of caspase-3, indicating its ability to cause DNA damage with subsequent apoptosis induction. P-Pt-A retained moderate biological activity, whereas the slower-releasing P-Pt-B exhibited reduced potency in vitro, consistent with its drug release profile. Conclusions: Notably, free Pt-OBP induced rapid apoptotic cell death, surpassing carboplatin at early time points, and the polymeric conjugates achieved comparable pro-apoptotic activity after extended incubation, suggesting effective intracellular release of the active drug.
Zobrazit více v PubMed
Wang D., Lippard S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 2005;4:307–320. doi: 10.1038/nrd1691. PubMed DOI
Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer. 2007;7:573–584. doi: 10.1038/nrc2167. PubMed DOI
Duncan R., Vicent M.J. Polymer therapeutics—Prospects for 21st century: The end of the beginning. Adv. Drug Deliv. Rev. 2010;62:272–282. doi: 10.1016/j.addr.2009.12.005. PubMed DOI
Kopeček J., Kopečková P. HPMA copolymers: Origins, early developments, present, and future. Adv. Drug Deliv. Rev. 2010;62:122–149. doi: 10.1016/j.addr.2009.10.004. PubMed DOI PMC
Matsumura Y., Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res. 1986;46:6387–6392. PubMed
Maeda H., Matsumura Y. Tumoritropic accumulation of macromolecular drugs by the EPR effect. Cancer Res. 1989;49:6449–6454.
Vicent M.J., Duncan R. Polymer conjugates: Nanosized medicines for treating cancer. Trends Biotechnol. 2006;24:39–47. doi: 10.1016/j.tibtech.2005.11.006. PubMed DOI
Rajora A.K., Ravishankar D., Osborn H.M.I., Greco F. Impact of the Enhanced Permeability and Retention (EPR) Effect and Cathepsins Levels on the Activity of Polymer-Drug Conjugates. Polymers. 2014;6:2186–2220. doi: 10.3390/polym6082186. DOI
Kratz F., Warnecke A. Finding the optimal balance: Challenges of improving conventional cancer chemotherapy using suitable combinations with nano-sized drug delivery systems. J. Control. Release. 2012;164:221–235. doi: 10.1016/j.jconrel.2012.05.045. PubMed DOI
Vasey P.A., Kaye S.B., Morrison R., Twelves C., Wilson P., Duncan R., Thomson A.H., Murray L.S., Hilditch T.E., Murray T. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: First member of a new class of chemotherapeutic agents—Drug–polymer conjugates. Clin. Cancer Res. 1999;5:83–94. PubMed
Rihová B., Kopecek J., Ulbrich K., Pospisil M., Mancal P. Effect of the chemical structure of N-(2-hydroxypropyl)methacrylamide copolymers on their ability to induce antibody formation in inbred strains of mice. Biomaterials. 1984;5:143–148. doi: 10.1016/0142-9612(84)90048-6. PubMed DOI
Klepac D., Kostková H., Petrova S., Chytil P., Etrych T., Kereïche S., Raška I., Weitz D.A., Filippov S.K. Interaction of spin-labeled HPMA-based nanoparticles with human blood plasma proteins—The introduction of protein-corona-free polymer nanomedicine. Nanoscale. 2018;10:6194–6204. doi: 10.1039/C7NR09355A. PubMed DOI
Campone M., Rademaker-Lakhai J.M., Bennouna J., Howell S.B., Nowotnik D.P., Beijnen J.H., Schellens J.H. Phase I and pharmacokinetic trial of AP5346, a DACH–platinum polymer conjugate, in patients with advanced solid tumors. Clin. Cancer Res. 2007;13:1232–1237. PubMed
Nowotnik D.P., Cvitkovic E. ProLindac™ (AP5346): A review of the development of an HPMA–oxaliplatin conjugate. Adv. Drug Deliv. Rev. 2009;61:1214–1219. doi: 10.1016/j.addr.2009.06.004. PubMed DOI
Feng Z., Lai Y., Ye H., Huang J., Xi X.G., Wu Z. Poly (γ, L-glutamic acid)-cisplatin bioconjugate exhibits potent antitumor activity with low toxicity: A comparative study with clinically used platinum derivatives. Cancer Sci. 2010;101:2476–2482. doi: 10.1111/j.1349-7006.2010.01708.x. PubMed DOI PMC
Uchino H., Matsumura Y., Negishi T., Koizumi F., Hayashi T., Honda T., Nishiyama N., Kataoka K., Naito S., Kakizoe T. Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats. Br. J. Cancer. 2005;93:678–687. doi: 10.1038/sj.bjc.6602772. PubMed DOI PMC
Sui M., Zhan C. Acid-sensitive polymeric drug delivery systems for tumor targeting. J. Control. Release. 2007;114:6–17.
Ulbrich K., Subr V. Polymeric anticancer drugs with pH-controlled activation. Adv. Drug Deliv. Rev. 2004;56:1023–1050. doi: 10.1016/j.addr.2003.10.040. PubMed DOI
Guo X., Cheng Y., Zhao X., Luo Y., Chen J., Yuan W.-E. Advances in redox-responsive drug delivery systems of tumor microenvironment. J. Nanobiotechnol. 2018;16:74. doi: 10.1186/s12951-018-0398-2. PubMed DOI PMC
Oksanen A., Leskelä M., Lauridsen A., Olsen C.E., Christensen S.B., Kondow A.J., Bisht K.S., Parmar V.S., Francis G.W. Synthesis of ammonium trichloromonoammineplatinate (II) improved through control of temperature. Acta Chem. Scand. 1994;48:485–489. doi: 10.3891/acta.chem.scand.48-0485. DOI
Ferles M., Kafka S., Šilhánková A., Šputová M. Reaction of 1-pyridyl-1,3-butanediones and 1,3-propanediones. Collect. Czechoslov. Chem. Commun. 1981;46:1167–1172. doi: 10.1135/cccc19811167. DOI
Ulbrich K., Šubr V., Strohalm J., Plocová D., Jelínková M., ŘíhOvá B. Polymeric drugs based on conjugates of synthetic and natural macromolecules: I. Synthesis and physico-chemical characterization. J. Control. Release. 2000;64:63–79. doi: 10.1016/S0168-3659(99)00141-8. PubMed DOI
Hruby M., Kucka J., Lebeda O., Mackova H., Babic M., Konak C., Studenovsky M., Sikora A., Kozempel J., Ulbrich K. New bioerodable thermoresponsive polymers for possible radiotherapeutic applications. J. Control. Release. 2007;119:25–33. doi: 10.1016/j.jconrel.2007.02.009. PubMed DOI
Etrych T., Jelínková M., ŘíhOvá B., Ulbrich K. New HPMA copolymers containing doxorubicin bound via pH-sensitive linkage: Synthesis and preliminary in vitro and in vivo biological properties. J. Control. Release. 2001;73:89–102. doi: 10.1016/S0168-3659(01)00281-4. PubMed DOI
Koziolová E., Kostka L., Kotrchová L., Šubr V., Konefal R., Nottelet B., Etrych T. N-(2-Hydroxypropyl)methacrylamide-Based Linear, Diblock, and Starlike Polymer Drug Carriers: Advanced Process for Their Simple Production. Biomacromolecules. 2018;19:4003–4013. doi: 10.1021/acs.biomac.8b00973. PubMed DOI
Hamilton G., Olszewski U. Picoplatin pharmacokinetics and chemotherapy of non-small cell lung cancer. Expert Opin. Drug Metab. Toxicol. 2013;9:1381–1390. doi: 10.1517/17425255.2013.815724. PubMed DOI
Tang C.H., Parham C., Shocron E., McMahon G., Patel N. Picoplatin overcomes resistance to cell toxicity in small-cell lung cancer cells previously treated with cisplatin and carboplatin. Cancer Chemother. Pharmacol. 2011;67:1389–1400. doi: 10.1007/s00280-010-1435-5. PubMed DOI PMC
Isidorov V., Szoka Ł., Nazaruk J. Cytotoxicity of white birch bud extracts: Perspectives for therapy of tumours. PLoS ONE. 2018;13:e0201949. doi: 10.1371/journal.pone.0201949. PubMed DOI PMC
Chaney S.G., Campbell S.L., Bassett E., Wu Y. Recognition and processing of cisplatin- and oxaliplatin-DNA adducts. Crit. Rev. Oncol. Hematol. 2005;53:3–11. doi: 10.1016/j.critrevonc.2004.08.008. PubMed DOI
Porter A., Jänicke R. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6:99–104. doi: 10.1038/sj.cdd.4400476. PubMed DOI
Obreshkova D., Ivanova S., Yordanova-Laleva P. Influence of chemical structure and mechanism of hydrolysis on pharmacological activity and toxicological profile of approved platinum drugs. Pharmacia. 2022;69:645–653. doi: 10.3897/pharmacia.69.e87494. DOI
Perez R.P., O’Dwyer P.J., Handel L.M., Ozols R.F., Hamilton T.C. Comparative cytotoxicity of CI-973, cisplatin, carboplatin and tetraplatin in human ovarian carcinoma cell lines. Int. J. Cancer. 1991;48:265–269. doi: 10.1002/ijc.2910480219. PubMed DOI
Schoch S., Gajewski S., Rothfuß J., Hartwig A., Köberle B. Comparative Study of the Mode of Action of Clinically Approved Platinum-Based Chemotherapeutics. Int. J. Mol. Sci. 2020;21:6928. doi: 10.3390/ijms21186928. PubMed DOI PMC
Larson C.A., Blair B.G., Safaei R., Howell S.B. The Role of the Mammalian Copper Transporter 1 in the Cellular Accumulation of Platinum-Based Drugs. Mol. Pharmacol. 2009;75:324–330. doi: 10.1124/mol.108.052381. PubMed DOI PMC
Cohen S.M., Lippard S.J. Cisplatin: From DNA damage to cancer chemotherapy. Prog. Nucleic Acid Res. Mol. Biol. 2001;67:93–130. PubMed
Lucaciu R.L., Hangan A.C., Sevastre B., Oprean L.S. Metallo-drugs in cancer therapy: Past, present and future. Molecules. 2022;27:6485. doi: 10.3390/molecules27196485. PubMed DOI PMC