Stimuli-Sensitive Platinum-Based Anticancer Polymer Therapeutics: Synthesis and Evaluation In Vitro

. 2025 Nov 05 ; 17 (11) : . [epub] 20251105

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41304771

Grantová podpora
No. LX22NPO5102 The National Institute for Cancer Research project funded by the European Union, Next Generation

Odkazy

PubMed 41304771
PubMed Central PMC12655766
DOI 10.3390/pharmaceutics17111433
PII: pharmaceutics17111433
Knihovny.cz E-zdroje

Background/Objectives: Here, we report the design, synthesis, and in vitro biological evaluation of a novel stimuli-sensitive nanotherapeutics based on cisplatin analog, cis-[PtCl2(NH3)(2-(3-oxobutyl)pyridine)] (Pt-OBP), covalently linked to a N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer via a pH-sensitive hydrazone bond. Methods: Two polymer-drug conjugates, P-Pt-A and P-Pt-B, were synthesized, differing in spacer length between the polymer chain and hydrazone bond, which in turn modulates their drug release kinetics. Results: The spacer based on hydrazone bond demonstrated satisfactory stability under blood-mimicking conditions while enabling selective release of the active drug intracellularly or even in the mildly acidic tumor microenvironment. Pt-OBP exhibits comparable or even superior cytostatic and cytotoxic activity to carboplatin across a panel of murine and human cancer cell lines, with the highest potency observed in FaDu cells representing human head and neck squamous cell carcinoma. Mechanistically, Pt-OBP induced significant phosphorylation of γ-H2AX and activation of caspase-3, indicating its ability to cause DNA damage with subsequent apoptosis induction. P-Pt-A retained moderate biological activity, whereas the slower-releasing P-Pt-B exhibited reduced potency in vitro, consistent with its drug release profile. Conclusions: Notably, free Pt-OBP induced rapid apoptotic cell death, surpassing carboplatin at early time points, and the polymeric conjugates achieved comparable pro-apoptotic activity after extended incubation, suggesting effective intracellular release of the active drug.

Zobrazit více v PubMed

Wang D., Lippard S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 2005;4:307–320. doi: 10.1038/nrd1691. PubMed DOI

Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer. 2007;7:573–584. doi: 10.1038/nrc2167. PubMed DOI

Duncan R., Vicent M.J. Polymer therapeutics—Prospects for 21st century: The end of the beginning. Adv. Drug Deliv. Rev. 2010;62:272–282. doi: 10.1016/j.addr.2009.12.005. PubMed DOI

Kopeček J., Kopečková P. HPMA copolymers: Origins, early developments, present, and future. Adv. Drug Deliv. Rev. 2010;62:122–149. doi: 10.1016/j.addr.2009.10.004. PubMed DOI PMC

Matsumura Y., Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent SMANCS. Cancer Res. 1986;46:6387–6392. PubMed

Maeda H., Matsumura Y. Tumoritropic accumulation of macromolecular drugs by the EPR effect. Cancer Res. 1989;49:6449–6454.

Vicent M.J., Duncan R. Polymer conjugates: Nanosized medicines for treating cancer. Trends Biotechnol. 2006;24:39–47. doi: 10.1016/j.tibtech.2005.11.006. PubMed DOI

Rajora A.K., Ravishankar D., Osborn H.M.I., Greco F. Impact of the Enhanced Permeability and Retention (EPR) Effect and Cathepsins Levels on the Activity of Polymer-Drug Conjugates. Polymers. 2014;6:2186–2220. doi: 10.3390/polym6082186. DOI

Kratz F., Warnecke A. Finding the optimal balance: Challenges of improving conventional cancer chemotherapy using suitable combinations with nano-sized drug delivery systems. J. Control. Release. 2012;164:221–235. doi: 10.1016/j.jconrel.2012.05.045. PubMed DOI

Vasey P.A., Kaye S.B., Morrison R., Twelves C., Wilson P., Duncan R., Thomson A.H., Murray L.S., Hilditch T.E., Murray T. Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl)methacrylamide copolymer doxorubicin]: First member of a new class of chemotherapeutic agents—Drug–polymer conjugates. Clin. Cancer Res. 1999;5:83–94. PubMed

Rihová B., Kopecek J., Ulbrich K., Pospisil M., Mancal P. Effect of the chemical structure of N-(2-hydroxypropyl)methacrylamide copolymers on their ability to induce antibody formation in inbred strains of mice. Biomaterials. 1984;5:143–148. doi: 10.1016/0142-9612(84)90048-6. PubMed DOI

Klepac D., Kostková H., Petrova S., Chytil P., Etrych T., Kereïche S., Raška I., Weitz D.A., Filippov S.K. Interaction of spin-labeled HPMA-based nanoparticles with human blood plasma proteins—The introduction of protein-corona-free polymer nanomedicine. Nanoscale. 2018;10:6194–6204. doi: 10.1039/C7NR09355A. PubMed DOI

Campone M., Rademaker-Lakhai J.M., Bennouna J., Howell S.B., Nowotnik D.P., Beijnen J.H., Schellens J.H. Phase I and pharmacokinetic trial of AP5346, a DACH–platinum polymer conjugate, in patients with advanced solid tumors. Clin. Cancer Res. 2007;13:1232–1237. PubMed

Nowotnik D.P., Cvitkovic E. ProLindac™ (AP5346): A review of the development of an HPMA–oxaliplatin conjugate. Adv. Drug Deliv. Rev. 2009;61:1214–1219. doi: 10.1016/j.addr.2009.06.004. PubMed DOI

Feng Z., Lai Y., Ye H., Huang J., Xi X.G., Wu Z. Poly (γ, L-glutamic acid)-cisplatin bioconjugate exhibits potent antitumor activity with low toxicity: A comparative study with clinically used platinum derivatives. Cancer Sci. 2010;101:2476–2482. doi: 10.1111/j.1349-7006.2010.01708.x. PubMed DOI PMC

Uchino H., Matsumura Y., Negishi T., Koizumi F., Hayashi T., Honda T., Nishiyama N., Kataoka K., Naito S., Kakizoe T. Cisplatin-incorporating polymeric micelles (NC-6004) can reduce nephrotoxicity and neurotoxicity of cisplatin in rats. Br. J. Cancer. 2005;93:678–687. doi: 10.1038/sj.bjc.6602772. PubMed DOI PMC

Sui M., Zhan C. Acid-sensitive polymeric drug delivery systems for tumor targeting. J. Control. Release. 2007;114:6–17.

Ulbrich K., Subr V. Polymeric anticancer drugs with pH-controlled activation. Adv. Drug Deliv. Rev. 2004;56:1023–1050. doi: 10.1016/j.addr.2003.10.040. PubMed DOI

Guo X., Cheng Y., Zhao X., Luo Y., Chen J., Yuan W.-E. Advances in redox-responsive drug delivery systems of tumor microenvironment. J. Nanobiotechnol. 2018;16:74. doi: 10.1186/s12951-018-0398-2. PubMed DOI PMC

Oksanen A., Leskelä M., Lauridsen A., Olsen C.E., Christensen S.B., Kondow A.J., Bisht K.S., Parmar V.S., Francis G.W. Synthesis of ammonium trichloromonoammineplatinate (II) improved through control of temperature. Acta Chem. Scand. 1994;48:485–489. doi: 10.3891/acta.chem.scand.48-0485. DOI

Ferles M., Kafka S., Šilhánková A., Šputová M. Reaction of 1-pyridyl-1,3-butanediones and 1,3-propanediones. Collect. Czechoslov. Chem. Commun. 1981;46:1167–1172. doi: 10.1135/cccc19811167. DOI

Ulbrich K., Šubr V., Strohalm J., Plocová D., Jelínková M., ŘíhOvá B. Polymeric drugs based on conjugates of synthetic and natural macromolecules: I. Synthesis and physico-chemical characterization. J. Control. Release. 2000;64:63–79. doi: 10.1016/S0168-3659(99)00141-8. PubMed DOI

Hruby M., Kucka J., Lebeda O., Mackova H., Babic M., Konak C., Studenovsky M., Sikora A., Kozempel J., Ulbrich K. New bioerodable thermoresponsive polymers for possible radiotherapeutic applications. J. Control. Release. 2007;119:25–33. doi: 10.1016/j.jconrel.2007.02.009. PubMed DOI

Etrych T., Jelínková M., ŘíhOvá B., Ulbrich K. New HPMA copolymers containing doxorubicin bound via pH-sensitive linkage: Synthesis and preliminary in vitro and in vivo biological properties. J. Control. Release. 2001;73:89–102. doi: 10.1016/S0168-3659(01)00281-4. PubMed DOI

Koziolová E., Kostka L., Kotrchová L., Šubr V., Konefal R., Nottelet B., Etrych T. N-(2-Hydroxypropyl)methacrylamide-Based Linear, Diblock, and Starlike Polymer Drug Carriers: Advanced Process for Their Simple Production. Biomacromolecules. 2018;19:4003–4013. doi: 10.1021/acs.biomac.8b00973. PubMed DOI

Hamilton G., Olszewski U. Picoplatin pharmacokinetics and chemotherapy of non-small cell lung cancer. Expert Opin. Drug Metab. Toxicol. 2013;9:1381–1390. doi: 10.1517/17425255.2013.815724. PubMed DOI

Tang C.H., Parham C., Shocron E., McMahon G., Patel N. Picoplatin overcomes resistance to cell toxicity in small-cell lung cancer cells previously treated with cisplatin and carboplatin. Cancer Chemother. Pharmacol. 2011;67:1389–1400. doi: 10.1007/s00280-010-1435-5. PubMed DOI PMC

Isidorov V., Szoka Ł., Nazaruk J. Cytotoxicity of white birch bud extracts: Perspectives for therapy of tumours. PLoS ONE. 2018;13:e0201949. doi: 10.1371/journal.pone.0201949. PubMed DOI PMC

Chaney S.G., Campbell S.L., Bassett E., Wu Y. Recognition and processing of cisplatin- and oxaliplatin-DNA adducts. Crit. Rev. Oncol. Hematol. 2005;53:3–11. doi: 10.1016/j.critrevonc.2004.08.008. PubMed DOI

Porter A., Jänicke R. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6:99–104. doi: 10.1038/sj.cdd.4400476. PubMed DOI

Obreshkova D., Ivanova S., Yordanova-Laleva P. Influence of chemical structure and mechanism of hydrolysis on pharmacological activity and toxicological profile of approved platinum drugs. Pharmacia. 2022;69:645–653. doi: 10.3897/pharmacia.69.e87494. DOI

Perez R.P., O’Dwyer P.J., Handel L.M., Ozols R.F., Hamilton T.C. Comparative cytotoxicity of CI-973, cisplatin, carboplatin and tetraplatin in human ovarian carcinoma cell lines. Int. J. Cancer. 1991;48:265–269. doi: 10.1002/ijc.2910480219. PubMed DOI

Schoch S., Gajewski S., Rothfuß J., Hartwig A., Köberle B. Comparative Study of the Mode of Action of Clinically Approved Platinum-Based Chemotherapeutics. Int. J. Mol. Sci. 2020;21:6928. doi: 10.3390/ijms21186928. PubMed DOI PMC

Larson C.A., Blair B.G., Safaei R., Howell S.B. The Role of the Mammalian Copper Transporter 1 in the Cellular Accumulation of Platinum-Based Drugs. Mol. Pharmacol. 2009;75:324–330. doi: 10.1124/mol.108.052381. PubMed DOI PMC

Cohen S.M., Lippard S.J. Cisplatin: From DNA damage to cancer chemotherapy. Prog. Nucleic Acid Res. Mol. Biol. 2001;67:93–130. PubMed

Lucaciu R.L., Hangan A.C., Sevastre B., Oprean L.S. Metallo-drugs in cancer therapy: Past, present and future. Molecules. 2022;27:6485. doi: 10.3390/molecules27196485. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...