Deciphering the intermolecular interactions between G-quadruplex (G4)-forming sequences
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
22374070
National Natural Science Foundation of China
22177047
National Natural Science Foundation of China
5431ZZXM2406
State Key Laboratory of Analytical Chemistry for Life Science
SKLACLS2109
State Key Laboratory of Analytical Chemistry for Life Science
SKLACLS2307
State Key Laboratory of Analytical Chemistry for Life Science
020514380299
Fundamental Research Funds for the Central Universities
202200324
Fundamental Research Funds for the Central Universities
202200325
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
PubMed
41335469
PubMed Central
PMC12673844
DOI
10.1093/nar/gkaf1288
PII: 8363854
Knihovny.cz E-zdroje
- MeSH
- DNA * chemie MeSH
- G-kvadruplexy * MeSH
- guanin chemie MeSH
- lidé MeSH
- sekvence nukleotidů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA * MeSH
- guanin MeSH
Interactions between biomolecules govern cellular biology. While protein/protein and protein/nucleic acid (DNA, RNA) interactions-and, to a lesser extent, RNA/RNA and RNA/DNA interactions-have been extensively described, a question remains as to whether and how non-canonical DNA structures might interact with each other. This is of particular interest for guanine (G)-rich sequences that can fold into G-quadruplex (G4) structures: Individual G4s are currently studied for their involvement in a myriad of cellular events (mostly pertaining to the control of gene expression), and, more recently, the interactions between two G4s have been scrutinized as being part of a novel gene expression regulatory mechanism involving chromatin remodeling through G4-mediated loop formation. The question that needs to be answered is whether G4s or their corresponding G-rich sequences are involved. We present here a series of results collected using a combination of sequences, experimental conditions, and techniques, which led us to the conclusion that G4/G4 intermolecular interactions are mostly governed by primary sequence interactions in vitro.
Zobrazit více v PubMed
Jena S, Dutta J, Tulsiyan KD et al. Noncovalent interactions in proteins and nucleic acids: beyond hydrogen bonding and π-stacking. Chem Soc Rev. 2022;51:4261–86. 10.1039/D2CS00133K. PubMed DOI
Quintana JI, Atxabal U, Unione L et al. Exploring multivalent carbohydrate–protein interactions by NMR. Chem Soc Rev. 2023;52:1591–613. 10.1039/D2CS00983H. PubMed DOI PMC
Corradi V, Sejdiu BI, Mesa-Galloso H et al. Emerging diversity in lipid–protein interactions. Chem Rev. 2019;119:5775–848. 10.1021/acs.chemrev.8b00451. PubMed DOI PMC
Tan J, Zhao M, Wang J et al. Regulation of protein activity and cellular functions mediated by molecularly evolved nucleic acids. Angew Chem Int Ed Engl. 2019;58:1621–5. 10.1002/anie.201809010. PubMed DOI PMC
Ganser LR, Kelly ML, Herschlag D et al. The roles of structural dynamics in the cellular functions of RNAs. Nat Rev Mol Cell Biol. 2019;20:474–89. 10.1038/s41580-019-0136-0. PubMed DOI PMC
Son A, Huizar Cabral V, Huang Z et al. G-quadruplexes rescuing protein folding. Proc Natl Acad Sci USA. 2023;120:e2216308120. 10.1073/pnas.2216308120. PubMed DOI PMC
Traczyk A, Liew CW, Gill DJ et al. Structural basis of G-quadruplex DNA recognition by the yeast telomeric protein Rap1. Nucleic Acids Res. 2020;48:4562–71. 10.1093/nar/gkaa171. PubMed DOI PMC
Liu X, Xiong Y, Zhang C et al. G-quadruplex-induced liquid–liquid phase separation in biomimetic protocells. J Am Chem Soc. 2021;143:11036–43. 10.1021/jacs.1c03627. PubMed DOI
Mimura M, Tomita S, Shinkai Y et al. Quadruplex folding promotes the condensation of linker histones and DNAs via liquid–liquid phase separation. J Am Chem Soc. 2021;143:9849–57. 10.1021/jacs.1c03447. PubMed DOI
Wang Y, Cao K, Zong M et al. Mutual promotion of co-condensation of KRAS G-quadruplex and a well-folded protein HMGB1. Nucleic Acids Res. 2023;52:288–99. 10.1093/nar/gkad938. PubMed DOI PMC
Zhang Y, Yang M, Duncan S et al. G-quadruplex structures trigger RNA phase separation. Nucleic Acids Res. 2019;47:11746–54. 10.1093/nar/gkz978. PubMed DOI PMC
Tsuruta M, Torii T, Kohata K et al. Controlling liquid–liquid phase separation of G-quadruplex-forming RNAs in a sequence-specific manner. Chem Commun. 2022;58:12931–4. 10.1039/D2CC04366A. PubMed DOI
Schultze P, Macaya RF, Feigon J. Three-dimensional solution structure of the thrombin-binding DNA aptamer d(GGTTGGTGTGGTTGG). J Mol Biol. 1994;235:1532–47. 10.1006/jmbi.1994.1105. PubMed DOI
Lim KW, Alberti P, Guédin A et al. Sequence variant (CTAGGG) PubMed DOI PMC
Jing N, Hogan ME. Structure-activity of tetrad-forming oligonucleotides as a potent anti-HIV therapeutic drug. J Biol Chem. 1998;273:34992–9. 10.1074/jbc.273.52.34992. PubMed DOI
Largy E, Marchand A, Amrane S et al. Quadruplex turncoats: cation-dependent folding and stability of quadruplex-DNA double switches. J Am Chem Soc. 2016;138:2780–92. 10.1021/jacs.5b13130. PubMed DOI
Omaga CA, Fleming AM, Burrows CJ. The fifth domain in the G-quadruplex-forming sequence of the human NEIL3 promoter locks DNA folding in response to oxidative damage. Biochemistry. 2018;57:2958–70. 10.1021/acs.biochem.8b00226. PubMed DOI PMC
Parkinson GN, Lee MPH, Neidle S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature. 2002;417:876–80. 10.1038/nature755. PubMed DOI
Phan AT, Kuryavyi V, Luu KN et al. Structure of two intramolecular G-quadruplexes formed by natural human telomere sequences in K PubMed DOI PMC
Cheng M, Cheng Y, Hao J et al. Loop permutation affects the topology and stability of G-quadruplexes. Nucleic Acids Res. 2018;46:9264–75. 10.1093/nar/gky757. PubMed DOI PMC
Del Villar-Guerra R, Trent JO, Chaires JB. G-quadruplex secondary structure obtained from circular dichroism spectroscopy. Angew Chem Int Ed Engl. 2018;57:7171–5. 10.1002/anie.201709184. PubMed DOI PMC
Basu P, Kejnovská I, Gajarský M et al. RNA G-quadruplex formation in biologically important transcribed regions: can two-tetrad intramolecular RNA quadruplexes be formed?. Nucleic Acids Res. 2024;52:13224–42. 10.1093/nar/gkae927. PubMed DOI PMC
Liano D, Monti L, Chowdhury S et al. Long-range DNA interactions: inter-molecular G-quadruplexes and their potential biological relevance. Chem Commun. 2022;58:12753–62. 10.1039/D2CC04872H. PubMed DOI PMC
Liano D, Chowdhury S, Di Antonio M. Cockayne Syndrome B protein selectively resolves and interact with intermolecular DNA G–quadruplex structures. J Am Chem Soc. 2021;143:20988–1002. 10.1021/jacs.1c10745. PubMed DOI
Ribeyre C, Lopes J, Boulé J-B et al. The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet. 2009;5:e1000475. 10.1371/journal.pgen.1000475. PubMed DOI PMC