Deciphering the intermolecular interactions between G-quadruplex (G4)-forming sequences

. 2025 Nov 26 ; 53 (22) : .

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41335469

Grantová podpora
22374070 National Natural Science Foundation of China
22177047 National Natural Science Foundation of China
5431ZZXM2406 State Key Laboratory of Analytical Chemistry for Life Science
SKLACLS2109 State Key Laboratory of Analytical Chemistry for Life Science
SKLACLS2307 State Key Laboratory of Analytical Chemistry for Life Science
020514380299 Fundamental Research Funds for the Central Universities
202200324 Fundamental Research Funds for the Central Universities
202200325 Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China

Interactions between biomolecules govern cellular biology. While protein/protein and protein/nucleic acid (DNA, RNA) interactions-and, to a lesser extent, RNA/RNA and RNA/DNA interactions-have been extensively described, a question remains as to whether and how non-canonical DNA structures might interact with each other. This is of particular interest for guanine (G)-rich sequences that can fold into G-quadruplex (G4) structures: Individual G4s are currently studied for their involvement in a myriad of cellular events (mostly pertaining to the control of gene expression), and, more recently, the interactions between two G4s have been scrutinized as being part of a novel gene expression regulatory mechanism involving chromatin remodeling through G4-mediated loop formation. The question that needs to be answered is whether G4s or their corresponding G-rich sequences are involved. We present here a series of results collected using a combination of sequences, experimental conditions, and techniques, which led us to the conclusion that G4/G4 intermolecular interactions are mostly governed by primary sequence interactions in vitro.

Zobrazit více v PubMed

Jena  S, Dutta  J, Tulsiyan  KD  et al.  Noncovalent interactions in proteins and nucleic acids: beyond hydrogen bonding and π-stacking. Chem Soc Rev. 2022;51:4261–86. 10.1039/D2CS00133K. PubMed DOI

Quintana  JI, Atxabal  U, Unione  L  et al.  Exploring multivalent carbohydrate–protein interactions by NMR. Chem Soc Rev. 2023;52:1591–613. 10.1039/D2CS00983H. PubMed DOI PMC

Corradi  V, Sejdiu  BI, Mesa-Galloso  H  et al.  Emerging diversity in lipid–protein interactions. Chem Rev. 2019;119:5775–848. 10.1021/acs.chemrev.8b00451. PubMed DOI PMC

Tan  J, Zhao  M, Wang  J  et al.  Regulation of protein activity and cellular functions mediated by molecularly evolved nucleic acids. Angew Chem Int Ed Engl. 2019;58:1621–5. 10.1002/anie.201809010. PubMed DOI PMC

Ganser  LR, Kelly  ML, Herschlag  D  et al.  The roles of structural dynamics in the cellular functions of RNAs. Nat Rev Mol Cell Biol. 2019;20:474–89. 10.1038/s41580-019-0136-0. PubMed DOI PMC

Son  A, Huizar Cabral  V, Huang  Z  et al.  G-quadruplexes rescuing protein folding. Proc Natl Acad Sci USA. 2023;120:e2216308120. 10.1073/pnas.2216308120. PubMed DOI PMC

Traczyk  A, Liew  CW, Gill  DJ  et al.  Structural basis of G-quadruplex DNA recognition by the yeast telomeric protein Rap1. Nucleic Acids Res. 2020;48:4562–71. 10.1093/nar/gkaa171. PubMed DOI PMC

Liu  X, Xiong  Y, Zhang  C  et al.  G-quadruplex-induced liquid–liquid phase separation in biomimetic protocells. J Am Chem Soc. 2021;143:11036–43. 10.1021/jacs.1c03627. PubMed DOI

Mimura  M, Tomita  S, Shinkai  Y  et al.  Quadruplex folding promotes the condensation of linker histones and DNAs via liquid–liquid phase separation. J Am Chem Soc. 2021;143:9849–57. 10.1021/jacs.1c03447. PubMed DOI

Wang  Y, Cao  K, Zong  M  et al.  Mutual promotion of co-condensation of KRAS G-quadruplex and a well-folded protein HMGB1. Nucleic Acids Res. 2023;52:288–99. 10.1093/nar/gkad938. PubMed DOI PMC

Zhang  Y, Yang  M, Duncan  S  et al.  G-quadruplex structures trigger RNA phase separation. Nucleic Acids Res. 2019;47:11746–54. 10.1093/nar/gkz978. PubMed DOI PMC

Tsuruta  M, Torii  T, Kohata  K  et al.  Controlling liquid–liquid phase separation of G-quadruplex-forming RNAs in a sequence-specific manner. Chem Commun. 2022;58:12931–4. 10.1039/D2CC04366A. PubMed DOI

Schultze  P, Macaya  RF, Feigon  J. Three-dimensional solution structure of the thrombin-binding DNA aptamer d(GGTTGGTGTGGTTGG). J Mol Biol. 1994;235:1532–47. 10.1006/jmbi.1994.1105. PubMed DOI

Lim  KW, Alberti  P, Guédin  A  et al.  Sequence variant (CTAGGG) PubMed DOI PMC

Jing  N, Hogan  ME. Structure-activity of tetrad-forming oligonucleotides as a potent anti-HIV therapeutic drug. J Biol Chem. 1998;273:34992–9. 10.1074/jbc.273.52.34992. PubMed DOI

Largy  E, Marchand  A, Amrane  S  et al.  Quadruplex turncoats: cation-dependent folding and stability of quadruplex-DNA double switches. J Am Chem Soc. 2016;138:2780–92. 10.1021/jacs.5b13130. PubMed DOI

Omaga  CA, Fleming  AM, Burrows  CJ. The fifth domain in the G-quadruplex-forming sequence of the human NEIL3 promoter locks DNA folding in response to oxidative damage. Biochemistry. 2018;57:2958–70. 10.1021/acs.biochem.8b00226. PubMed DOI PMC

Parkinson  GN, Lee  MPH, Neidle  S. Crystal structure of parallel quadruplexes from human telomeric DNA. Nature. 2002;417:876–80. 10.1038/nature755. PubMed DOI

Phan  AT, Kuryavyi  V, Luu  KN  et al.  Structure of two intramolecular G-quadruplexes formed by natural human telomere sequences in K PubMed DOI PMC

Cheng  M, Cheng  Y, Hao  J  et al.  Loop permutation affects the topology and stability of G-quadruplexes. Nucleic Acids Res. 2018;46:9264–75. 10.1093/nar/gky757. PubMed DOI PMC

Del Villar-Guerra  R, Trent  JO, Chaires  JB. G-quadruplex secondary structure obtained from circular dichroism spectroscopy. Angew Chem Int Ed Engl. 2018;57:7171–5. 10.1002/anie.201709184. PubMed DOI PMC

Basu  P, Kejnovská  I, Gajarský  M  et al.  RNA G-quadruplex formation in biologically important transcribed regions: can two-tetrad intramolecular RNA quadruplexes be formed?. Nucleic Acids Res. 2024;52:13224–42. 10.1093/nar/gkae927. PubMed DOI PMC

Liano  D, Monti  L, Chowdhury  S  et al.  Long-range DNA interactions: inter-molecular G-quadruplexes and their potential biological relevance. Chem Commun. 2022;58:12753–62. 10.1039/D2CC04872H. PubMed DOI PMC

Liano  D, Chowdhury  S, Di Antonio  M. Cockayne Syndrome B protein selectively resolves and interact with intermolecular DNA G–quadruplex structures. J Am Chem Soc. 2021;143:20988–1002. 10.1021/jacs.1c10745. PubMed DOI

Ribeyre  C, Lopes  J, Boulé  J-B  et al.  The yeast Pif1 helicase prevents genomic instability caused by G-quadruplex-forming CEB1 sequences in vivo. PLoS Genet. 2009;5:e1000475. 10.1371/journal.pgen.1000475. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...