A vegan diet signature from a multi-omics study on different European populations is related to favorable metabolic outcomes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, multicentrická studie, pozorovací studie
PubMed
41340567
PubMed Central
PMC12688234
DOI
10.1080/19490976.2025.2593050
Knihovny.cz E-zdroje
- Klíčová slova
- Vegan diet, gut microbiota, serum lipidomics, shotgun metagenomic sequencing, untargeted serum metabolomics,
- MeSH
- Bacteria * klasifikace metabolismus genetika izolace a purifikace MeSH
- dieta veganská * MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- metabolom * MeSH
- metagenom MeSH
- multiomika MeSH
- průřezové studie MeSH
- střevní mikroflóra * MeSH
- vegani MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- pozorovací studie MeSH
- Geografické názvy
- Česká republika MeSH
- Itálie MeSH
Vegan and omnivorous diets differ markedly in composition, but their effects on the gut microbiome, metabolome, and lipidome across populations remain insufficiently characterized. While both diet and country of origin influence these molecular layers, the relative contribution of diet versus country-specific factors has not yet been systematically evaluated within a multi-omics framework.In this cross-sectional, bicentric, observational study, we profiled healthy vegans (n = 100) and omnivores (n = 73) from the Czech Republic and Italy using integrated microbiome, metabolome, and lipidome analyses. Findings were subsequently validated in an independent cohort (n = 142).Significant differences across all omics layers were observed for both country and diet. The predictive models confirmed diet-associated separation, with validation cohort AUCs of 0.99 (lipidome), 0.89 (metabolome), and 0.87 (microbiome). Functional metagenome analysis revealed enrichment of amino acid biosynthesis, inositol degradation, and the pentose phosphate pathway in vegans, while omnivores presented greater potential for amino acid fermentation, fatty acid biosynthesis, and propanoate metabolism. Linear models identified a robust, country-independent "vegan signature" consisting of 27 lipid metabolites, five non-lipid metabolites, and 11 bacterial species. Several lipid features associated with an omnivorous diet were inversely related to the duration of vegan diet adherence. Some of the vegan-associated metabolites and bacteria have been previously linked to favorable cardiometabolic profiles, although causality remains to be established.These findings demonstrate that vegan diets are associated with reproducible, country-independent molecular and microbial signatures. Our results highlight diet-driven shifts in host-microbiota interactions and provide a framework for understanding how dietary patterns relate to host-microbiota interactions.
1st Faculty of Medicine Charles University Prague Czech Republic
Ambis University Department of Economics and Management Prague Czech Republic
Department of Clinical and Biological Sciences University of Turin Turin Italy
Department of Computer Science University of Turin Turin Italy
Department of Informatics Brno University of Technology Brno Czech Republic
Institute for Clinical and Experimental Medicine Prague Czech Republic
Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic
Italian Institute for Genomic Medicine c o IRCCS Candiolo Turin Italy
Mendel University Department of Chemistry and Biochemistry Brno Czech Republic
Zobrazit více v PubMed
Dinu M, Abbate R, Gensini GF, Casini A, Sofi F. Vegetarian, vegan diets and multiple health outcomes: a systematic review with meta-analysis of observational studies. Crit Rev Food Sci Nutr. 2017;57:3640–3649. doi: 10.1080/10408398.2016.1138447. PubMed DOI
Termannsen AD, Clemmensen KKB, Thomsen JM, Nørgaard O, Díaz LJ, Torekov SS, Quist JS, Færch K. Effects of vegan diets on cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials. Obes Rev. 2022;23:e13462. doi: 10.1111/obr.13462. PubMed DOI PMC
Wang Y, Liu B, Han H, Hu Y, Zhu L, Rimm EB, Sun Q. Associations between plant-based dietary patterns and risks of type 2 diabetes, cardiovascular disease, cancer, and mortality – a systematic review and meta-analysis. Nutr J. 2023;22:46. doi: 10.1186/s12937-023-00877-2. PubMed DOI PMC
Selinger E, Neuenschwander M, Koller A, Gojda J, Kühn T, Schwingshackl L, Barbaresko J, Schlesinger S. Evidence of a vegan diet for health benefits and risks - an umbrella review of meta-analyses of observational and clinical studies. Crit Rev Food Sci Nutr. 2023;63:9926–9936. doi: 10.1080/10408398.2022.2075311. PubMed DOI
Prochazkova M, Budinska E, Kuzma M, Pelantova H, Hradecky J, Heczkova M, Daskova N, Bratova M, Modos I, Videnska P, et al. Vegan diet is associated with favorable effects on the metabolic performance of intestinal microbiota: a cross-sectional multi-omics study. Front Nutr 2021. 2022;8:783302. doi: 10.3389/fnut.2021.783302. PubMed DOI PMC
Ferrocino I, Di Cagno R, De Angelis M, Turroni S, Vannini L, Bancalari E, Rantsiou K, Cardinali G, Neviani E, Cocolin L, et al. Fecal microbiota in healthy subjects following omnivore, vegetarian and vegan diets: culturable populations and rrna DGGE profiling. PLoS One. 2015;10:e0128669. doi: 10.1371/journal.pone.0128669. PubMed DOI PMC
Matijasic BB, Obermajer T, Lipoglavsek L, Matijašić BB, Lipoglavšek L, Grabnar I, Avguštin G, Rogelj I. Association of dietary type with fecal microbiota in vegetarians and omnivores in Slovenia. Eur J Nutr. 2014;53:1051–1064. doi: 10.1007/s00394-013-0607-6. PubMed DOI
Wu GD, Compher C, Chen EZ, Smith SA, Shah RD, Bittinger K, Chehoud C, Albenberg LG, Nessel L, Gilroy E, et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut. 2016;65:63–72. doi: 10.1136/gutjnl-2014-308209. PubMed DOI PMC
De Angelis M, Ferrocino I, Calabrese FM, De Filippis F, Cavallo N, Siragusa S, Rampelli S, Di Cagno R, Rantsiou K, Vannini L, et al. Diet influences the functions of the human intestinal microbiome. Sci Rep. 2020;10:4247. doi: 10.1038/s41598-020-61192-y. PubMed DOI PMC
Fackelmann G, Manghi P, Carlino N, Heidrich V, Piccinno G, Ricci L, Piperni E, Arrè A, Bakker E, Creedon AC, et al. Gut microbiome signatures of vegan, vegetarian and omnivore diets and associated health outcomes across 21,561 individuals. Nat Microbiol. 2025;10:41–52. doi: 10.1038/s41564-024-01870-z. PubMed DOI PMC
Lindqvist HM, Radjursoga M, Malmodin D, Rådjursöga M, Winkvist A, Ellegård L. Serum metabolite profiles of habitual diet: evaluation by 1H-nuclear magnetic resonance analysis. AJCN. 2019;110:53–62. doi: 10.1093/ajcn/nqz032. PubMed DOI PMC
Tarallo S, Ferrero G, De Filippis F, Francavilla A, Pasolli E, Panero V, Cordero F, Segata N, Grioni S, Pensa RG, et al. Stool microRNA profiles reflect different dietary and gut microbiome patterns in healthy individuals. Gut. 2022;71:1302–1314. doi: 10.1136/gutjnl-2021-325168. PubMed DOI PMC
Riboli E, Hunt KJ, Slimani N, Ferrari P, Norat T, Fahey M, Charrondière U, Hémon B, Casagrande C, Vignat J, et al. European prospective investigation into cancer and nutrition (EPIC): study populations and data collection. Public Health Nutr. 2002;5:1113–1124. doi: 10.1079/PHN2002394. PubMed DOI
Pala V, Sieri S, Palli D, Salvini S, Berrino F, Bellegotti M, Frasca G, Tumino R, Sacerdote C, Fiorini L, et al. Diet in the Italian EPIC cohorts: presentation of data and methodological issues. Tumori. 2003;89:594–607. doi: 10.1177/030089160308900603. PubMed DOI
Thomas AM, Manghi P, Asnicar F, Pasolli E, Armanini F, Zolfo M, Beghini F, Manara S, Karcher N, Pozzi C, et al. Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation. Nat Med. 2019;25:667–678. doi: 10.1038/s41591-019-0405-7. PubMed DOI PMC
Blanco-Miguez A, Beghini F, Cumbo F, Blanco-Míguez A, McIver LJ, Thompson KN, Zolfo M, Manghi P, Dubois L, Huang KD, et al. Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. Nat Biotechnol. 2023;41:1633–1644. doi: 10.1038/s41587-023-01688-w. PubMed DOI PMC
Skoda J, Dohnalova K, Chalupsky K, Stahl A, Templin M, Maixnerova J, Micuda S, Grøntved L, Braeuning A, Pavek P. Off-target lipid metabolism disruption by the mouse constitutive androstane receptor ligand TCPOBOP in humanized mice. Biochem Pharmacol. 2022;197:114905. doi: 10.1016/j.bcp.2021.114905. PubMed DOI
Schmid R, Heuckeroth S, Korf A, Smirnov A, Myers O, Dyrlund TS, Bushuiev R, Murray KJ, Hoffmann N, Lu M, et al. Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat Biotechnol. 2023;41:447–449. doi: 10.1038/s41587-023-01690-2. PubMed DOI PMC
Pelantova H, Tomasova P, Sediva B, Pelantová H, Tomášová P, Šedivá B, Neprašová B, Mráziková L, Kuneš J, Železná B, et al. Metabolomic study of aging in fa/fa rats: multiplatform urine and serum analysis. Metabolites. 2023;13:552. doi: 10.3390/metabo13040552. PubMed DOI PMC
Dieterle F, Ross A, Schlotterbeck G, Senn H. Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. Application in 1H NMR metabonomics. Anal Chem. 2006;78:4281–4290. doi: 10.1021/ac051632c. PubMed DOI
Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, Sajed T, Johnson D, Li C, Karu N, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2018;46:D608–D617. doi: 10.1093/nar/gkx1089. PubMed DOI PMC
Trefflich I, Jabakhanji A, Menzel J, Blaut M, Michalsen A, Lampen A, Abraham K, Weikert C. Is a vegan or a vegetarian diet associated with the microbiota composition in the gut? Results of a new cross-sectional study and systematic review. Crit Rev Food Sci Nutr. 2020;60:2990–3004. doi: 10.1080/10408398.2019.1676697. PubMed DOI
Seel W, Reiners S, Kipp K, Simon M, Dawczynski C. Role of dietary fiber and energy intake on gut microbiome in vegans, vegetarians, and flexitarians in comparison to omnivores-insights from the nutritional evaluation (Nueva) study. Nutrients. 2023;15:1914. doi: 10.3390/nu15081914. PubMed DOI PMC
Wen M, Chen S, Zhang Y, Liu Y, Tang C, Sun J, Li X, Ding Y, Lu L, Long K, et al. Diversity and host interaction of the gut microbiota in specific pathogen-free pigs. Front Microbiol. 2024;15:1402807. doi: 10.3389/fmicb.2024.1402807. PubMed DOI PMC
Souilhol C, Gauci I, Feng S, Tardajos Ayllon B, Mahmoud M, Canham L, Fragiadaki M, Serbanovic-Canic J, Ridger V, Evans PC. Homeobox B9 integrates bone morphogenic protein 4 with inflammation at atheroprone sites. Cardiovasc Res. 2020;116:1300–1310. doi: 10.1093/cvr/cvz235. PubMed DOI PMC
Xie C, Teng J, Wang X, Xu B, Niu Y, Ma L, Yan X. Multi-omics analysis reveals gut microbiota-induced intramuscular fat deposition via regulating expression of lipogenesis-associated genes. Anim Nutr. 2022;9:84–99. doi: 10.1016/j.aninu.2021.10.010. PubMed DOI PMC
Png CW, Linden SK, Gilshenan KS, Lindén SK, Zoetendal EG, McSweeney CS, Sly LI, McGuckin MA, Florin THJ. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol. 2010;105:2420–2428. doi: 10.1038/ajg.2010.281. PubMed DOI
Paone P, Cani PD. Mucus barrier, mucins and gut microbiota: the expected slimy partners?. Gut. 2020;69:2232–2243. doi: 10.1136/gutjnl-2020-322260. PubMed DOI PMC
Asnicar F, Berry SE, Valdes AM, Nguyen LH, Piccinno G, Drew DA, Leeming E, Gibson R, Le Roy C, Khatib HA, et al. Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals. Nat Med. 2021;27:321–332. doi: 10.1038/s41591-020-01183-8. PubMed DOI PMC
Paine RT. A note on trophic complexity and community stability. Am Nat. 1969;103:91–93. doi: 10.1086/282586. & DOI
Hausmann B, Pelikan C, Rattei T, Loy A, Pester M, Bailey MJ. Long-term transcriptional activity at zero growth of a cosmopolitan rare biosphere member. mBio. 2019;10, 10.1128/mBio.02189-18. PubMed DOI PMC
Bauchinger F, Seki D, Berry D. Characteristics of putative keystones in the healthy adult human gut microbiota as determined by correlation network analysis. Front Microbiol. 2024;15:1454634. doi: 10.3389/fmicb.2024.1454634. PubMed DOI PMC
Boolani A, Gallivan KM, Ondrak KS, Christopher CJ, Castro HF, Campagna SR, Taylor CM, Luo M, Dowd SE, Smith ML, et al. Trait energy and fatigue may be connected to gut bacteria among young physically active adults: an exploratory study. Nutrients. 2022;14:466. doi: 10.3390/nu14030466. PubMed DOI PMC
Qian H, Zuo Y, Wen S, Wang X, Liu Y, Li T. Impact of exercise training on gut microbiome imbalance in obese individuals: a study based on Mendelian randomization analysis. Front Physiol 2023. 2024;14:1264931. doi: 10.3389/fphys.2023.1264931. PubMed DOI PMC
Zhao Y, Li C, Wu K, Chen H, Wang Q, Xiao Y, Yao S, Hong A, Zhang M, Lei S, et al. Exploring the impact of short term travel on gut microbiota and probiotic bacteria mediated stability. Biomedicines. 2024;12:1378. doi: 10.3390/biomedicines12071378. PubMed DOI PMC
Kenna JE, Chua EG, Bakeberg M, Tay A, McGregor S, Gorecki A, Horne M, Marshall B, Mastaglia FL, Anderton RS. Changes in the gut microbiome and predicted functional metabolic effects in an Australian Parkinson's disease cohort. Front Neurosci. 2021;15:756951. doi: 10.3389/fnins.2021.756951. PubMed DOI PMC
Blakeley-Ruiz JA, Bartlett A, McMillan AS, Awan A, Walsh MV, Meyerhoffer AK, Vintila S, Maier JL, Richie TG, Theriot CM, et al. Dietary protein source alters gut microbiota composition and function. ISME J. 2025;19. doi: 10.1093/ismejo/wraf048. PubMed DOI PMC
Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS. Diet-induced extinctions in the gut microbiota compound over generations. Nature. 2016;529:212–215. doi: 10.1038/nature16504. PubMed DOI PMC
Aaslyng MD, Dam AB, Petersen IL, Christoffersen T. Protein content and amino acid composition in the diet of Danish vegans: a cross-sectional study. BMC Nutr. 2023;9:131. doi: 10.1186/s40795-023-00793-y. PubMed DOI PMC
Weber M, Fuchs TM. Metabolism in the niche: a large-scale genome-based survey reveals inositol utilization to be widespread among soil, commensal, and pathogenic bacteria. Microbiol Spectr. 2022;10:e0201322. doi: 10.1128/spectrum.02013-22. PubMed DOI PMC
Pata MO, Hannun YA, Ng CK. Plant sphingolipids: decoding the enigma of the Sphinx. New Phytol. 2010;185:611–630. doi: 10.1111/j.1469-8137.2009.03123.x. PubMed DOI PMC
Sperling P, Heinz E. Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta. 2003;1632:1–15. doi: 10.1016/S1388-1981(03)00033-7. PubMed DOI
Schlitt A, Blankenberg S, Yan D, von Gizycki H, Buerke M, Werdan K, Bickel C, Lackner KJ, Meyer J, Rupprecht HJ, et al. Further evaluation of plasma sphingomyelin levels as a risk factor for coronary artery disease. Nutr Metab (Lond). 2006;3:5. doi: 10.1186/1743-7075-3-5. PubMed DOI PMC
Jiang XC, Paultre F, Pearson TA, Reed RG, Francis CK, Lin M, Berglund L, Tall AR. Plasma sphingomyelin level as a risk factor for coronary artery disease. Arterioscler Thromb Vasc Biol. 2000;20:2614–2618. doi: 10.1161/01.ATV.20.12.2614. PubMed DOI
Bismuth J, Lin P, Yao Q, Chen C. Ceramide: a common pathway for atherosclerosis?. Atherosclerosis. 2008;196:497–504. doi: 10.1016/j.atherosclerosis.2007.09.018. PubMed DOI PMC
Starnes JW, Parry TL, O'Neal SK, O’Neal S, Bain J, Muehlbauer M, Honcoop A, Ilaiwy A, Christopher P, Patterson C, et al. Exercise-induced alterations in skeletal muscle, heart, liver, and serum metabolome identified by non-targeted metabolomics analysis. Metabolites. 2017;7:40. doi: 10.3390/metabo7030040. PubMed DOI PMC
Laaksonen R, Ekroos K, Sysi-Aho M, Hilvo M, Vihervaara T, Kauhanen D, Suoniemi M, Hurme R, März W, Scharnagl H, et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur Heart J. 2016;37:1967–1976. doi: 10.1093/eurheartj/ehw148. PubMed DOI PMC
Steffen LM, Vessby B, Jacobs DR, Jr, Steinberger J, Moran A, Hong C, Sinaiko AR. Serum phospholipid and cholesteryl ester fatty acids and estimated desaturase activities are related to overweight and cardiovascular risk factors in adolescents. Int J Obes (Lond). 2008;32:1297–1304. doi: 10.1038/ijo.2008.89. PubMed DOI PMC
Rebholz CM, Yu B, Zheng Z, Chang P, Tin A, Köttgen A, Wagenknecht LE, Coresh J, Boerwinkle E, Selvin E. Serum metabolomic profile of incident diabetes. Diabetologia. 2018;61:1046–1054. doi: 10.1007/s00125-018-4573-7. PubMed DOI PMC
Bogl LH, Kaye SM, Ramo JT, Rämö JT, Kangas AJ, Soininen P, Hakkarainen A, Lundbom J, Ortega-Alonso A, Rissanen A, et al. Abdominal obesity and circulating metabolites: a twin study approach. Metabolism. 2016;65:111–121. doi: 10.1016/j.metabol.2015.10.027. PubMed DOI
Floegel A, Stefan N, Yu Z, Mühlenbruch K, Drogan D, Joost H, Fritsche A, Häring H, Hrabě de Angelis M, Peters A, et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes. 2013;62:639–648. doi: 10.2337/db12-0495. PubMed DOI PMC
Nokhoijav E, Guba A, Kumar A, Kunkli B, Kalló G, Káplár M, Somodi S, Garai I, Csutak A, Tóth N, et al. Metabolomic analysis of serum and tear samples from patients with obesity and type 2 diabetes mellitus. Int J Mol Sci. 2022;23:4534. doi: 10.3390/ijms23094534. PubMed DOI PMC
Duft RG, Castro A, Bonfante ILP, Brunelli DT, Chacon-Mikahil MPT, Cavaglieri CR. Metabolomics approach in the investigation of metabolic changes in obese men after 24 weeks of combined training. J Proteome Res. 2017;16:2151–2159. doi: 10.1021/acs.jproteome.6b00967. PubMed DOI
Duft RG, Castro A, Bonfante ILP, Lopes WA, da Silva LR, Chacon-Mikahil MPT, Leite N, Cavaglieri CR. Altered metabolomic profiling of overweight and obese adolescents after combined training is associated with reduced insulin resistance. Sci Rep. 2020;10:16880. doi: 10.1038/s41598-020-73943-y. PubMed DOI PMC
Berton R, Conceicao MS, Libardi CA, Conceição MS, Canevarolo RR, Gáspari AF, Chacon-Mikahil MPT, Zeri AC, Cavaglieri CR. Metabolic time-course response after resistance exercise: a metabolomics approach. J Sports Sci. 2017;35:1211–1218. doi: 10.1080/02640414.2016.1218035. PubMed DOI
Alves A, Bassot A, Bulteau AL, Pirola L, Morio B. Glycine metabolism and its alterations in obesity and metabolic diseases. Nutrients. 2019;11:1356. doi: 10.3390/nu11061356. PubMed DOI PMC
Carter MM, Zeng X, Ward CP, et al. A gut pathobiont regulates circulating glycine and host metabolism in a twin study comparing vegan and omnivorous diets. medRxiv. 2025.
Manghi P, Bhosle A, Wang K, Marconi R, Selma-Royo M, Ricci L, Asnicar F, Golzato D, Ma W, Hang D, et al. Coffee consumption is associated with intestinal Lawsonibacter asaccharolyticus abundance and prevalence across multiple cohorts. Nat Microbiol. 2024;9:3120–3134. doi: 10.1038/s41564-024-01858-9. PubMed DOI PMC
Nutrition research must go local . Nat Med. 2025;31:1371. doi: 10.1038/s41591-025-03748-x. PubMed DOI