Semilichen, an unjustly neglected symbiotic system between green biofilms and true lichens

. 2025 Dec 08 ; 16 (1) : 927. [epub] 20251208

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41361240

Grantová podpora
67985939 Akademie Věd České Republiky

Odkazy

PubMed 41361240
PubMed Central PMC12783798
DOI 10.1038/s41598-025-30542-z
PII: 10.1038/s41598-025-30542-z
Knihovny.cz E-zdroje

Symbiotic systems of photosynthetic microorganisms and fungi are widespread in terrestrial biomes and lichens are probably the most advanced and complex. Conversely, the least complex systems are "green biofilms" with a completely unexplored mycobiome. We describe here a new system intermediate between green biofilms and lichens-semilichens. Light and fluorescence microscopy, eDNA sequencing, molecular phylogeny, Chlorophyll a fluorescence and 13C labelling/metabolomics were used to study algal and fungal identity, morphology and physiology of the symbiosis. Tight contact between algae and a single predominant fungus (mycobiont) is revealed in semilichens. The algae are from the symbiotic lineages of Trebouxiophyceae and Ulvophyceae, the fungi belong to Arthoniomycetes, Dothideomycetes, Eurotiomycetes, Lecanoromycetes and Lichinomycetes. Algae are alive and perform substantial photosynthetic activity. 13C labelled photosynthates are partially converted into specific fungal polyols (arabitol, mannitol) demonstrating the C-flow from algae to fungi. The new symbiotic system was defined and compared with other terrestrial algal-fungal symbioses. It is characterized by minimalist environmental requirements and extremely low production of biomass. As a result, it also inhabits environments unfavourable for lichens. Our research supports the hypothesis that the long-term existence of algae and fungi in terrestrial conditions affected by frequent and repeated drying is likely dependent on their mutual coexistence.

Zobrazit více v PubMed

Bonito, G. Ecology and evolution of algal–fungal symbioses. PubMed DOI

Freystein, K. & Reisser, W. 2010. Green Biofilms on Tree Barks: More than Just Algae. In: Seckbach J, Grube M, eds. Symbioses and Stress. Springer, 557–573 (2010) 10.1007/978-90-481-9449-0.

Ettl, H. & Gärtner, G. Syllabus der Flechtenalgen. 2–3 (1995).

Spribille, T., Resl, P., Stanton, D. E. & Tagirdzhanova, G. Evolutionary biology of lichen symbioses. PubMed DOI

Honegger, R. Developmental biology of lichens. PubMed DOI

Gustavs, L., Görs, M. & Karsten, U. Polyol patterns in biofilm-forming aeroterrestrial green algae (Trebouxiophyceae, Chlorophyta). PubMed DOI

Gustavs, L., Eggert, A., Michalik, D. & Karsten, U. Physiological and biochemical responses of green microalgae from different habitats to osmotic and matric stress. PubMed DOI

Feige, G. & Kremer, B. Unusual carbohydrate pattern in Trentepohlia species. DOI

Lewis, D. H. & Smith, D. C. Sugar alcohols (Polyols) in fungi and green plants: II. methods of detection and quantitative estimation in plant extracts. DOI

Richardson, D. H. S. & Smith, D. C. Lichen physiology: IX. Carbohydrate movement from The Trebouxia symbiobr of Xanthoria aureola to the fungus. DOI

Aras, S. & Cansaran, D. Isolation of DNA for sequence analysis from herbarium material of some lichen specimens.

Andrews, S. et al. FastQC: a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).

Bálint, M., Schmidt, P. A., Sharma, R., Thines, M. & Schmitt, I. An Illumina metabarcoding pipeline for fungi. PubMed DOI PMC

Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm: Robust and fast clustering method for amplicon-based studies.

Větrovský, T., Baldrian, P. & Morais, D. SEED 2: A user-friendly platform for amplicon high-throughput sequencing data analyses. in

Nguyen, L. T., Schmidt, H. A., Haeseler, A. V. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. PubMed DOI PMC

Vondrák, J. et al. Alcobiosis, an algal-fungal association on the threshold of lichenisation.

Kubásek, J. et al. Moss stomata do not respond to light and CO PubMed DOI

Gilbert, O. L. Studies along the edge of a lichen desert. DOI

Drew, E. A. & Smith, D. C. Studies in the physiology of lichens: VIII. Movement of glucose from alga to fungus during photosynthesis in the thallus of Peltigera Popydactyla. DOI

Schwendener, S.

Lücking, R., Leavitt, S. D. & Hawksworth, D. L.

Pichler, G., Muggia, L., Carniel, F. C., Grube, M. & Kranner, I. How to build a lichen: from metabolite release to symbiotic interplay. PubMed DOI PMC

Lücking, R. & Spribille, T.

Zukal, H. Halbflechten.

Vondrák, J. et al. From Cinderella to princess. DOI

Díaz-Escandón, D. et al. Genome-level analyses resolve an ancient lineage of symbiotic ascomycetes. PubMed DOI

Stenroos, S. et al. Multiple origins of symbioses between ascomycetes and bryophytes suggested by a five-gene phylogeny. PubMed DOI

Eckstein, J. Assoziierter Ascomycet auf Torfmoosen Einführung Methodik Die Untersuchungen wurden mit einer Stereolupe und einem Standard-Lichtmikroskop bei.

Kohlmeyer, J., Hawksworth, D. L. & Volkmann-Kohlmeyer, B. Observations on two marine and maritime “borderline” lichens: Mastodia tessellata and Collemopsidium pelvetiae. DOI

Pérez-Ortega, S., Garrido-Benavent, I., Grube, M., Olmo, R. & de los Ríos, A. Hidden diversity of marine borderline lichens and a new order of fungi: Collemopsidiales (Dothideomyceta). DOI

Lücking, R. et al. Eremithallus costaricensis (Ascomycota: Lichinomycetes: Eremothallales), a new fungal lineage with a novel lichen symbiotic lifestyle discovered in an urban relict forest in Costa Rica.

Kulichová, J., Škaloud, P. & Neustupa, J. Molecular diversity of green corticolous microalgae from two sub-Mediterranean European localities. DOI

Štifterová, A. & Neustupa, J. Community structure of corticolous microalgae within a single forest stand: Evaluating the effects of bark surface ph and tree species. DOI

Štifterová, A. & Neustupa, J. Small-scale variation of corticolous microalgal covers: Effects of microhabitat, season, and space. DOI

Freudenthal, J., Dumack, K., Schaffer, S., Schlegel, M. & Bonkowski, M. Algae-fungi symbioses and bacteria-fungi co-exclusion drive tree species-specific differences in canopy bark microbiomes. PubMed DOI PMC

Geitler, L. Morphologie, Entwicklungsgeschichte und Systematik neuerer bemerkenswerter aerophytischer Algen aus Wien.

Gärtner, G. Beitrag zur Systematik und Ökologie von Rindenalgen. (1974).

Chen, C. C. et al. A thallus-forming N-fixing fungus-cyanobacterium symbiosis from subtropical forests.

Gorbushina, A. A., Beck, A. & Schulte, A. Microcolonial rock inhabiting fungi and lichen photobionts: Evidence for mutualistic interactions. PubMed DOI

Gostinĉar, C., Muggia, L. & Grube, M. Polyextremotolerant black fungi: Oligotrophism, adaptive potential, and a link to lichen symbioses. PubMed DOI PMC

Beckett, R. P., Zavarzina, A. G. & Liers, C. Oxidoreductases and cellulases in lichens: Possible roles in lichen biology and soil organic matter turnover. PubMed DOI

Laufer, Z., Beckett, R. P., Minibayeva, F. V., Luthje, S. & Bottger, M. Diversity of laccases from lichens in suborder Peltigerineae. DOI

Beckett, R. P. et al. Role of laccases and peroxidases in saprotrophic activities in the lichen Usnea undulata. DOI

Wedin, M., Döring, H. & Gilenstam, G. Saprotrophy and lichenization as options for the same fungal species on different substrata: Environmental plasticity and fungal lifestyles in the Stictis-Conotrema complex. DOI

Muggia, L., Baloch, E., Stabentheiner, E., Grube, M. & Wedin, M. Photobiont association and genetic diversity of the optionally lichenized fungus Schizoxylon albescens. PubMed DOI

Cáceres, M. E. D. S., Lücking, R., Schumm, F. & Aptroot, A. A lichenized family yields another renegade lineage: Papilionovela albothallina is the first non-lichenized, saprobic member of Graphidaceae subfam. DOI

Thiyagaraja, V. et al. Evolution of non-lichenized, saprotrophic species of Arthonia (Ascomycota, Arthoniales) and resurrection of Naevia, with notes on Mycoporum. DOI

Wijayawardene, N. N. et al. Outline of fungi and fungus-like taxa. DOI

Smith, D. C. Studies in the physiology of lichens. IV. Carbohydrates in Peltigera polydactyla and the utilization of absorbed glucose. DOI

Palmqvist, K., Dahlman, L., Jonsson, A. & Nash, T. H. III. The carbon economy of lichens. in

Smith, D. C. Mechanisms of nutrient movement between the lichen symbionts. in

Farrar, J. F. Ecological physiology of the lichen Hypogymnia physodes II. Effects of wetting and drying cycles and the concept of ‘Physiological buffering’. DOI

Farrar, J. F. Ecological physiology of the lichen Hypogymnia Physodes I. some effects of constant water saturation. DOI

Smith, D. C. Is a lichen a good model of interactions in nutrient-limited environments? in

Motiejûnaitë, J. & Jucevièienë, N. Epidemiology of the fungus Athelia arachnoidea in epiphytic communities of broadleaved forests under strong anthropogenic impact.

Candotto Carniel, F. et al. How dry is dry? Molecular mobility in relation to thallus water content in a lichen. PubMed DOI

Gasulla, F., Del Campo, E. M., Casano, L. M. & Guéra, A. Advances in understanding of desiccation tolerance of lichens and lichen-forming algae. PubMed DOI PMC

Candotto Carniel, F., Zanelli, D., Bertuzzi, S. & Tretiach, M. Desiccation tolerance and lichenization: A case study with the aeroterrestrial microalga PubMed DOI

Kosugi, M. et al. Responses to desiccation stress in lichens are different from those in their photobionts. PubMed DOI

Wieners, P. C., Mudimu, O. & Bilger, W. Survey of the occurrence of desiccation-induced quenching of basal fluorescence in 28 species of green microalgae. PubMed DOI

Kosugi, M. et al. Arabitol provided by lichenous fungi enhances ability to dissipate excess light energy in a symbiotic green alga under desiccation. PubMed DOI

ten Veldhuis, M. C., Ananyev, G. & Dismukes, G. C. Symbiosis extended: Exchange of photosynthetic O PubMed DOI PMC

Puginier, C. et al. Phylogenomics reveals the evolutionary origins of lichenization in chlorophyte algae. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...