Semilichen, an unjustly neglected symbiotic system between green biofilms and true lichens
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
67985939
Akademie Věd České Republiky
PubMed
41361240
PubMed Central
PMC12783798
DOI
10.1038/s41598-025-30542-z
PII: 10.1038/s41598-025-30542-z
Knihovny.cz E-zdroje
- Klíčová slova
- 13C isotope labelling, Algal-fungal symbiosis, Anhydrobiosis, Metabolomics, Photosynthesis, Trebouxiophyceae,
- MeSH
- biofilmy * růst a vývoj MeSH
- Chlorophyta * fyziologie genetika MeSH
- fotosyntéza MeSH
- fylogeneze MeSH
- houby * fyziologie genetika MeSH
- lišejníky * fyziologie MeSH
- symbióza * MeSH
- Publikační typ
- časopisecké články MeSH
Symbiotic systems of photosynthetic microorganisms and fungi are widespread in terrestrial biomes and lichens are probably the most advanced and complex. Conversely, the least complex systems are "green biofilms" with a completely unexplored mycobiome. We describe here a new system intermediate between green biofilms and lichens-semilichens. Light and fluorescence microscopy, eDNA sequencing, molecular phylogeny, Chlorophyll a fluorescence and 13C labelling/metabolomics were used to study algal and fungal identity, morphology and physiology of the symbiosis. Tight contact between algae and a single predominant fungus (mycobiont) is revealed in semilichens. The algae are from the symbiotic lineages of Trebouxiophyceae and Ulvophyceae, the fungi belong to Arthoniomycetes, Dothideomycetes, Eurotiomycetes, Lecanoromycetes and Lichinomycetes. Algae are alive and perform substantial photosynthetic activity. 13C labelled photosynthates are partially converted into specific fungal polyols (arabitol, mannitol) demonstrating the C-flow from algae to fungi. The new symbiotic system was defined and compared with other terrestrial algal-fungal symbioses. It is characterized by minimalist environmental requirements and extremely low production of biomass. As a result, it also inhabits environments unfavourable for lichens. Our research supports the hypothesis that the long-term existence of algae and fungi in terrestrial conditions affected by frequent and repeated drying is likely dependent on their mutual coexistence.
Department of Botany Charles University Benátská 2 12800 Praha 2 Czech Republic
Institute of Botany of the Czech Academy of Sciences Zámek 1 25243 Průhonice Czech Republic
Zobrazit více v PubMed
Bonito, G. Ecology and evolution of algal–fungal symbioses. PubMed DOI
Freystein, K. & Reisser, W. 2010. Green Biofilms on Tree Barks: More than Just Algae. In: Seckbach J, Grube M, eds. Symbioses and Stress. Springer, 557–573 (2010) 10.1007/978-90-481-9449-0.
Ettl, H. & Gärtner, G. Syllabus der Flechtenalgen. 2–3 (1995).
Spribille, T., Resl, P., Stanton, D. E. & Tagirdzhanova, G. Evolutionary biology of lichen symbioses. PubMed DOI
Honegger, R. Developmental biology of lichens. PubMed DOI
Gustavs, L., Görs, M. & Karsten, U. Polyol patterns in biofilm-forming aeroterrestrial green algae (Trebouxiophyceae, Chlorophyta). PubMed DOI
Gustavs, L., Eggert, A., Michalik, D. & Karsten, U. Physiological and biochemical responses of green microalgae from different habitats to osmotic and matric stress. PubMed DOI
Feige, G. & Kremer, B. Unusual carbohydrate pattern in Trentepohlia species. DOI
Lewis, D. H. & Smith, D. C. Sugar alcohols (Polyols) in fungi and green plants: II. methods of detection and quantitative estimation in plant extracts. DOI
Richardson, D. H. S. & Smith, D. C. Lichen physiology: IX. Carbohydrate movement from The Trebouxia symbiobr of Xanthoria aureola to the fungus. DOI
Aras, S. & Cansaran, D. Isolation of DNA for sequence analysis from herbarium material of some lichen specimens.
Andrews, S. et al. FastQC: a quality control tool for high throughput sequence data. https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).
Bálint, M., Schmidt, P. A., Sharma, R., Thines, M. & Schmitt, I. An Illumina metabarcoding pipeline for fungi. PubMed DOI PMC
Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm: Robust and fast clustering method for amplicon-based studies.
Větrovský, T., Baldrian, P. & Morais, D. SEED 2: A user-friendly platform for amplicon high-throughput sequencing data analyses. in
Nguyen, L. T., Schmidt, H. A., Haeseler, A. V. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. PubMed DOI PMC
Vondrák, J. et al. Alcobiosis, an algal-fungal association on the threshold of lichenisation.
Kubásek, J. et al. Moss stomata do not respond to light and CO PubMed DOI
Gilbert, O. L. Studies along the edge of a lichen desert. DOI
Drew, E. A. & Smith, D. C. Studies in the physiology of lichens: VIII. Movement of glucose from alga to fungus during photosynthesis in the thallus of Peltigera Popydactyla. DOI
Schwendener, S.
Lücking, R., Leavitt, S. D. & Hawksworth, D. L.
Pichler, G., Muggia, L., Carniel, F. C., Grube, M. & Kranner, I. How to build a lichen: from metabolite release to symbiotic interplay. PubMed DOI PMC
Lücking, R. & Spribille, T.
Zukal, H. Halbflechten.
Vondrák, J. et al. From Cinderella to princess. DOI
Díaz-Escandón, D. et al. Genome-level analyses resolve an ancient lineage of symbiotic ascomycetes. PubMed DOI
Stenroos, S. et al. Multiple origins of symbioses between ascomycetes and bryophytes suggested by a five-gene phylogeny. PubMed DOI
Eckstein, J. Assoziierter Ascomycet auf Torfmoosen Einführung Methodik Die Untersuchungen wurden mit einer Stereolupe und einem Standard-Lichtmikroskop bei.
Kohlmeyer, J., Hawksworth, D. L. & Volkmann-Kohlmeyer, B. Observations on two marine and maritime “borderline” lichens: Mastodia tessellata and Collemopsidium pelvetiae. DOI
Pérez-Ortega, S., Garrido-Benavent, I., Grube, M., Olmo, R. & de los Ríos, A. Hidden diversity of marine borderline lichens and a new order of fungi: Collemopsidiales (Dothideomyceta). DOI
Lücking, R. et al. Eremithallus costaricensis (Ascomycota: Lichinomycetes: Eremothallales), a new fungal lineage with a novel lichen symbiotic lifestyle discovered in an urban relict forest in Costa Rica.
Kulichová, J., Škaloud, P. & Neustupa, J. Molecular diversity of green corticolous microalgae from two sub-Mediterranean European localities. DOI
Štifterová, A. & Neustupa, J. Community structure of corticolous microalgae within a single forest stand: Evaluating the effects of bark surface ph and tree species. DOI
Štifterová, A. & Neustupa, J. Small-scale variation of corticolous microalgal covers: Effects of microhabitat, season, and space. DOI
Freudenthal, J., Dumack, K., Schaffer, S., Schlegel, M. & Bonkowski, M. Algae-fungi symbioses and bacteria-fungi co-exclusion drive tree species-specific differences in canopy bark microbiomes. PubMed DOI PMC
Geitler, L. Morphologie, Entwicklungsgeschichte und Systematik neuerer bemerkenswerter aerophytischer Algen aus Wien.
Gärtner, G. Beitrag zur Systematik und Ökologie von Rindenalgen. (1974).
Chen, C. C. et al. A thallus-forming N-fixing fungus-cyanobacterium symbiosis from subtropical forests.
Gorbushina, A. A., Beck, A. & Schulte, A. Microcolonial rock inhabiting fungi and lichen photobionts: Evidence for mutualistic interactions. PubMed DOI
Gostinĉar, C., Muggia, L. & Grube, M. Polyextremotolerant black fungi: Oligotrophism, adaptive potential, and a link to lichen symbioses. PubMed DOI PMC
Beckett, R. P., Zavarzina, A. G. & Liers, C. Oxidoreductases and cellulases in lichens: Possible roles in lichen biology and soil organic matter turnover. PubMed DOI
Laufer, Z., Beckett, R. P., Minibayeva, F. V., Luthje, S. & Bottger, M. Diversity of laccases from lichens in suborder Peltigerineae. DOI
Beckett, R. P. et al. Role of laccases and peroxidases in saprotrophic activities in the lichen Usnea undulata. DOI
Wedin, M., Döring, H. & Gilenstam, G. Saprotrophy and lichenization as options for the same fungal species on different substrata: Environmental plasticity and fungal lifestyles in the Stictis-Conotrema complex. DOI
Muggia, L., Baloch, E., Stabentheiner, E., Grube, M. & Wedin, M. Photobiont association and genetic diversity of the optionally lichenized fungus Schizoxylon albescens. PubMed DOI
Cáceres, M. E. D. S., Lücking, R., Schumm, F. & Aptroot, A. A lichenized family yields another renegade lineage: Papilionovela albothallina is the first non-lichenized, saprobic member of Graphidaceae subfam. DOI
Thiyagaraja, V. et al. Evolution of non-lichenized, saprotrophic species of Arthonia (Ascomycota, Arthoniales) and resurrection of Naevia, with notes on Mycoporum. DOI
Wijayawardene, N. N. et al. Outline of fungi and fungus-like taxa. DOI
Smith, D. C. Studies in the physiology of lichens. IV. Carbohydrates in Peltigera polydactyla and the utilization of absorbed glucose. DOI
Palmqvist, K., Dahlman, L., Jonsson, A. & Nash, T. H. III. The carbon economy of lichens. in
Smith, D. C. Mechanisms of nutrient movement between the lichen symbionts. in
Farrar, J. F. Ecological physiology of the lichen Hypogymnia physodes II. Effects of wetting and drying cycles and the concept of ‘Physiological buffering’. DOI
Farrar, J. F. Ecological physiology of the lichen Hypogymnia Physodes I. some effects of constant water saturation. DOI
Smith, D. C. Is a lichen a good model of interactions in nutrient-limited environments? in
Motiejûnaitë, J. & Jucevièienë, N. Epidemiology of the fungus Athelia arachnoidea in epiphytic communities of broadleaved forests under strong anthropogenic impact.
Candotto Carniel, F. et al. How dry is dry? Molecular mobility in relation to thallus water content in a lichen. PubMed DOI
Gasulla, F., Del Campo, E. M., Casano, L. M. & Guéra, A. Advances in understanding of desiccation tolerance of lichens and lichen-forming algae. PubMed DOI PMC
Candotto Carniel, F., Zanelli, D., Bertuzzi, S. & Tretiach, M. Desiccation tolerance and lichenization: A case study with the aeroterrestrial microalga PubMed DOI
Kosugi, M. et al. Responses to desiccation stress in lichens are different from those in their photobionts. PubMed DOI
Wieners, P. C., Mudimu, O. & Bilger, W. Survey of the occurrence of desiccation-induced quenching of basal fluorescence in 28 species of green microalgae. PubMed DOI
Kosugi, M. et al. Arabitol provided by lichenous fungi enhances ability to dissipate excess light energy in a symbiotic green alga under desiccation. PubMed DOI
ten Veldhuis, M. C., Ananyev, G. & Dismukes, G. C. Symbiosis extended: Exchange of photosynthetic O PubMed DOI PMC
Puginier, C. et al. Phylogenomics reveals the evolutionary origins of lichenization in chlorophyte algae. PubMed DOI PMC