Newcomer to the Calixarene Family: Synthesis and Characterization of Selenacalix[4]arene
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41363782
PubMed Central
PMC12723736
DOI
10.1021/acs.orglett.5c04133
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In this work, we describe a general and efficient fragment condensation method for the synthesis of monoselenacalix[4]arene as a new member of the broad calixarene family. The key fragments were obtained from the starting p-tert-butylphenol by reaction with in situ generated SeCl2 or from its formyl derivative by reaction with SeO2 in pyridine. The availability of both fragments allowed us to test two different independent macrocyclization routes, leading to the final selenacalixarene in good yields. The first successful attempts to immobilize the new system were made, and the basic dynamics of the macrocycles in solution were studied using VT NMR techniques. The selenium analogue of calix[4]arene was successfully immobilized in the cone conformation, suggesting its potential use in supramolecular chemistry.
Zobrazit více v PubMed
Gutsche, C. D. Calixarenes Revisited; Royal Society of Chemistry: London, U.K., 1998; 10.1039/9781847550293. DOI
Gutsche, C. D. Calixarenes: An Introduction; Royal Society of Chemistry: London, U.K., 2008; 10.1039/9781847558190. DOI
Neri, P. ; Sessler, J. L. ; Wang, M. X. . Calixarenes and Beyond; Springer: Berlin, Germany, 2016; 10.1007/978-3-319-31867-7. DOI
Steed, J. W. ; Atwood, J. L. . Supramolecular Chemistry, 3rd ed.; John Wiley & Sons: Hoboken, NJ, 2022.
Beer, P. ; Beer, P. D. ; Barendt, T. A. ; Lim, J. Y. . Supramolecular Chemistry: Fundamentals and Applications; Oxford University Press: Oxford, U.K., 2022.
Mandolini, L. ; Ungaro, R. . Calixarenes in Action; Imperial College Press: London, U.K., 2000.
Kumagai H., Hasegawa M., Miyanari S., Sugawa Y., Sato Y., Hori T., Ueda S., Kamiyama H., Miyano S.. Facile synthesis of p-tert-butylthiacalix[4]arene by the reaction of p-tert-butylphenol with elemental sulfur in the presence of a base. Tetrahedron Lett. 1997;38(22):3971–3972. doi: 10.1016/S0040-4039(97)00792-2. DOI
Kumar R., Lee Y. O., Bhalla V., Kumar M., Kim J. S.. Recent developments of thiacalixarene based molecular motifs. Chem. Soc. Rev. 2014;43(13):4824–4870. doi: 10.1039/c4cs00068d. PubMed DOI
Kundrat O., Kroupa J., Bohm S., Budka J., Eigner V., Lhotak P.. Meta Nitration of Thiacalixarenes. J. Org. Chem. 2010;75(24):8372–8375. doi: 10.1021/jo1013492. PubMed DOI
Kundrat O., Dvorakova H., Eigner V., Lhotak P.. Uncommon Regioselectivity in the Thiacalix[4]arene Series: Gross Formylation of the Cone Conformer. J. Org. Chem. 2010;75(2):407–411. doi: 10.1021/jo902240h. PubMed DOI
Kortus D., Miksatko J., Kundrat O., Babor M., Eigner V., Dvorakova H., Lhotak P.. Chemistry of 2,14-Dithiacalix[4]arene: Alkylation and Conformational Behavior of Peralkylated Products. J. Org. Chem. 2019;84(18):11572–11580. doi: 10.1021/acs.joc.9b01493. PubMed DOI
Kortus D., Kundrat O., Tlusty M., Cejka J., Dvorakova H., Lhotak P.. Inherent chirality through a simple dialkylation of 2,14-dithiacalix[4]arene. New J. Chem. 2020;44(34):14496–14504. doi: 10.1039/D0NJ03468A. DOI
Kortus D., Kundrat O., Cejka J., Dvorakova H., Lhotak P.. Chemistry of 2,14-Dithiacalix[4]arene: Searching for the Missing Fifth Conformer. J. Org. Chem. 2021;86(14):9788–9801. doi: 10.1021/acs.joc.1c01173. PubMed DOI
Hudson, R. ; Katz, J. L. . Oxacalixarenes. In Calixarenes and Beyond; Neri, P. , Sessler, J. L. , Wang, M.-X. , Eds.; Springer International Publishing: Berlin, Germany, 2016; pp 399–420.
Tsue, H. ; Oketani, R. . Azacalixarene: An Ever-Growing Class in the Calixarene Family. In Advances in Organic Crystal Chemistry: Comprehensive Reviews 2015, Tamura, R. , Miyata, M. , Eds.; Springer Japan: Tokyo, Japan, 2015; pp 241–261.
Wang M.-X.. Nitrogen and Oxygen Bridged Calixaromatics: Synthesis, Structure, Functionalization, and Molecular Recognition. Acc. Chem. Res. 2012;45(2):182–195. doi: 10.1021/ar200108c. PubMed DOI
Marcos P. M., Cragg P. J.. Homooxacalixarene-based supramolecular receptors for cations and anions. Coordination Chemistry Research. 2025;2:100012. doi: 10.1016/j.cocr.2025.100012. DOI
Organoselenium Compounds in Biology and Medicine: Synthesis, Biological and Therapeutic Treatments; Jain, V. K. , Priyadarsini, K. I. , Eds.; Royal Society of Chemistry: London, U.K., 2017; 10.1039/9781788011907. DOI
Gallo-Rodriguez C., Rodriguez J. B.. Organoselenium Compounds in Medicinal Chemistry. ChemMedChem. 2024;19(17):e202400063. doi: 10.1002/cmdc.202400063. PubMed DOI
Mugesh G., du Mont W.-W., Sies H.. Chemistry of biologically important synthetic organoselenium compounds. Chem. Rev. 2001;101(7):2125–2180. doi: 10.1021/cr000426w. PubMed DOI
Sonego J. M., de Diego S. I., Szajnman S. H., Gallo-Rodriguez C., Rodriguez J. B.. Organoselenium Compounds: Chemistry and Applications in Organic Synthesis. Chem. - Eur. J. 2023;29(52):e202300030. doi: 10.1002/chem.202300030. PubMed DOI
Beletskaya I. P., Ananikov V. P.. Transition-Metal-Catalyzed C–S, C–Se, and C–Te Bond Formation via Cross-Coupling and Atom-Economic Addition Reactions. Chem. Rev. 2011;111(3):1596–1636. doi: 10.1021/cr100347k. PubMed DOI
Kundu D.. Synthetic strategies for aryl/heterocyclic selenides and tellurides under transition-metal-catalyst free conditions. RSC Adv. 2021;11:6682–6698. doi: 10.1039/D0RA10629A. PubMed DOI PMC
Taniguchi N.. Mono- or Dichalcogenation of Aryl Iodide with Sulfur or Selenium by Copper Catalyst and Aluminum. Synlett. 2005;2005(11):1687–1690. doi: 10.1055/s-2005-871545. DOI
Zhang S., Karra K., Heintz C., Kleckler E., Jin J.. Microwave-assisted Cu2O-catalyzed one-pot synthesis of symmetrical diaryl selenides from elemental selenium. Tetrahedron Lett. 2013;54(35):4753–4755. doi: 10.1016/j.tetlet.2013.06.117. DOI
Ma Y.-T., Liu M.-C., Zhou Y.-B., Wu H.-Y.. Synthesis of Organoselenium Compounds with Elemental Selenium. Adv. Synth. Catal. 2021;363(24):5386–5406. doi: 10.1002/adsc.202101227. DOI
Lin H. M., Tang Y., Li Z. H., Liu K. D., Yang J., Zhang Y. M.. A novel and efficient synthesis of selenides. ARKIVOC. 2013;2012:146–156. doi: 10.3998/ark.5550190.0013.814. DOI
Zhao H., Hao W., Xi Z., Cai M.. Palladium-catalyzed cross-coupling of PhSeSnBu3 with aryl and alkyl halides in ionic liquids: a practical synthetic method of diorganyl selenides. New J. Chem. 2011;35(11):2661–2665. doi: 10.1039/c1nj20514e. DOI
Wang H., Chen S., Liu G., Guan H., Zhong D., Cai J., Zheng Z., Mao J., Walsh P. J.. Synthesis of Diaryl Selenides via Palladium-Catalyzed Debenzylative Cross-Coupling of Aryl Benzyl Selenides with Aryl Bromides. Organometallics. 2018;37(21):4086–4091. doi: 10.1021/acs.organomet.8b00644. DOI
Ricordi V. G., Freitas C. S., Perin G., Lenardão E. J., Jacob R. G., Savegnago L., Alves D.. Glycerol as a recyclable solvent for copper-catalyzed cross-coupling reactions of diaryl diselenides with aryl boronic acids. Green Chem. 2012;14(4):1030–1034. doi: 10.1039/c2gc16427b. DOI
Ren K., Wang M., Wang L.. Lewis acid InBr3-catalyzed arylation of diorgano diselenides and ditellurides with arylboronic acids. Org. Biomol. Chem. 2009;7(23):4858–4861. doi: 10.1039/b914533h. PubMed DOI
Sahani A. J., Jayaram R. V., Burange A. S.. C-Se cross-coupling of arylboronic acids and diphenyldiselenides over non precious transition metal (Fe, Cu and Ni) complexes. Mol. Catal. 2018;450:14–18. doi: 10.1016/j.mcat.2018.02.028. DOI
Kumar R. U., Reddy K. H. V., Satish G., Swapna K., Nageswar Y.. Metal free synthesis of diaryl selenides using SeO2 as a selenium source. Tetrahedron Lett. 2016;57(37):4138–4141. doi: 10.1016/j.tetlet.2016.07.075. DOI
Kundu D., Ahammed S., Ranu B. C.. Visible light photocatalyzed direct conversion of aryl-/heteroarylamines to selenides at room temperature. Org. Lett. 2014;16(6):1814–1817. doi: 10.1021/ol500567t. PubMed DOI
Kundu D., Ahammed S., Ranu B. C.. Microwave-assisted reaction of aryl diazonium fluoroborate and diaryl dichalcogenides in dimethyl carbonate: a general procedure for the synthesis of unsymmetrical diaryl chalcogenides. Green Chem. 2012;14(7):2024–2030. doi: 10.1039/c2gc35328h. DOI
Yaqoob Bhat M., Kumar A., Naveed Ahmed Q.. Selenium dioxide promoted dinitrogen extrusion/direct selenation of arylhydrazines and anilines. Tetrahedron. 2020;76(16):131105. doi: 10.1016/j.tet.2020.131105. DOI
Shu S., Fan Z., Yao Q., Zhang A.. Ru(II)-Catalyzed Direct C(sp2)–H Activation/Selenylation of Arenes with Selenyl Chlorides. J. Org. Chem. 2016;81(13):5263–5269. doi: 10.1021/acs.joc.6b00634. PubMed DOI
Qiu R., Reddy V. P., Iwasaki T., Kambe N.. The Palladium-Catalyzed Intermolecular C–H Chalcogenation of Arenes. J. Org. Chem. 2015;80(1):367–374. doi: 10.1021/jo502402d. PubMed DOI
Vásquez-Céspedes S., Ferry A., Candish L., Glorius F.. Heterogeneously Catalyzed Direct C–H Thiolation of Heteroarenes. Angew. Chem., Int. Ed. 2015;54(19):5772–5776. doi: 10.1002/anie.201411997. PubMed DOI
Jin W., Zheng P., Law G.-L., Wong W.-T.. Palladium(II)-catalyzed switchable mono-/diselenylation of arenes controlled by solvent effects. J. Organomet. Chem. 2016;812:66–73. doi: 10.1016/j.jorganchem.2015.09.040. DOI
Kumar P., Kashid V. S., Mague J. T., Balakrishna M. S.. An efficient approach for the synthesis of functionalized selenoethers and selenacalix[4]thiophenes, {2,5-(μ-Se)(3,4-dialkoxythiophene)}4. Tetrahedron Lett. 2014;55(38):5232–5235. doi: 10.1016/j.tetlet.2014.08.005. DOI
Paine T. K., Rentschler E., Weyhermüller T., Chaudhuri P.. Polynuclear nickel(II) complexes: preparation and magnetic properties of NiII 4, NiII 5, and NiII 6 species with ligands containing O∩X∩O (X = S, Se or N) donor atoms. Eur. J. Inorg. Chem. 2003;2003(17):3167–3178. doi: 10.1002/ejic.200300164. DOI
Thomas J., Van Rossom W., Van Hecke K., Van Meervelt L., Smet M., Dehaen W.. Synthetic Protocols towards Selenacalix[3]triazines. Synthesis. 2013;45(6):734–742. doi: 10.1055/s-0032-1318265. DOI
Thomas J., Dobrzańska L., Van Meervelt L., Quevedo M. A., Woźniak K., Stachowicz M., Smet M., Maes W., Dehaen W.. Homodiselenacalix[4]arenes: Molecules with Unique Channelled Crystal Structures. Chem. - Eur. J. 2016;22(3):979–987. doi: 10.1002/chem.201503385. PubMed DOI
Dyballa, K. M. ; Franke, R. ; Fridag, D. ; Mirion, M. ; Quell, T. ; Waldvogel, S. R. ; Boerner, A. ; Selent, D. ; Weilbeer, C. . Protected selenobiphenols and method for the production thereof as ligands for rhodium-catalyzed alkene hydroformylation. WO Patent 2016/139245 A1, 2016.
Maaninen A., Chivers T., Parvez M., Pietikäinen J., Laitinen R. S.. Syntheses of THF Solutions of SeX2 (X = Cl, Br) and a New Route to Selenium Sulfides Se n S8–n (n = 1–5): X-ray Crystal Structures of SeCl2(tht)2 and SeCl2·tmtu. Inorg. Chem. 1999;38(18):4093–4097. doi: 10.1021/ic981430h. DOI
Knight P. D., O’Shaughnessy P. N., Munslow I. J., Kimberley B. S., Scott P.. Biaryl-bridged Schiff base complexes of zirconium alkyls: synthesis structure and stability. J. Organomet. Chem. 2003;683(1):103–113. doi: 10.1016/S0022-328X(03)00455-8. DOI
Kortus D., Moravec O., Varga H., Churý M., Mamleev K., Čejka J., Dvořáková H., Lhoták P.. Synthesis of Monothiacalix[4]arene Using the Fragment Condensation Approach. Molecules. 2025;30(15):3145. doi: 10.3390/molecules30153145. PubMed DOI PMC
Gutsche C. D., Bauer L. J.. Calixarenes. 13. The conformational properties of calix[4]arenes, calix[6]arenes, calix[8]arenes, and oxacalixarenes. J. Am. Chem. Soc. 1985;107(21):6052–6059. doi: 10.1021/ja00307a038. DOI
Lang J., Deckerová V., Czernek J., Lhoták P.. Dynamics of circular hydrogen bond array in calix[4]arene in a nonpolar solvent: a nuclear magnetic resonance study. J. Chem. Phys. 2005;122(4):044506. doi: 10.1063/1.1814971. PubMed DOI