Synthesis of Monothiacalix[4]arene Using the Fragment Condensation Approach
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
23-07154S (P.L.), 21-05926X (J.C.)
Czech Science Foundation
PubMed
40807320
PubMed Central
PMC12348300
DOI
10.3390/molecules30153145
PII: molecules30153145
Knihovny.cz E-zdroje
- Klíčová slova
- bisphenols, calixarene, conformation, flip-flop mechanism, fragment condensation, macrocyclization, synthesis, thiacalixarene, variable temperature NMR,
- Publikační typ
- časopisecké články MeSH
The article describes a simple and scalable preparation of 2-monothiacalix[4]arene 7, the simplest representative of the mixed-bridged (CH2 and S) calix[4]arenes. The synthesis is based on the condensation of linear building blocks (bisphenols), which are relatively readily available, and allows, depending on the conditions, the use of two alternative reaction routes that provide macrocycle 7 in high yield. The dynamic behavior of the basic macrocyclic skeleton was investigated using NMR spectroscopy at variable temperatures. High-temperature measurements showed that compound 7 undergoes a cone-cone equilibrium with activation free energy ΔG# of the inversion process of 63 kJ·mol-1. Interestingly, the same barrier for the oxidized sulfone derivative 14 shows a value of 60 kJ·mol-1, indicating weakened hydrogen bonds at the lower rim of the calixarene. The same was also confirmed at low temperatures, when barriers to changing the direction of the cyclic hydrogen bond arrays (flip-flop mechanism) were determined (compare ΔG# = 44 kJ·mol-1 for 7 vs. ΔG# = 40 kJ·mol-1 for 14).
Zobrazit více v PubMed
Gutsche C.D. Calixarenes: An Introduction. RSC Publishing; Cambridge, UK: 2008. Monographs in Supramolecular Chemistry.
Neri P., Sessler J.L., Wang M.X. Calixarenes and Beyond. Springer; Cham, Switzerland: 2016.
Mandolini L., Ungaro R. Calixarenes in Action. World Scientific Publishing Company; Singapore: 2000.
Asfari Z., Böhmer V., Harrowfield J., Vicens J. Calixarenes 2001. Kluwer Academic Publishers; Dordrecht, The Netherlands: 2001.
Kumagai H., Hasegawa M., Miyanari S., Sugawa Y., Sato Y., Hori T., Ueda S., Kamiyama H., Miyano S. Facile synthesis of p-tert-butylthiacalix[4]arene by the reaction of p-tert-butylphenol with elemental sulfur in the presence of a base. Tetrahedron Lett. 1997;38:3971–3972. doi: 10.1016/S0040-4039(97)00792-2. DOI
Lhoták P. Chemistry of Thiacalixarenes. Eur. J. Org. Chem. 2004;2004:1675–1692. doi: 10.1002/ejoc.200300492. DOI
Morohashi N., Narumi F., Iki N., Hattori T., Miyano S. Thiacalixarenes. Chem. Rev. 2006;106:5291–5316. doi: 10.1021/cr050565j. PubMed DOI
Kumar R., Lee Y.O., Bhalla V., Kumar M., Kim J.S. Recent developments of thiacalixarene based molecular motifs. Chem. Soc. Rev. 2014;43:4824–4870. doi: 10.1039/c4cs00068d. PubMed DOI
Hucko M., Dvorakova H., Eigner V., Lhotak P. 2,14-Dithiacalix[4]arene and its homooxa analogues: Synthesis and dynamic NMR study of conformational behaviour. Chem. Commun. 2015;51:7051–7053. doi: 10.1039/C5CC00819K. PubMed DOI
Kortus D., Krizova K., Dvorakova H., Eigner V., Lhotak P. Synthesis of 2,8-dithiacalix[4]arene based on fragment condensation. Tetrahedron Lett. 2021;69:152924. doi: 10.1016/j.tetlet.2021.152924. DOI
Kortus D., Miksatko J., Kundrat O., Babor M., Eigner V., Dvorakova H., Lhotak P. Chemistry of 2,14-Dithiacalix[4]arene: Alkylation and Conformational Behavior of Peralkylated Products. J. Org. Chem. 2019;84:11572–11580. doi: 10.1021/acs.joc.9b01493. PubMed DOI
Kortus D., Kundrat O., Cejka J., Dvorakova H., Lhotak P. Chemistry of 2,14-Dithiacalix[4]arene: Searching for the Missing Fifth Conformer. J. Org. Chem. 2021;86:9788–9801. doi: 10.1021/acs.joc.1c01173. PubMed DOI
Kortus D., Kundrat O., Tlusty M., Cejka J., Dvorakova H., Lhotak P. Inherent chirality through a simple dialkylation of 2,14-dithiacalix[4]arene. New J. Chem. 2020;44:14496–14504. doi: 10.1039/D0NJ03468A. DOI
Sone T., Ohba Y., Moriya K., Kumada H., Ito K. Synthesis and properties of sulfur-bridged analogs of p-tert-Butylcalix[4] arene. Tetrahedron. 1997;53:10689–10698. doi: 10.1016/S0040-4020(97)00700-X. DOI
Ohba Y., Moriya K., Sone T. Synthesis and Inclusion Properties of Sulfur-Bridged Analogs of Acyclic Phenol-Formaldehyde Oligomers. Bull. Chem. Soc. Jpn. 1991;64:576–582. doi: 10.1246/bcsj.64.576. DOI
Morohashi N., Kojima M., Suzuki A., Ohba Y. Conversion of Mono- and Tetra-Thiacalix[4]arenes to Sulfilimine Derivatives and Unexpected Formation of Monospirodienone Derivatives. Heterocycl. Commun. 2005;11:249–254. doi: 10.1515/HC.2005.11.3-4.249. DOI
Wasserman E.P., Annis I., Chopin L.J., Price P.C., Petersen J.L., Abboud K.A. Ethylene Oxide Polymerization Catalyzed by Aluminum Complexes of Sulfur-Bridged Polyphenols. Macromolecules. 2005;38:322–333. doi: 10.1021/ma049209d. DOI
Ballmann J., Fuchs M.G.G., Dechert S., John M., Meyer F. Synthesis and Coordination Properties of Chelating Dithiophenolate Ligands. Inorg. Chem. 2009;48:90–99. doi: 10.1021/ic801285u. PubMed DOI
Sartori G., Bigi F., Maggi R., Porta C. Metal-template ortho-regioselective mono- and bis-de-tert-butylation of poly-tert-butylated phenols. Tetrahedron Lett. 1994;35:7073–7076. doi: 10.1016/0040-4039(94)88229-0. DOI
Bikas R., Hosseini-Monfared H., Sanchiz J., Siczek M., Lis T. Synthesis, crystal structure and magnetic properties of a trinuclear phenolate bridged manganese complex containing Mn(ii)–Mn(iii) ions. RSC Adv. 2014;4:36175–36182. doi: 10.1039/C4RA05964F. DOI
Drabowicz J., Oae S. Mild Reductions of Sulfoxides with Trifluoroacetic Anhydride/Sodium Iodide System. Synthesis. 1977;1977:404–405. doi: 10.1055/s-1977-24414. DOI
Ingenfeld B., Straub S., Frömbgen C., Lützen A. Synthesis of Monofunctionalized Calix[5]arenes. Synthesis. 2018;50:676–684.
Fischer S., Grootenhuis P.D.J., Groenen L.C., van Hoorn W.P., vn van Veggel F.C.J.M., Reinhoudt D.N., Karplus M. Pathways for Conformational Interconversion of Calix[4]arenes. J. Am. Chem. Soc. 1995;117:1611–1620. doi: 10.1021/ja00110a017. DOI
Kusano T., Tabatabai M., Okamoto Y., Böhmer V. The Cone-to-Cone Interconversion of Partially O-Methylated Calix[4]arenes: First Experimental Values for the Energy Barriers. J. Am. Chem. Soc. 1999;121:3789–3790. doi: 10.1021/ja9837811. DOI
Israeli G., Shalev O., Biali S.E. Enantiomerization Barrier of all-cis C-Me-tetrahydroxy p-tert-butylcalix[4]arene Atropisomeric Equilibrium of its Tetraacetoxy Derivatives. Eur. J. Org. Chem. 2020;2020:1968–1975. doi: 10.1002/ejoc.202000212. DOI
Lang J., Deckerova V., Czernek J., Lhotak P. Dynamics of circular hydrogen bond array in calix[4]arene in a nonpolar solvent: A nuclear magnetic resonance study. J. Chem. Phys. 2005;122:044506. doi: 10.1063/1.1814971. PubMed DOI
Watanabe D., Ito T., Ito K., Ohba Y. Synthesis and conformational behavior of sulfinyl- or sulfonyl-bridge containing p-tert-butylcalix[4]arenes. Heterocycl. Commun. 2002;8:13–18. doi: 10.1515/HC.2002.8.1.13. DOI
Pastor S.D., Spivack J.D., Steinhuebel L.P. Eight-membered organosulfur heterocycles Synthesis of dibenzo [d,g][1,3,6,2] dioxathiaphosphocin and dibenzo [d,g][1,3,6,2] dioxathiasilocin ring systems. J. Heterocycl. Chem. 1984;21:1285–1287. doi: 10.1002/jhet.5570210508. DOI
Bruker . APEX4, SAINT and SADABS. Bruker AXS Inc.; Madison, WI, USA: 2021.
Altomare A., Cascarano G., Giacovazzo C., Guagliardi A., Burla M.C., Polidori G., Camalli M. SIRPOW.92–a program for automatic solution of crystal structures by direct methods optimized for powder data. J. Appl. Crystallogr. 1994;27:435–436. doi: 10.1107/S0021889894000221. DOI
Betteridge P., Carruthers J., Cooper R., Prout K., Watkin D. CRYSTALS version 12: Software for guided crystal structure analysis. J. Appl. Crystallogr. 2003;36:1487. doi: 10.1107/S0021889803021800. DOI
Rohlicek J., Husak M. MCE2005–a new version of a program for fast interactive visualization of electron and similar density maps optimized for small molecules. J. Appl. Crystallogr. 2007;40:600–601. doi: 10.1107/S0021889807018894. DOI