Dynamic Hormonal Networks in Flax During Fusarium oxysporum Infection and Their Regulation by Spermidine
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Preludium Bis no 2019/35/O/NZ9/00364.
National Science Centre
PubMed
41375227
PubMed Central
PMC12692866
DOI
10.3390/molecules30234631
PII: molecules30234631
Knihovny.cz E-zdroje
- Klíčová slova
- Fusarium oxysporum, flax, hormonal crosstalk, phytohormones, plant defence, spermidine,
- MeSH
- cyklopentany metabolismus MeSH
- cytokininy metabolismus MeSH
- Fusarium * patogenita MeSH
- gibereliny metabolismus MeSH
- kořeny rostlin metabolismus mikrobiologie účinky léků MeSH
- kyselina abscisová metabolismus MeSH
- kyselina salicylová metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- len * mikrobiologie metabolismus účinky léků MeSH
- nemoci rostlin * mikrobiologie MeSH
- oxylipiny metabolismus MeSH
- regulátory růstu rostlin * metabolismus MeSH
- spermidin * farmakologie metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- výhonky rostlin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cyklopentany MeSH
- cytokininy MeSH
- gibereliny MeSH
- jasmonic acid MeSH Prohlížeč
- kyselina abscisová MeSH
- kyselina salicylová MeSH
- kyseliny indoloctové MeSH
- oxylipiny MeSH
- regulátory růstu rostlin * MeSH
- spermidin * MeSH
Background: Flax (Linum usitatissimum L.) is an economically important crop that is highly susceptible to Fusarium oxysporum f. sp. lini (Foln). While phytohormones are key regulators of defence, their interaction with polyamines during infection remains poorly understood. This study aimed to characterise hormonal dynamics in flax under Foln infection and the modulatory role of spermidine (Spd). Methods: Targeted UPLC-MS/MS profiling quantified over 30 hormone-related compounds, including auxins, cytokinins, gibberellins, jasmonates, salicylic acid, and abscisic acid, in shoots and roots of healthy, infected, and Spd-treated plants. Two Spd concentrations (10 and 100 mM) were applied under controlled in vitro conditions. Results: Foln infection triggered tissue- and time-specific hormonal shifts, with early activation of jasmonate and auxin metabolism in shoots and later accumulation of salicylic acid and gibberellins in roots. Spd, particularly at 10 mM, reshaped these responses by reinforcing cytokinin and salicylic acid responses, stabilising auxin homeostasis, and enhancing jasmonate and abscisic acid responses. Conclusions: Spermidine coordinates hormone crosstalk, enabling balanced and efficient defence activation. The results highlight its potential as a priming agent enhancing flax resilience to F. oxysporum.
Zobrazit více v PubMed
Gupta R., Nadeem H., Ahmad F. Oilseed Cake for Nematode Management. CRC Press; Boca Raton, FL, USA: 2023. Flaxseed Oil Cake; pp. 89–102.
Kiryluk A., Kostecka J. Pro-Environmental and Health-Promoting Grounds for Restitution of Flax (Linum usitatissimum L.) Cultivation. J. Ecol. Eng. 2020;21:99–107. doi: 10.12911/22998993/125443. DOI
Moyse J., Lecomte S., Marcou S., Mongelard G., Gutierrez L., Höfte M. Overview and Management of the Most Common Eukaryotic Diseases of Flax (Linum usitatissimum) Plants. 2023;12:2811. doi: 10.3390/plants12152811. PubMed DOI PMC
Michielse C.B., Rep M. Pathogen Profile Update: Fusarium oxysporum. Mol. Plant Pathol. 2009;10:311–324. doi: 10.1111/j.1364-3703.2009.00538.x. PubMed DOI PMC
Ali J., Mukarram M., Ojo J., Dawam N., Riyazuddin R., Ghramh H.A., Khan K.A., Chen R., Kurjak D., Bayram A. Harnessing Phytohormones: Advancing Plant Growth and Defence Strategies for Sustainable Agriculture. Physiol. Plant. 2024;176:e14307. doi: 10.1111/ppl.14307. PubMed DOI
Gilroy E., Breen S. Interplay between Phytohormone Signalling Pathways in Plant Defence–Other than Salicylic Acid and Jasmonic Acid. Essays Biochem. 2022;66:657–671. doi: 10.1042/ebc20210089. PubMed DOI PMC
Wang Y.H., Irving H.R. Developing a Model of Plant Hormone Interactions. Plant Signal. Behav. 2011;6:494–500. doi: 10.4161/psb.6.4.14558. PubMed DOI PMC
Chen D., Shao Q., Yin L., Younis A., Zheng B. Polyamine Function in Plants: Metabolism, Regulation on Development, and Roles in Abiotic Stress Responses. Front. Plant Sci. 2019;9:1945. doi: 10.3389/fpls.2018.01945. PubMed DOI PMC
Gonzalez M.E., Jasso-Robles F.I., Flores-Hernández E., Rodríguez-Kessler M., Pieckenstain F.L. Current Status and Perspectives on the Role of Polyamines in Plant Immunity. Ann. Appl. Biol. 2021;178:244–255. doi: 10.1111/aab.12670. DOI
Seifi H.S., Zarei A., Hsiang T., Shelp B.J. Spermine Is a Potent Plant Defense Activator Against Gray Mold Disease on Solanum lycopersicum, Phaseolus vulgaris, and Arabidopsis thaliana. Phytopathology. 2019;109:1367–1377. doi: 10.1094/PHYTO-12-18-0470-R. PubMed DOI
Nambeesan S., AbuQamar S., Laluk K., Mattoo A.K., Mickelbart M.V., Ferruzzi M.G., Mengiste T., Handa A.K. Polyamines Attenuate Ethylene-Mediated Defense Responses to Abrogate Resistance to Botrytis cinerea in Tomato. Plant Physiol. 2012;158:1034–1045. doi: 10.1104/pp.111.188698. PubMed DOI PMC
Augustyniak B., Wojtasik W., Sawuła A., Burgberger M., Kulma A. Spermidine Treatment Limits the Development of the Fungus in Flax Shoots by Suppressing Polyamine Metabolism and Balanced Defence Reactions, Thus Increasing Flax Resistance to Fusariosis. Front. Plant Sci. 2025;16:1561203. doi: 10.3389/fpls.2025.1561203. PubMed DOI PMC
Boba A., Kostyn K., Kozak B., Zalewski I., Szopa J., Kulma A. Transcriptomic Profiling of Susceptible and Resistant Flax Seedlings after Fusarium oxysporum Lini Infection. PLoS ONE. 2021;16:e0246052. doi: 10.1371/journal.pone.0246052. PubMed DOI PMC
Zhang P., Jackson E., Li X., Zhang Y. Salicylic Acid and Jasmonic Acid in Plant Immunity. Hortic. Res. 2025;12:uhaf082. doi: 10.1093/hr/uhaf082. PubMed DOI PMC
Lyons R., Stiller J., Powell J., Rusu A., Manners J.M., Kazan K. Fusarium oxysporum Triggers Tissue-Specific Transcriptional Reprogramming in Arabidopsis Thaliana. PLoS ONE. 2015;10:e0121902. doi: 10.1371/journal.pone.0121902. PubMed DOI PMC
Thatcher L.F., Manners J.M., Kazan K. Fusarium oxysporum Hijacks COI1-mediated Jasmonate Signaling to Promote Disease Development in Arabidopsis. Plant J. 2009;58:927–939. doi: 10.1111/j.1365-313X.2009.03831.x. PubMed DOI
Sun D., Lu X., Hu Y., Li W., Hong K., Mo Y., Cahill D.M., Xie J. Methyl Jasmonate Induced Defense Responses Increase Resistance to Fusarium oxysporum f. Sp. Cubense Race 4 in Banana. Sci. Hortic. 2013;164:484–491. doi: 10.1016/j.scienta.2013.10.011. DOI
Robert-Seilaniantz A., Grant M., Jones J.D.G. Hormone Crosstalk in Plant Disease and Defense: More Than Just JASMONATE-SALICYLATE Antagonism. Annu. Rev. Phytopathol. 2011;49:317–343. doi: 10.1146/annurev-phyto-073009-114447. PubMed DOI
Ton J., Flors V., Mauch-Mani B. The Multifaceted Role of ABA in Disease Resistance. Trends Plant Sci. 2009;14:310–317. doi: 10.1016/j.tplants.2009.03.006. PubMed DOI
Boba A., Kostyn K., Kochneva Y., Wojtasik W., Mierziak J., Prescha A., Augustyniak B., Grajzer M., Szopa J., Kulma A. Abscisic Acid—Defensive Player in Flax Response to Fusarium culmorum Infection. Molecules. 2022;27:2833. doi: 10.3390/molecules27092833. PubMed DOI PMC
Boba A., Kostyn K., Kozak B., Wojtasik W., Preisner M., Prescha A., Gola E.M., Lysh D., Dudek B., Szopa J., et al. Fusarium oxysporum Infection Activates the Plastidial Branch of the Terpenoid Biosynthesis Pathway in Flax, Leading to Increased ABA Synthesis. Planta. 2020;251:50. doi: 10.1007/s00425-020-03339-9. PubMed DOI
Di X., Takken F.L.W., Tintor N. How Phytohormones Shape Interactions between Plants and the Soil-Borne Fungus Fusarium oxysporum. Front. Plant Sci. 2016;7:170. doi: 10.3389/fpls.2016.00170. PubMed DOI PMC
Galindo-González L., Deyholos M.K. RNA-Seq Transcriptome Response of Flax (Linum usitatissimum L.) to the Pathogenic Fungus Fusarium oxysporum f. Sp. Lini. Front. Plant Sci. 2016;7:1766. doi: 10.3389/fpls.2016.01766. PubMed DOI PMC
Boba A., Kulma A., Kostyn K., Starzycki M., Starzycka E., Szopa J. The Influence of Carotenoid Biosynthesis Modification on the Fusarium culmorum and Fusarium oxysporum Resistance in Flax. Physiol. Mol. Plant Pathol. 2011;76:39–47. doi: 10.1016/j.pmpp.2011.06.002. DOI
Samanta S., Roychoudhury A. Molecular Crosstalk of Jasmonate with Major Phytohormones and Plant Growth Regulators During Diverse Stress Responses. J. Plant Growth Regul. 2025;44:62–88. doi: 10.1007/s00344-024-11412-w. DOI
Napieraj N., Janicka M., Reda M. Interactions of Polyamines and Phytohormones in Plant Response to Abiotic Stress. Plants. 2023;12:1159. doi: 10.3390/plants12051159. PubMed DOI PMC
Marco F., Busà E., Carrasco P. Overexpression of SAMDC1 Gene in Arabidopsis Thaliana Increases Expression of Defense-Related Genes as Well as Resistance to Pseudomonas syringae and Hyaloperonospora arabidopsidis. Front. Plant Sci. 2014;5:115. doi: 10.3389/fpls.2014.00115. PubMed DOI PMC
Ozawa R., Bertea C.M., Foti M., Narayana R., Arimura G.-I., Muroi A., Horiuchi J.-I., Nishioka T., Maffei M.E., Takabayashi J. Exogenous Polyamines Elicit Herbivore-Induced Volatiles in Lima Bean Leaves: Involvement of Calcium, H2O2 and Jasmonic Acid. Plant Cell Physiol. 2009;50:2183–2199. doi: 10.1093/pcp/pcp153. PubMed DOI
Zhang C., Atanasov K.E., Murillo E., Vives-Peris V., Zhao J., Deng C., Gómez-Cadenas A., Alcázar R. Spermine Deficiency Shifts the Balance between Jasmonic Acid and Salicylic Acid-mediated Defence Responses in Arabidopsis. Plant Cell Environ. 2023;46:3949–3970. doi: 10.1111/pce.14706. PubMed DOI
Asija S., Seth T., Umar S., Gupta R. Polyamines and Their Crosstalk with Phytohormones in the Regulation of Plant Defense Responses. J. Plant Growth Regul. 2023;42:5224–5246. doi: 10.1007/s00344-022-10837-5. DOI
Nair A.V., Singh A., Chakravortty D. Defence Warriors: Exploring the Crosstalk between Polyamines and Oxidative Stress during Microbial Pathogenesis. Redox Biol. 2025;83:103648. doi: 10.1016/j.redox.2025.103648. PubMed DOI PMC
Blázquez M.A. Polyamines: Their Role in Plant Development and Stress. Annu. Rev. Plant Biol. 2024;75:95–117. doi: 10.1146/annurev-arplant-070623-110056. PubMed DOI
Luo J., Wei B., Han J., Liao Y., Liu Y. Spermidine Increases the Sucrose Content in Inferior Grain of Wheat and Thereby Promotes Its Grain Filling. Front. Plant Sci. 2019;10:1309. doi: 10.3389/fpls.2019.01309. PubMed DOI PMC
Marco F., Busó E., Lafuente T., Carrasco P. Spermine Confers Stress Resilience by Modulating Abscisic Acid Biosynthesis and Stress Responses in Arabidopsis Plants. Front. Plant Sci. 2019;10:972. doi: 10.3389/fpls.2019.00972. PubMed DOI PMC
Li Y., Ma Y., Zhang T., Bi Y., Wang Y., Prusky D. Exogenous Polyamines Enhance Resistance to Alternaria Alternata by Modulating Redox Homeostasis in Apricot Fruit. Food Chem. 2019;301:125303. doi: 10.1016/j.foodchem.2019.125303. PubMed DOI
Gardiner D.M., Kazan K., Praud S., Torney F.J., Rusu A., Manners J.M. Early Activation of Wheat Polyamine Biosynthesis during Fusarium Head Blight Implicates Putrescine as an Inducer of Trichothecene Mycotoxin Production. BMC Plant Biol. 2010;10:289. doi: 10.1186/1471-2229-10-289. PubMed DOI PMC
Šimura J., Antoniadi I., Široká J., Tarkowská D., Strnad M., Ljung K., Novák O. Plant Hormonomics: Multiple Phytohormone Profiling by Targeted Metabolomics. Plant Physiol. 2018;177:476–489. doi: 10.1104/pp.18.00293. PubMed DOI PMC
Rittenberg D., Foster G.L. A New Procedure for Quantitative Analysis by Isotope Dilution, with Application to the Determination of Amino Acids and Fatty Acids. J. Biol. Chem. 1940;133:737–744. doi: 10.1016/S0021-9258(18)73304-8. DOI
Urbanová T., Tarkowská D., Novák O., Hedden P., Strnad M. Analysis of Gibberellins as Free Acids by Ultra Performance Liquid Chromatography–Tandem Mass Spectrometry. Talanta. 2013;112:85–94. doi: 10.1016/j.talanta.2013.03.068. PubMed DOI