Dynamic Hormonal Networks in Flax During Fusarium oxysporum Infection and Their Regulation by Spermidine

. 2025 Dec 02 ; 30 (23) : . [epub] 20251202

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41375227

Grantová podpora
Preludium Bis no 2019/35/O/NZ9/00364. National Science Centre

Background: Flax (Linum usitatissimum L.) is an economically important crop that is highly susceptible to Fusarium oxysporum f. sp. lini (Foln). While phytohormones are key regulators of defence, their interaction with polyamines during infection remains poorly understood. This study aimed to characterise hormonal dynamics in flax under Foln infection and the modulatory role of spermidine (Spd). Methods: Targeted UPLC-MS/MS profiling quantified over 30 hormone-related compounds, including auxins, cytokinins, gibberellins, jasmonates, salicylic acid, and abscisic acid, in shoots and roots of healthy, infected, and Spd-treated plants. Two Spd concentrations (10 and 100 mM) were applied under controlled in vitro conditions. Results: Foln infection triggered tissue- and time-specific hormonal shifts, with early activation of jasmonate and auxin metabolism in shoots and later accumulation of salicylic acid and gibberellins in roots. Spd, particularly at 10 mM, reshaped these responses by reinforcing cytokinin and salicylic acid responses, stabilising auxin homeostasis, and enhancing jasmonate and abscisic acid responses. Conclusions: Spermidine coordinates hormone crosstalk, enabling balanced and efficient defence activation. The results highlight its potential as a priming agent enhancing flax resilience to F. oxysporum.

Zobrazit více v PubMed

Gupta R., Nadeem H., Ahmad F. Oilseed Cake for Nematode Management. CRC Press; Boca Raton, FL, USA: 2023. Flaxseed Oil Cake; pp. 89–102.

Kiryluk A., Kostecka J. Pro-Environmental and Health-Promoting Grounds for Restitution of Flax (Linum usitatissimum L.) Cultivation. J. Ecol. Eng. 2020;21:99–107. doi: 10.12911/22998993/125443. DOI

Moyse J., Lecomte S., Marcou S., Mongelard G., Gutierrez L., Höfte M. Overview and Management of the Most Common Eukaryotic Diseases of Flax (Linum usitatissimum) Plants. 2023;12:2811. doi: 10.3390/plants12152811. PubMed DOI PMC

Michielse C.B., Rep M. Pathogen Profile Update: Fusarium oxysporum. Mol. Plant Pathol. 2009;10:311–324. doi: 10.1111/j.1364-3703.2009.00538.x. PubMed DOI PMC

Ali J., Mukarram M., Ojo J., Dawam N., Riyazuddin R., Ghramh H.A., Khan K.A., Chen R., Kurjak D., Bayram A. Harnessing Phytohormones: Advancing Plant Growth and Defence Strategies for Sustainable Agriculture. Physiol. Plant. 2024;176:e14307. doi: 10.1111/ppl.14307. PubMed DOI

Gilroy E., Breen S. Interplay between Phytohormone Signalling Pathways in Plant Defence–Other than Salicylic Acid and Jasmonic Acid. Essays Biochem. 2022;66:657–671. doi: 10.1042/ebc20210089. PubMed DOI PMC

Wang Y.H., Irving H.R. Developing a Model of Plant Hormone Interactions. Plant Signal. Behav. 2011;6:494–500. doi: 10.4161/psb.6.4.14558. PubMed DOI PMC

Chen D., Shao Q., Yin L., Younis A., Zheng B. Polyamine Function in Plants: Metabolism, Regulation on Development, and Roles in Abiotic Stress Responses. Front. Plant Sci. 2019;9:1945. doi: 10.3389/fpls.2018.01945. PubMed DOI PMC

Gonzalez M.E., Jasso-Robles F.I., Flores-Hernández E., Rodríguez-Kessler M., Pieckenstain F.L. Current Status and Perspectives on the Role of Polyamines in Plant Immunity. Ann. Appl. Biol. 2021;178:244–255. doi: 10.1111/aab.12670. DOI

Seifi H.S., Zarei A., Hsiang T., Shelp B.J. Spermine Is a Potent Plant Defense Activator Against Gray Mold Disease on Solanum lycopersicum, Phaseolus vulgaris, and Arabidopsis thaliana. Phytopathology. 2019;109:1367–1377. doi: 10.1094/PHYTO-12-18-0470-R. PubMed DOI

Nambeesan S., AbuQamar S., Laluk K., Mattoo A.K., Mickelbart M.V., Ferruzzi M.G., Mengiste T., Handa A.K. Polyamines Attenuate Ethylene-Mediated Defense Responses to Abrogate Resistance to Botrytis cinerea in Tomato. Plant Physiol. 2012;158:1034–1045. doi: 10.1104/pp.111.188698. PubMed DOI PMC

Augustyniak B., Wojtasik W., Sawuła A., Burgberger M., Kulma A. Spermidine Treatment Limits the Development of the Fungus in Flax Shoots by Suppressing Polyamine Metabolism and Balanced Defence Reactions, Thus Increasing Flax Resistance to Fusariosis. Front. Plant Sci. 2025;16:1561203. doi: 10.3389/fpls.2025.1561203. PubMed DOI PMC

Boba A., Kostyn K., Kozak B., Zalewski I., Szopa J., Kulma A. Transcriptomic Profiling of Susceptible and Resistant Flax Seedlings after Fusarium oxysporum Lini Infection. PLoS ONE. 2021;16:e0246052. doi: 10.1371/journal.pone.0246052. PubMed DOI PMC

Zhang P., Jackson E., Li X., Zhang Y. Salicylic Acid and Jasmonic Acid in Plant Immunity. Hortic. Res. 2025;12:uhaf082. doi: 10.1093/hr/uhaf082. PubMed DOI PMC

Lyons R., Stiller J., Powell J., Rusu A., Manners J.M., Kazan K. Fusarium oxysporum Triggers Tissue-Specific Transcriptional Reprogramming in Arabidopsis Thaliana. PLoS ONE. 2015;10:e0121902. doi: 10.1371/journal.pone.0121902. PubMed DOI PMC

Thatcher L.F., Manners J.M., Kazan K. Fusarium oxysporum Hijacks COI1-mediated Jasmonate Signaling to Promote Disease Development in Arabidopsis. Plant J. 2009;58:927–939. doi: 10.1111/j.1365-313X.2009.03831.x. PubMed DOI

Sun D., Lu X., Hu Y., Li W., Hong K., Mo Y., Cahill D.M., Xie J. Methyl Jasmonate Induced Defense Responses Increase Resistance to Fusarium oxysporum f. Sp. Cubense Race 4 in Banana. Sci. Hortic. 2013;164:484–491. doi: 10.1016/j.scienta.2013.10.011. DOI

Robert-Seilaniantz A., Grant M., Jones J.D.G. Hormone Crosstalk in Plant Disease and Defense: More Than Just JASMONATE-SALICYLATE Antagonism. Annu. Rev. Phytopathol. 2011;49:317–343. doi: 10.1146/annurev-phyto-073009-114447. PubMed DOI

Ton J., Flors V., Mauch-Mani B. The Multifaceted Role of ABA in Disease Resistance. Trends Plant Sci. 2009;14:310–317. doi: 10.1016/j.tplants.2009.03.006. PubMed DOI

Boba A., Kostyn K., Kochneva Y., Wojtasik W., Mierziak J., Prescha A., Augustyniak B., Grajzer M., Szopa J., Kulma A. Abscisic Acid—Defensive Player in Flax Response to Fusarium culmorum Infection. Molecules. 2022;27:2833. doi: 10.3390/molecules27092833. PubMed DOI PMC

Boba A., Kostyn K., Kozak B., Wojtasik W., Preisner M., Prescha A., Gola E.M., Lysh D., Dudek B., Szopa J., et al. Fusarium oxysporum Infection Activates the Plastidial Branch of the Terpenoid Biosynthesis Pathway in Flax, Leading to Increased ABA Synthesis. Planta. 2020;251:50. doi: 10.1007/s00425-020-03339-9. PubMed DOI

Di X., Takken F.L.W., Tintor N. How Phytohormones Shape Interactions between Plants and the Soil-Borne Fungus Fusarium oxysporum. Front. Plant Sci. 2016;7:170. doi: 10.3389/fpls.2016.00170. PubMed DOI PMC

Galindo-González L., Deyholos M.K. RNA-Seq Transcriptome Response of Flax (Linum usitatissimum L.) to the Pathogenic Fungus Fusarium oxysporum f. Sp. Lini. Front. Plant Sci. 2016;7:1766. doi: 10.3389/fpls.2016.01766. PubMed DOI PMC

Boba A., Kulma A., Kostyn K., Starzycki M., Starzycka E., Szopa J. The Influence of Carotenoid Biosynthesis Modification on the Fusarium culmorum and Fusarium oxysporum Resistance in Flax. Physiol. Mol. Plant Pathol. 2011;76:39–47. doi: 10.1016/j.pmpp.2011.06.002. DOI

Samanta S., Roychoudhury A. Molecular Crosstalk of Jasmonate with Major Phytohormones and Plant Growth Regulators During Diverse Stress Responses. J. Plant Growth Regul. 2025;44:62–88. doi: 10.1007/s00344-024-11412-w. DOI

Napieraj N., Janicka M., Reda M. Interactions of Polyamines and Phytohormones in Plant Response to Abiotic Stress. Plants. 2023;12:1159. doi: 10.3390/plants12051159. PubMed DOI PMC

Marco F., Busà E., Carrasco P. Overexpression of SAMDC1 Gene in Arabidopsis Thaliana Increases Expression of Defense-Related Genes as Well as Resistance to Pseudomonas syringae and Hyaloperonospora arabidopsidis. Front. Plant Sci. 2014;5:115. doi: 10.3389/fpls.2014.00115. PubMed DOI PMC

Ozawa R., Bertea C.M., Foti M., Narayana R., Arimura G.-I., Muroi A., Horiuchi J.-I., Nishioka T., Maffei M.E., Takabayashi J. Exogenous Polyamines Elicit Herbivore-Induced Volatiles in Lima Bean Leaves: Involvement of Calcium, H2O2 and Jasmonic Acid. Plant Cell Physiol. 2009;50:2183–2199. doi: 10.1093/pcp/pcp153. PubMed DOI

Zhang C., Atanasov K.E., Murillo E., Vives-Peris V., Zhao J., Deng C., Gómez-Cadenas A., Alcázar R. Spermine Deficiency Shifts the Balance between Jasmonic Acid and Salicylic Acid-mediated Defence Responses in Arabidopsis. Plant Cell Environ. 2023;46:3949–3970. doi: 10.1111/pce.14706. PubMed DOI

Asija S., Seth T., Umar S., Gupta R. Polyamines and Their Crosstalk with Phytohormones in the Regulation of Plant Defense Responses. J. Plant Growth Regul. 2023;42:5224–5246. doi: 10.1007/s00344-022-10837-5. DOI

Nair A.V., Singh A., Chakravortty D. Defence Warriors: Exploring the Crosstalk between Polyamines and Oxidative Stress during Microbial Pathogenesis. Redox Biol. 2025;83:103648. doi: 10.1016/j.redox.2025.103648. PubMed DOI PMC

Blázquez M.A. Polyamines: Their Role in Plant Development and Stress. Annu. Rev. Plant Biol. 2024;75:95–117. doi: 10.1146/annurev-arplant-070623-110056. PubMed DOI

Luo J., Wei B., Han J., Liao Y., Liu Y. Spermidine Increases the Sucrose Content in Inferior Grain of Wheat and Thereby Promotes Its Grain Filling. Front. Plant Sci. 2019;10:1309. doi: 10.3389/fpls.2019.01309. PubMed DOI PMC

Marco F., Busó E., Lafuente T., Carrasco P. Spermine Confers Stress Resilience by Modulating Abscisic Acid Biosynthesis and Stress Responses in Arabidopsis Plants. Front. Plant Sci. 2019;10:972. doi: 10.3389/fpls.2019.00972. PubMed DOI PMC

Li Y., Ma Y., Zhang T., Bi Y., Wang Y., Prusky D. Exogenous Polyamines Enhance Resistance to Alternaria Alternata by Modulating Redox Homeostasis in Apricot Fruit. Food Chem. 2019;301:125303. doi: 10.1016/j.foodchem.2019.125303. PubMed DOI

Gardiner D.M., Kazan K., Praud S., Torney F.J., Rusu A., Manners J.M. Early Activation of Wheat Polyamine Biosynthesis during Fusarium Head Blight Implicates Putrescine as an Inducer of Trichothecene Mycotoxin Production. BMC Plant Biol. 2010;10:289. doi: 10.1186/1471-2229-10-289. PubMed DOI PMC

Šimura J., Antoniadi I., Široká J., Tarkowská D., Strnad M., Ljung K., Novák O. Plant Hormonomics: Multiple Phytohormone Profiling by Targeted Metabolomics. Plant Physiol. 2018;177:476–489. doi: 10.1104/pp.18.00293. PubMed DOI PMC

Rittenberg D., Foster G.L. A New Procedure for Quantitative Analysis by Isotope Dilution, with Application to the Determination of Amino Acids and Fatty Acids. J. Biol. Chem. 1940;133:737–744. doi: 10.1016/S0021-9258(18)73304-8. DOI

Urbanová T., Tarkowská D., Novák O., Hedden P., Strnad M. Analysis of Gibberellins as Free Acids by Ultra Performance Liquid Chromatography–Tandem Mass Spectrometry. Talanta. 2013;112:85–94. doi: 10.1016/j.talanta.2013.03.068. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...