The Marshall Complex in the Human Heart: Embryology, Microanatomy, Autonomic Features and Clinical Implications for Atrial Fibrillation-A State-of-the-Art Narrative Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
BNW-NWN-640-2-1-708/25
Medical University of Silesia
PubMed
41375737
PubMed Central
PMC12693601
DOI
10.3390/jcm14238422
PII: jcm14238422
Knihovny.cz E-zdroje
- Klíčová slova
- Marshall bundle, ablation, atrial fibrillation, cardiac anatomy, electrophysiology, left superior vena cava, ligament of Marshall, oblique vein of the left atrium, vein of Marshall,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The vein and ligament of Marshall (VOM and LOM) are embryological remnants that have gained increasing recognition due to their anatomical complexity, arrhythmogenic potential, and relevance during catheter ablation and structural heart interventions. This review summarizes current evidence on their embryology, morphology, anatomical variability, imaging characteristics, and clinical implications. A structured literature search across PubMed, Embase, and Scopus identified anatomical, histological, electrophysiological, and interventional studies. The VOM is present in most hearts, but its topographic variants and ostial positions show substantial interindividual diversity. The LOM displays a segmental architecture with distinct muscular and fibrotic components that interface with the atrial myocardium and the coronary sinus, providing a substrate for atrial fibrillation. Advances in cardiac imaging have improved delineation of the VOM-LOM region, enhancing pre-procedural assessment and guidance for ethanol infusion and ablation strategies. Recognition of the variability and functional significance of these structures is essential for optimizing procedural outcomes and avoiding complications. Taken together, the VOM and LOM represent key atrial venous remnants whose detailed characterization contributes to a deeper understanding of atrial arrhythmogenesis and contemporary interventional electrophysiology.
Zobrazit více v PubMed
Yagel S., Kivilevitch Z., Cohen S.M., Valsky D.V., Messing B., Shen O., Achiron R. The fetal venous system, Part I: Normal embryology, anatomy, hemodynamics, ultrasound evaluation and Doppler investigation. Ultrasound Obstet. Gynecol. 2010;35:741–750. doi: 10.1002/uog.7618. PubMed DOI
Mozes G.E., Gloviczki P. Venous embryology and anatomy. In: Bergan J.J., editor. The Vein Book. Academic Press; San Diego, CA, USA: 2007. pp. 15–25. DOI
Marshall J. On the development of the great anterior veins in man and mammalia: Including an account of certain remnants of foetal structure found in the adult, a comparative view of these great veins in the different mammalia, and an analysis of their occasional peculiarities in the human subject. Philos. Trans. R. Soc. Lond. 1850;140:133–169.
Shah S.S., Teague S.D., Lu J.C., Dorfman A.L., Kazerooni E.A., Agarwal P.P. Imaging of the coronary sinus: Normal anatomy and congenital abnormalities. Radiographics. 2012;32:991–1008. doi: 10.1148/rg.324105220. PubMed DOI
Azizova A., Onder O., Arslan S., Ardali S., Hazırolan T. Persistent left superior vena cava: Clinical importance and differential diagnoses. Insights Imaging. 2020;11:110. doi: 10.1186/s13244-020-00906-2. PubMed DOI PMC
Perles Z., Nir A., Gavri S., Golender J., TaShma A., Ergaz Z., Rein A.J. Prevalence of persistent superior vena cava and association with congenital heart anomalies. Am. J. Cardiol. 2013;112:1214–1218. doi: 10.1016/j.amjcard.2013.05.079. PubMed DOI
von Lüdinghausen M., Ohmachi N., Besch S., Mettenleiter R. Atrial veins of the human heart. Clin. Anat. 1995;8:169–189. doi: 10.1002/ca.980080302. PubMed DOI
Cendrowska-Pinkosz M., Urbanowicz Z. Analysis of the course and the ostium of the oblique vein of the left atrium. Folia Morphol. 2000;59:163–166. PubMed
Kim D.T., Lai A.C., Hwang C., Fan L.-T., Karagueuzian H.S., Chen P.-S., Fishbein M.C. The ligament of Marshall: A structural analysis in human hearts with implications for atrial arrhythmias. J. Am. Coll. Cardiol. 2000;36:1324–1327. doi: 10.1016/S0735-1097(00)00819-6. PubMed DOI
Hwang C., Chen P.S. Ligament of Marshall: Why it is important for atrial fibrillation ablation. Heart Rhythm. 2009;6:S35–S40. doi: 10.1016/j.hrthm.2009.08.034. PubMed DOI
Rodríguez-Mañero M., Schurmann P., Valderrábano M. Ligament and vein of Marshall: A therapeutic opportunity in atrial fibrillation. Heart Rhythm. 2016;13:593–601. doi: 10.1016/j.hrthm.2015.10.018. PubMed DOI PMC
Desimone C.V., Noheria A., Lachman N., Edwards W.D., Gami A.S., Maleszewski J.J., Friedman P.A., Munger T.M., Hammill S.C., Packer D.L., et al. Myocardium of the superior vena cava, coronary sinus, vein of Marshall, and the pulmonary vein ostia: Gross anatomic studies in 620 hearts. J. Cardiovasc. Electrophysiol. 2012;23:1304–1309. doi: 10.1111/j.1540-8167.2012.02403.x. PubMed DOI
Żabówka A., Jakiel M., Bolechała F., Jakiel R., Jasińska K.A., Hołda M.K. Topography of the oblique vein of the left atrium (vein of Marshall) Kardiol. Pol. 2020;78:688–693. doi: 10.33963/KP.15318. PubMed DOI
Ding L., Zhang H., Yu F., Mi L., Hua W., Zhang S., Yao Y., Tang M. Angiographic characteristics of the vein of Marshall in patients with and without atrial fibrillation. J. Clin. Med. 2022;11:5384. doi: 10.3390/jcm11185384. PubMed DOI PMC
Takagi T., Derval N., Pambrun T., Nakatani Y., André C., Ramirez F.D., Nakashima T., Krisai P., Kamakura T., Pineau X., et al. Optimized computed tomography acquisition protocol for ethanol infusion into the vein of Marshall. JACC Clin. Electrophysiol. 2022;8:168–178. doi: 10.1016/j.jacep.2021.09.020. PubMed DOI
Młynarski R., Młynarska A., Gołba K.S., Sosnowski M. Visualisation of the oblique vein of the left atrium (vein of Marshall) using cardiac computed tomography: Is the game worth the candle? Kardiol. Pol. 2018;76:1344–1349. doi: 10.5603/KP.a2018.0131. PubMed DOI
Delgove A., Walton R., Pallares-Lupon N., Ozenne V., Constantin M., Arnaud M., Le Quilliec E., Haïssaguerre M., Hocini M., Jaïs P., et al. Anatomy of the oblique vein of the left atrium: Contribution of microCT analysis of human hearts. Surg. Radiol. Anat. 2025;47:182. doi: 10.1007/s00276-025-03691-z. PubMed DOI
Ulphani J.S., Arora R., Cain J.H., Villuendas R., Shen S., Gordon D., Inderyas F., Harvey L.A., Morris A., Goldberger J.J., et al. The ligament of Marshall as a parasympathetic conduit. Am. J. Physiol. Heart Circ. Physiol. 2007;293:H1629–H1635. doi: 10.1152/ajpheart.00139.2007. PubMed DOI
Makino M., Inoue S., Matsuyama T., Ogawa G., Sakai T., Kobayashi Y., Katagiri T., Ota H. Diverse myocardial extension and autonomic innervation on ligament of Marshall in humans. J. Cardiovasc. Electrophysiol. 2006;17:594–599. doi: 10.1111/j.1540-8167.2006.00375.x. PubMed DOI
Takigawa M., Martin C., Jaïs P. Mechanisms of vein of Marshall-related tachyarrhythmias and the impact of ethanol infusion. Rev. Cardiovasc. Med. 2024;25:112. doi: 10.31083/j.rcm2504112. PubMed DOI PMC
Cho K.H., Hayashi S., Jin Z.W., Kim J.H., Murakami G., Rodríguez-Vázquez J.F. The so-called absorption process of the pulmonary vein into the left atrium of the heart: A histological study using human embryos and fetuses. Surg. Radiol. Anat. 2023;45:469–478. doi: 10.1007/s00276-023-03100-3. PubMed DOI
Valderrábano M. Vein of Marshall ethanol infusion in the treatment of atrial fibrillation: From concept to clinical practice. Heart Rhythm. 2021;18:1074–1082. doi: 10.1016/j.hrthm.2021.03.032. PubMed DOI PMC
Valderrábano M. Ligament of Marshall arrhythmogenesis and vein of Marshall ethanol: A problem with a solution. Heart Rhythm. 2018;15:25–27. doi: 10.1016/j.hrthm.2017.09.013. PubMed DOI
Valderrábano M., Peterson L.E., Swarup V., Schurmann P.A., Makkar A., Doshi R.N., DeLurgio D., Athill C.A., Ellenbogen K.A., Natale A., et al. Effect of catheter ablation with vein of Marshall ethanol infusion vs catheter ablation alone on persistent atrial fibrillation: The VENUS randomized clinical trial. JAMA. 2020;324:1620–1628. doi: 10.1001/jama.2020.16195. PubMed DOI PMC
Báez-Escudero J.L., Morales P.F., Dave A.S., Kim Y.H., Okishige K., Valderrábano M. Ethanol infusion in the vein of Marshall facilitates mitral isthmus ablation. Heart Rhythm. 2012;9:1207–1215. doi: 10.1016/j.hrthm.2012.03.008. PubMed DOI PMC
Derval N., Duchateau J., Denis A., Ramirez F.D., Mahida S., André C., Krisai P., Nakatani Y., Kitamura T., Takigawa M., et al. Marshall bundle elimination, pulmonary vein isolation, and line completion for anatomical ablation of persistent atrial fibrillation (Marshall-PLAN): Prospective, single-center study. Heart Rhythm. 2021;18:529–537. doi: 10.1016/j.hrthm.2020.12.023. PubMed DOI
Anderson R.H., Brown N.A., Moorman A.F.M. Development and structures of the venous pole of the heart. Dev. Dyn. 2006;235:2–9. doi: 10.1002/dvdy.20578. PubMed DOI
Gray H., Standring S., editors. Gray’s Anatomy: The Anatomical Basis of Clinical Practice. 42nd ed. Elsevier; London, UK: 2021.
Goyal S.K., Punnam S.R., Verma G., Ruberg F.L. Persistent left superior vena cava: A case report and review of literature. Cardiovasc. Ultrasound. 2008;6:50. doi: 10.1186/1476-7120-6-50. PubMed DOI PMC
Irwin R.B., Greaves M., Schmitt M. Left superior vena cava: Revisited. Eur. Heart J. Cardiovasc. Imaging. 2012;13:284–291. doi: 10.1093/ehjci/jes017. PubMed DOI
Tyrak K.W., Hołda J., Hołda M.K., Koziej M., Piątek K., Klimek-Piotrowska W. Persistent left superior vena cava. Cardiovasc. J. Afr. 2017;28:e1–e4. doi: 10.5830/CVJA-2016-084. PubMed DOI PMC
Sonavane S.K., Milner D.M., Singh S.P., Abdel Aal A.K., Shahir K.S., Chaturvedi A. Comprehensive imaging review of the superior vena cava. Radiographics. 2015;35:1873–1892. doi: 10.1148/rg.2015150056. PubMed DOI
Demos T.C., Posniak H.V., Pierce K.L., Olson M.C., Muscato M. Venous anomalies of the thorax. Am. J. Roentgenol. 2004;182:1139–1150. doi: 10.2214/ajr.182.5.1821139. PubMed DOI
Depes D., Chłopaś K., Gil K., Ratajska A. The autonomic nerves around the vein of Marshall: A postmortem study with clinical implications. APMIS. 2024;132:165–175. doi: 10.1111/apm.13400. PubMed DOI
Kim Y.G., Han S., Choi J.-I., Lee K.-N., Baek Y.-S., Uhm J.-S., Shim J., Kim J.S., Park S.W., Hwang C., et al. Impact of persistent left superior vena cava on radiofrequency catheter ablation in patients with atrial fibrillation. Europace. 2019;21:1751–1758. doi: 10.1093/europace/euz254. PubMed DOI
Ortale J.R., Gabriel E.A., Iost C., Márquez C.Q. The anatomy of the coronary sinus and its tributaries. Surg. Radiol. Anat. 2001;23:15–21. doi: 10.1007/s00276-001-0015-0. PubMed DOI
Oliveira I.M., Scanavacca M.I., Correia A.T., Sosa E.A., Aiello V.D. Anatomic relations of the Marshall vein: Importance for catheterization of the coronary sinus in ablation procedures. Europace. 2007;9:915–919. doi: 10.1093/europace/eum175. PubMed DOI
Linhares R.R., Silva C.E.S., Monaco C.G., Ferreira L.D.C., Gil M.A., Ortiz J., Anderson R.H., Aiello V.D. Echocardiographic identification of the oblique vein of the left atrium: Its relationship to the persistent left superior caval vein. Cardiol. Young. 2010;20:269–274. doi: 10.1017/S1047951109991466. PubMed DOI
Żabówka A., Hołda J., Strona M., Małek Ł., Koziej M., Hołda M.K. Morphology of the Vieussens valve and its imaging in cardiac multislice computed tomography. J. Cardiovasc. Electrophysiol. 2019;30:1325–1329. doi: 10.1111/jce.14018. PubMed DOI
Yu X., He W., Xie J., He B., Luo D., Wang X., Jiang H., Lu Z. Selective ablation of ligament of Marshall inhibits ventricular arrhythmias during acute myocardial infarction: Possible mechanisms. J. Cardiovasc. Electrophysiol. 2019;30:374–382. doi: 10.1111/jce.13802. PubMed DOI
Chandler N., Aslanidi O., Buckley D., Inada S., Birchall S., Atkinson A., Kirk D., Monfredi O., Molenaar P., Anderson R., et al. Computer three-dimensional anatomical reconstruction of the human sinus node and a novel paranodal area. Anat. Rec. 2011;294:970–979. doi: 10.1002/ar.21379. PubMed DOI
Langmuur S.J.J., Taverne Y.J.H.J., van Schie M.S., Bogers A.J.J.C., de Groot N.M.S. Optimization of intra-operative electrophysiological localization of the ligament of Marshall. Front. Cardiovasc. Med. 2022;9:1030064. doi: 10.3389/fcvm.2022.1030064. PubMed DOI PMC
Pambrun T., Derval N., Duchateau J., Denis A., Chauvel R., Tixier R., Welte N., André C., Nakashima T., Nakatani Y., et al. Epicardial course of the musculature related to the great cardiac vein: Anatomical considerations and clinical implications for mitral isthmus block after vein of Marshall ethanol infusion. Heart Rhythm. 2021;18:1951–1958. doi: 10.1016/j.hrthm.2021.06.1202. PubMed DOI
Burstein B., Nattel S. Atrial fibrosis: Mechanisms and clinical relevance in atrial fibrillation. J. Am. Coll. Cardiol. 2008;51:802–809. doi: 10.1016/j.jacc.2007.09.064. PubMed DOI
Polyakova V., Miyagawa S., Szalay Z., Risteli J., Kostin S. Atrial extracellular matrix remodelling in patients with atrial fibrillation. J. Cell. Mol. Med. 2008;12:189–208. doi: 10.1111/j.1582-4934.2008.00219.x. PubMed DOI PMC
Nagashima K., Okumura Y., Watanabe I., Nakai T., Ohkubo K., Kofune T., Kofune M., Mano H., Sonoda K., Hirayama A. Association between epicardial adipose tissue volumes on 3-dimensional reconstructed CT images and recurrence of atrial fibrillation after catheter ablation. Circ. J. 2011;75:2559–2565. doi: 10.1253/circj.CJ-11-0554. PubMed DOI
Kocyigit D., Gurses K.M., Yalcin M.U., Yalcin M., Canpolat U., Tukek T., Aytemir K., Oto A. Periatrial epicardial adipose tissue thickness is an independent predictor of atrial fibrillation recurrence after cryoballoon-based pulmonary vein isolation. J. Cardiovasc. Comput. Tomogr. 2015;9:295–302. doi: 10.1016/j.jcct.2015.03.011. PubMed DOI
Chugh S.S., Roth G.A., Gillum R.F., Mensah G.A. Global burden of atrial fibrillation in developed and developing nations. Glob. Heart. 2014;9:113–119. doi: 10.1016/j.gheart.2014.01.004. PubMed DOI
Hindricks G., Potpara T., Dagres N., Arbelo E., Bax J.J., Blomström-Lundqvist C., Boriani G., Castella M., Dan G.A., Dilaveris P.E., et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021;42:373–498. doi: 10.1093/eurheartj/ehaa612. PubMed DOI
Wolf P.A., Abbott R.D., Kannel W.B. Atrial fibrillation as an independent risk factor for stroke: The Framingham Study. Stroke. 1991;22:983–988. doi: 10.1161/01.STR.22.8.983. PubMed DOI
Kannel W.B., Wolf P.A., Benjamin E.J., Levy D. Prevalence, incidence, prognosis, and predisposing conditions for atrial fibrillation: Population-based estimates. Am. J. Cardiol. 1998;82:2N–9N. doi: 10.1016/S0002-9149(98)00583-9. PubMed DOI
Hayashi T., Fukamizu S., Mitsuhashi T., Kitamura T., Aoyama Y., Hojo R., Sugawara Y., Sakurada H., Hiraoka M., Fujita H., et al. Peri-Mitral Atrial Tachycardia Using the Marshall Bundle. JACC Clin. Electrophysiol. 2016;2:22–32. doi: 10.1016/j.jacep.2015.08.011. PubMed DOI
Briceño D.F., Valderrábano M. Recurrent perimitral flutter due to vein of Marshall epicardial connections bypassing the mitral isthmus: Response to ethanol infusion. Circ. Arrhythm. Electrophysiol. 2014;7:986–987. doi: 10.1161/CIRCEP.114.001631. PubMed DOI PMC
Calkins H., Hindricks G., Cappato R., Kim Y.-H., Saad E.B., Aguinaga L., Akar J.G., Badhwar V., Brugada J., Camm J., et al. 2017 HRS/EHRA/ECAS/APHRS/SOLAECE expert consensus statement on catheter and surgical ablation of atrial fibrillation. Europace. 2018;20:e1–e160. doi: 10.1093/europace/eux274. PubMed DOI PMC
Katritsis D., Giazitzoglou E., Korovesis S., Paxinos G., Anagnostopoulos C.E., Camm A.J. Epicardial foci of atrial arrhythmias apparently originating in the left pulmonary veins. J. Cardiovasc. Electrophysiol. 2002;13:319–323. doi: 10.1046/j.1540-8167.2002.00319.x. PubMed DOI
Valderrábano M., Liu X., Sasaridis C., Sidhu J., Little S., Khoury D.S. Ethanol infusion in the vein of Marshall: Adjunctive effects during ablation of atrial fibrillation. Heart Rhythm. 2009;6:1552–1558. doi: 10.1016/j.hrthm.2009.07.036. PubMed DOI PMC
Valderrábano M., Morales P.F., Rodríguez-Mañero M., Lloves C., Schurmann P.A., Dave A.S. The human left atrial venous circulation as a vascular route for atrial pharmacological therapies: Effects of ethanol infusion. JACC Clin. Electrophysiol. 2017;3:1020–1032. doi: 10.1016/j.jacep.2017.02.022. PubMed DOI
Zhang H.-D., Ding L., Yu F.-Y., Mi L.-J., Zhang K., Weng S.-X., Jiang Z.-H., Tang M. Angiographic assessment of vein of Marshall in atrial fibrillation: Implications for identification and cannulation. Heliyon. 2023;9:e21266. doi: 10.1016/j.heliyon.2023.e21266. PubMed DOI PMC
Romero J., Lupercio F., Goodman-Meza D., Ruiz J.C., Briceno D.F., Fisher J.D., Gross J., Ferrick K., Kim S., Di Biase L., et al. Electroanatomic mapping systems (CARTO/EnSite NavX) vs conventional mapping for ablation procedures in a training program. J. Interv. Card. Electrophysiol. 2016;45:71–80. doi: 10.1007/s10840-015-0073-6. PubMed DOI
Bazoukis G., Elkholy K., Stavrakis S., Heist E.K., Armoundas A.A. Efficacy of commonly used 3D mapping systems in acute success rates of catheter ablation procedures. Heart Int. 2024;18:9–25. doi: 10.17925/HI.2024.18.1.3. PubMed DOI PMC
La Fazia V.M., Mohanty S., Gianni C., Zito E., Pierucci N., Stifano G., Torlapati P.G., Della Rocca D.G., Bode W.D., Burkhardt J.D., et al. Feasibility and Safety of Pulsed Field Ablation for Coronary Sinus and Left Atrial Appendage Isolation and Mitral Isthmus Ablation: Acute and Chronic Findings. Circ. Arrhythm. Electrophysiol. 2025;18:e014026. doi: 10.1161/CIRCEP.125.014026. PubMed DOI
Poa L., Puig M., Zubiate P., Ranzenbach E., Shari-Knutson M., Poa C., Poa H. Laser ablation of atrial fibrillation: Mid-term clinical experience. J. Atr. Fibrillation. 2009;2:198. doi: 10.4022/jafib.v1i8.542. PubMed DOI PMC
Saremi F., Muresian H., Sánchez-Quintana D. Coronary veins: Comprehensive CT-anatomic classification and review of variants and clinical implications. Radiographics. 2012;32:E1–E32. doi: 10.1148/rg.321115014. PubMed DOI
Genc B., Solak A., Sahin N., Gur S., Kalaycioglu S., Ozturk V. Assessment of the coronary venous system by using cardiac CT. Diagn. Interv. Radiol. 2013;19:286–293. doi: 10.5152/dir.2013.012. PubMed DOI
Aranyó J., Juncà G., Sarrias A., Bazan V., Cea D., Villuendas R., Gálvez-Montón C., Fernandez-Nofrerias E., Bayes-Genís A., Delgado V., et al. Left atrial structure and function following ethanol infusion into the vein of Marshall (MR-SHALL Study) J. Cardiovasc. Electrophysiol. 2025;36:157–167. doi: 10.1111/jce.16491. PubMed DOI
Chen Y.A., Nguyen E.T., Dennie C., Wald R.M., Crean A.M., Yoo S.-J., Jimenez-Juan L. Computed tomography and magnetic resonance imaging of the coronary sinus: Anatomic variants and congenital anomalies. Insights Imaging. 2014;5:547–557. doi: 10.1007/s13244-014-0330-8. PubMed DOI PMC
Chen H., Xiong X., Chen D., Li X., Yang L., Liu Z., Chen Y., Zhang J. Female sex is an independent risk factor for recurrence after ethanol Marshall bundle elimination in atrial fibrillation ablation. Front. Cardiovasc. Med. 2025;12:1556222. doi: 10.3389/fcvm.2025.1556222. PubMed DOI PMC
Duchnowski P., Śmigielski W. Usefulness of myocardial damage biomarkers in predicting cardiogenic shock in patients undergoing heart valve surgery. Pol. Heart J. 2024;82:423–426. doi: 10.33963/v.phj.99553. PubMed DOI